In this article, we discuss conditions that are sufficient for the existence of solutions for some ψ-Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions. By applying Krasnoselskii's and Banach's fixed point theorems, we investigate the existence and uniqueness of these solutions. Moreover, we have proved its boundedness of the method. We extend some earlier results by introducing and including the ψ-Hilfer fractional derivative, nonlinear integral terms and non-instantaneous impulsive conditions. Finally, we offer an application to explain the consistency of our theoretical results.
Citation: Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon. Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application[J]. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177
[1] | Ying Wang, Yunxi Guo . Blow-up solution and analyticity to a generalized Camassa-Holm equation. AIMS Mathematics, 2023, 8(5): 10728-10744. doi: 10.3934/math.2023544 |
[2] | Sen Ming, Jiayi Du, Yaxian Ma . The Cauchy problem for coupled system of the generalized Camassa-Holm equations. AIMS Mathematics, 2022, 7(8): 14738-14755. doi: 10.3934/math.2022810 |
[3] | Humaira Yasmin, Haifa A. Alyousef, Sadia Asad, Imran Khan, R. T. Matoog, S. A. El-Tantawy . The Riccati-Bernoulli sub-optimal differential equation method for analyzing the fractional Dullin-Gottwald-Holm equation and modeling nonlinear waves in fluid mediums. AIMS Mathematics, 2024, 9(6): 16146-16167. doi: 10.3934/math.2024781 |
[4] | Mengyang Liang, Zhong Bo Fang, Su-Cheol Yi . Blow-up analysis for a reaction-diffusion equation with gradient absorption terms. AIMS Mathematics, 2021, 6(12): 13774-13796. doi: 10.3934/math.2021800 |
[5] | Chien-Hong Cho, Ying-Jung Lu . On the numerical solutions for a parabolic system with blow-up. AIMS Mathematics, 2021, 6(11): 11749-11777. doi: 10.3934/math.2021683 |
[6] | Sen Ming, Xiaodong Wang, Xiongmei Fan, Xiao Wu . Blow-up of solutions for coupled wave equations with damping terms and derivative nonlinearities. AIMS Mathematics, 2024, 9(10): 26854-26876. doi: 10.3934/math.20241307 |
[7] | Meixia Cai, Hui Jian, Min Gong . Global existence, blow-up and stability of standing waves for the Schrödinger-Choquard equation with harmonic potential. AIMS Mathematics, 2024, 9(1): 495-520. doi: 10.3934/math.2024027 |
[8] | Zhiqiang Li . The finite time blow-up for Caputo-Hadamard fractional diffusion equation involving nonlinear memory. AIMS Mathematics, 2022, 7(7): 12913-12934. doi: 10.3934/math.2022715 |
[9] | Jiangyan Yao, Sen Ming, Wei Han, Xiuqing Zhang . Blow-up of solutions to the coupled Tricomi equations with derivative type nonlinearities. AIMS Mathematics, 2022, 7(7): 12514-12535. doi: 10.3934/math.2022694 |
[10] | Jincheng Shi, Yan Zhang, Zihan Cai, Yan Liu . Semilinear viscous Moore-Gibson-Thompson equation with the derivative-type nonlinearity: Global existence versus blow-up. AIMS Mathematics, 2022, 7(1): 247-257. doi: 10.3934/math.2022015 |
In this article, we discuss conditions that are sufficient for the existence of solutions for some ψ-Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions. By applying Krasnoselskii's and Banach's fixed point theorems, we investigate the existence and uniqueness of these solutions. Moreover, we have proved its boundedness of the method. We extend some earlier results by introducing and including the ψ-Hilfer fractional derivative, nonlinear integral terms and non-instantaneous impulsive conditions. Finally, we offer an application to explain the consistency of our theoretical results.
In this paper, we consider the initial value problem for a high-order nonlinear dispersive wave equation
ut−utxx+(k+2)ukux−(k+1)uk−1uxuxx−ukuxxx=0, | (1.1) |
u(0,x)=u0(x), | (1.2) |
where k∈N0 (N0 denotes the set of nonnegative integers) and u stands for the unknown function on the line R. Equation (1.1) was known as gkCH equation [18], which admits single peakon and multi-peakon traveling wave solutions, and possesses conserved laws
∫R(u2+u2x)dx=∫R(u20+u20x)dx. | (1.3) |
It is shown in [18] that this equation is well-posedness in Sobolev spaces Hs with s>3/2 on both the circle and the line in the sense of Hadamard by using a Galerkin-type approximation scheme. That is, the data-to-solution map is continuous. Furthermore, it is proved in [18] that this dependence is sharp by showing that the solution map is not uniformly continuous. The nonuniform dependence is proved using the method of approximate solutions and well-posedness estimates.
For k=1, we obtain the integrable equation with quadratic nonlinearities
ut−utxx+3uux−2uxuxx−uuxxx=0, | (1.4) |
which was derived by Camassa and Holm [1] and by Fokas and Fuchssteiner [12]. It was called as Camassa-Holm equation. It describes the motion of shallow water waves and possesses a Lax pair, a bi-Hamiltonian structure and infinitely many conserved integrals [1], and it can be solved by the inverse scattering method. One of the remarkable features of the CH equation is that it has the single peakon solutions
u(t,x)=ce−|x−ct|,c∈R |
and the multi-peakon solutions
u(t,x)=N∑i=1pi(t)e−|x−qi(t)|, |
where pi(t), qi(t) satisfy the Hamilton system [1]
dpidt=−∂H∂qi=∑i≠jpipjsign(qi−qj)e|qi−qj|, |
dqidt=−∂H∂pi=∑jpje|qi−qj| |
with the Hamiltonian H=12∑Ni,j=1pipje|qi|. It is shown that those peaked solitons were orbitally stable in the energy space [6]. Another remarkable feature of the CH equation is the so-called wave breaking phenomena, that is, the wave profile remains bounded while its slope becomes unbounded in finite time [7,8,9]. Hence, Eq (1.4) has attracted the attention of lots of mathematicians. The dynamic properties related to the equation can be found in [3,4,5,10,11,13,14,15,16,17,22,23,24,25,26,34,35,36] and the references therein.
For k=2, we obtain the integrable equation with cubic nonlinearities
ut−utxx+4u2ux−3uuxuxx−u2uxxx=0, | (1.5) |
which was derived by Vladimir Novikov in a symmetry classification of nonlocal PDEs [29] and was known as the Novikov equation. It is shown in [29] that Eq (1.5) possesses soliton solutions, infinitely many conserved quantities, a Lax pair in matrix form and a bi-Hamiltonian structure. Equation (1.5) can be thought as a generalization of the Camassa-Holm equation. The conserved quantities
H1[u(t)]=∫R(u2+u2x)dx |
and
H2(t)=∫R(u4+2u2u2x−13u4x)dx |
play an important role in the study of the dynamic properties related to the Eq (1.5). More information about the Novikov equation can be found in Himonas and Holliman [19], F. Tiglay [30], Ni and Zhou [28], Wu and Yin [31,32], Yan, Li and Zhang [33], Mi and Mu [27] and the references therein.
Inspired by the reference cited above, the objective of this paper is to investigate the dynamic properties for the Problems (1.1) and (1.2). More precisely, we firstly establish two blow up criteria and derive a lower bound of the maximal existence time. Then for k=2p+1, p is nonnegative integer, we derive two blow-up phenomena under different initial data. Motivated by the idea from Chen etal's work[2], we apply the characteristic dynamics of P=√2u−ux and Q=√2u+ux to deduce the first blow-up phenomenon. For the Problems (1.1) and (1.2), in fact, the estimates of P and Q can be closed in the form of
P′(t)≤α(u)PQ+Θ1,Q′(t)≥−α(u)PQ+Θ2, | (1.6) |
where α(u)≥0 and the nonlocal term Θi (i=1,2) can be bounded by the estimates from Problems (1.1) and (1.2). From (1.6) the monotonicity of P and Q can be established, and hence the finite-time blow-up follows. In blow-up analysis, one problematic issue is that we have to deal with high order nonlinear term uk−2u3x to obtain accurate estimate. Luckily, we overcome the problem by finding a new L2k estimate ∥ux∥L2k≤ec0t∥u0x∥L2k+c0t (see Lemma 4.1). It is shown in [18] that Eq (1.1) has peakon travelling solution u(t,x)=c1ke−|x−ct|. Follow the Definition 2.1, we show that the peakon solutions are global weak solutions.
The rest of this paper is organized as follows. For the convenience, Section 2 give some preliminaries. Two blow-up criteria are established in Section 3. Section 4 give two blow-up phenomena. In Section 5, we prove that the peakon solutions are global weak solutions.
We rewrite Problems (1.1) and (1.2) as follows
ut+ukux=−∂x(1−∂2x)−1[uk+1+2k−12uk−1u2x]−(1−∂2x)−1[k−12uk−2u3x], | (2.1) |
u(0,x)=u0(x), | (2.2) |
which is also equivalent to
yt+(k+1)uk−1uxy+ukyx=0, | (2.3) |
y=u−uxx, | (2.4) |
u(0,x)=u0(x),y0=u0−u0xx. | (2.5) |
Recall that
(1−∂2x)−1f=G∗f,whereG(x)=12e−|x| |
and ∗ denotes the convolution product on R, defined by
(f∗G)(x)=∫Rf(y)G(x−y)dy. | (2.6) |
Lemma 2.1. Given initial data u0∈Hs, s>32, the function u is said to be a weak solution to the initial-value Problem (1.1) and (1.2) if it satisfies the following identity
∫T0∫Ruφt−1k+1uk+1φx−G∗(uk+1+2k−12uk−1u2x)φx−G∗(k−12uk−2u3x)φdxdt−∫Ru0(x)φ(0,x)dx=0 | (2.7) |
for any smooth test function φ(t,x)∈C∞c([0,T)×R). If u is a weak solution on [0,T) for every T>0, then it is called a global weak solution.
The characteristics q(t,x) relating to (2.3) is governed by
qt(t,x)=uk(t,q(t,x)),t∈[0,T) |
q(0,x)=x,x∈R. |
Applying the classical results in the theory of ordinary differential equations, one can obtain that the characteristics q(t,x)∈C1([0,T)×R) with qx(t,x)>0 for all (t,x)∈[0,T)×R. Furthermore, it is shown in [21] that the potential y=u−uxx satisfies
y(t,q(t,x))q2x(t,x)=y0(x)e∫t0(k−1)uk−1ux(τ,q(τ,x))dτ. | (2.8) |
In this section, we investigate blow-up criteria and a lower bound of the maximal existence time. Now, we firstly give the first blow-up criterion.
Theorem 3.1. Let u0∈Hs(R) with s>32. Let T>0 be the maximum existence time of the solution u to the Problem (1.1) and (1.2) with the initial data u0. Then the correspondingsolution u blows up in finite time if and only if
limt→T−infx∈Ruk−1ux=−∞. |
Proof. Applying a simple density argument, it suffices to consider the case s=3. Let T>0 be the maximal time of existence of solution u to the Problem (1.1) and (1.2) with initial data u0∈H3(R). Due to y=u−uxx, by direct computation, one has
∥y∥2L2=∫R(u−uxx)2dx=∫R(u2+2u2x+u2xx)dx. | (3.1) |
So,
∥u∥2H2≤∥y∥2L2≤2∥u∥2H2. | (3.2) |
Multiplying Eq (2.3) by 2y and integrating by parts, we obtain
ddt∫Ry2dx=2∫Ryytdx=−2(k+1)∫Ruk−1uxy2dx−∫R2ukyyxdx=−(k+2)∫Ruk−1uxy2dx. | (3.3) |
If there is a M>0 such that uk−1ux>−M, from (3.3) we deduce
ddt∫Ry2dx≤(k+2)M∫Ry2dx. | (3.4) |
By virtue of Gronwall's inequality, one has
∥y∥2L2=∫Ry2dx≤e(k+2)Mt∥y0∥2L2. | (3.5) |
This completes the proof of Theorem 3.1.
Now we give the second blow-up criterion.
Theorem 3.2. Let u0∈Hs(R) with s>32. Let T>0 be the maximum existence time of the solution u to the Problem (1.1) with the initial data u0. Then the correspondingsolution u blows up in finite time if and only if
limt→T−infx∈R∣ux∣=∞. |
To complete the proof of Theorem 3.2, the following two lemmas is essential.
Lemma 3.1. ([11]) The following estimates hold
(i) For s≥0,
∥fg∥Hs≤C(∥f∥Hs∥g∥L∞+∥f∥L∞∥g∥Hs). | (3.6) |
(ii) For s>0,
∥f∂xg∥Hs≤C(∥f∥Hs+1∥g∥L∞+∥f∥L∞∥∂xg∥Hs). | (3.7) |
Lemma 3.2. ([20]) Let r>0. If u∈Hr∩W1,∞ and v∈Hr−1∪L∞, then
∥[Λr,u]v∥L2≤C(∥ux∥L∞∥Λr−1v∥L2+∥Λru∥L2∥v∥L∞), | (3.8) |
where Λ=(1−∂2x)12.
Proof. Applying Λr with r≥1 to two sides of Eq (2.1) and multiplying by Λru and integrating on R
12ddt∫R(Λru)2=−∫RΛr(ukux)Λrudx−∫RΛrf(u)Λrudx. | (3.9) |
where f(u)=∂x(1−∂2x)−1[uk+1+2k−12uk−1u2x]+(1−∂2x)−1[k−12uk−2u3x].
Notice that
∫RΛr(ukux)Λrudx=∫R[Λr,uk]uxΛrudx+∫RukΛruxΛrudx.≤∥[Λr,uk]ux∥L2∥Λru∥L2+c∥u∥k−1L∞∥ux∥L∞∥u∥2Hr≤c∥u∥Hr(∥u∥k−1L∞∥ux∥L∞∥u∥Hr+∥uk∥Hr∥ux∥L∞)+c∥u∥k−1L∞∥ux∥L∞∥u∥2Hr≤c∥ux∥L∞∥u∥2Hr, | (3.10) |
where Lemmas 3.1, 3.2 and the inequality ∥uk∥Hr≤k∥u∥k−1L∞∥u∥Hr were used.
In similar way, from Lemmas 3.1 and 3.2, we have
∣∫RΛrf(u)Λrudx∣≤∥u∥Hr∥Λrf(u)∥L2. | (3.11) |
∥Λrf(u)∥L2≤∥Λr∂x(1−∂2x)−1[uk+1+2k−12uk−1u2x]∥L2+∥Λr(1−∂2x)−1[k−12uk−2u3x]∥L2≤c(∥uk+1∥Hr−1+∥uk−1u2x∥Hr−1+∥uk−2u3x∥Hr−2). | (3.12) |
Notice that
∥uk−1u2x∥Hr−1=∥Λr−1uk−1u2x∥L2≤∥[Λr−1,uk−1]u2x∥L2+∥uk−1Λr−1u2x∥L2≤c(∥ux∥2L∞∥u∥Hr+∥ux∥L∞∥u∥Hr) | (3.13) |
and
∥uk−2u3x∥Hr−2=∥Λr−2uk−2u3x∥L2≤∥[Λr−2,uk−2]u3x∥L2+∥uk−2Λr−2u3x∥L2≤∥u∥k−3L∞∥ux∥L∞∥u3x∥Hr−1+∥ux∥3L∞∥uk−2∥Hr−1+∥uk−2∥L∞∥u3x∥Hr−1≤c(∥ux∥3L∞∥u∥Hr+c∥ux∥2L∞∥u∥Hr). | (3.14) |
Thus, we obtain
∣∫RΛrf(u)Λrudx∣≤c∥u∥2Hr(1+∥ux∥L∞+∥ux∥2L∞+∥ux∥3L∞). | (3.15) |
It follows from (3.9), (3.10) and (3.15) that
ddt∥u∥2Hr≤c∥u∥2Hr(1+∥ux∥L∞+∥ux∥2L∞+∥ux∥3L∞). | (3.16) |
Therefore, if there exists a positive number M such that ∥ux∥L∞≤M. The Gronwall' inequality gives rise to
∥u∥2Hr≤c∥u0∥2Hre(1+M+M2+M3)t. | (3.17) |
This completes the proof of Theorem 3.2.
Theorem 3.3. Assume that u0∈Hs with s>32, N=max{3,8k−36}. Let ∥ux(0)∥L∞<∞, T>0 be the maximum existence time of the solutionu to (2.1) and (2.2) with the initial data u0. Then T satisfies
T≤12N∥u0∥k−2H1(∥u(0)∥L∞+∥ux(0)∥L∞)2. |
Proof. Notice that the Eq (2.1) is equivalent to the following equation
ut+ukux+∂xG∗[uk+1+2k−12uk−1u2x]+G∗[k−12uk−2u3x]=0, | (3.18) |
where G(x)=12e−|x| is the Green function of (1−∂2x)−1. Multiplying the above equation by u2n−1 and integrating the resultant with respect to x, in view of Hölder's inequality, we obtain
∫Ru2n−1utdx=12nddt∥u∥2nL2n=∥u∥2n−1L2nddt∥u∥L2n, | (3.19) |
∫Ru2n−1Gx∗[uk+1+2k−12uk−1u2x]dx≤c∥u∥2n−1L2n(∥u∥kL∞∥u∥L2n+2k−12∥ux∥2L∞∥u∥k−2L∞∥u∥L2n), | (3.20) |
and
∫Ru2n−1G∗[k−12uk−2u3x]dx≤k−12∥u∥2n−1L2n∥ux∥2L∞∥u∥k−2L∞∥ux∥L2n. | (3.21) |
Combining (3.19)–(3.21), integrating over [0,t], it follows that
∥u∥L2n≤∥u(0)∥L2n+∫t0∥u∥L2n(∥u∥kL∞+2k−12∥u∥k−2L∞∥ux∥2L∞)dt+k−12∫t0∥ux∥2L∞∥u∥k−2L∞∥ux∥L2ndt. | (3.22) |
Letting n tend to infinity in the above inequality, we have
∥u∥L∞≤∥u(0)∥L∞+∫t0∥u∥k−2L∞(∥u∥3L∞+2k−12∥u∥L∞∥ux∥2L∞+k−12∥ux∥3L∞)dx. | (3.23) |
Differentiating (3.18) with respect to x, we obtain
utx+kuk−1u2x+ukuxx−uk+1−2k−12uk−1u2x+G∗[uk+1+2k−12uk−1u2x]+Gx∗[k−12uk−2u3x]=0. | (3.24) |
Multiplying the above equation by u2n−1x and integrating the resultant with respect to x over R, still in view of Hölder's inequality, we get following estimates
∫Ru2n−1xutxdx=12nddt∥ux∥2nL2n=∥ux∥2n−1L2nddt∥ux∥L2n, | (3.25) |
∣∫Rkuk−1u2n+1xdx∣≤k∥ux∥2L∞∥ux∥2n−1L2n∥u∥k−2L∞∥u∥L2n, | (3.26) |
∣∫Ruku2n−1xuxxdx∣≤k2n∥ux∥2n−1L2n∥ux∥2L∞∥u∥k−2L∞∥u∥L2n, | (3.27) |
∣∫Ruk+1u2n−1xdx∣≤∥ux∥2n−1L2n∥u∥kL∞∥u∥L2n, | (3.28) |
∣∫R2k−12uk−1u2n+1xdx∣≤2k−12∥ux∥2n−1L2n∥ux∥2L∞∥u∥k−2L∞∥u∥L2n, | (3.29) |
∣∫Ru2n−1xG∗[uk+1+2k−12uk−1u2x]dx∣≤∥ux∥2n−1L2n(∥u∥kL∞∥u∥L2n+2k−12∥ux∥2L∞∥u∥k−2L∞∥u∥L2n), | (3.30) |
and
∣∫Ru2n−1xGx∗[k−12uk−2u3x]dx∣≤k−12∥ux∥2n−1L2n∥ux∥2L∞∥u∥k−2L∞∥ux∥L2n. | (3.31) |
Combining (3.25)–(3.31), it gives rise to
ddt∥ux∥L2n≤∥u∥k−2L∞((k2n+3k−1)∥ux∥2L∞∥u∥L2n+∥u∥2L∞∥u∥L2n+k−12∥ux∥2L∞∥ux∥L2n). | (3.32) |
Integrating (3.32) over [0,t] and letting n tend to infinity, it follows that
∥ux∥L∞≤∥ux(0)∥L∞+∫t0∥u∥k−2L∞(2∥u∥3L∞+(3k−1)∥u∥L∞∥ux∥2L∞+k−12∥ux∥3L∞)dτ. | (3.33) |
Combining (3.23) and (3.33), we deduce that
∥u∥L∞+∥ux∥L∞≤∥u(0)∥L∞+∥ux(0)∥L∞+∫t0∥u∥k−2L∞(3∥u∥3L∞+(8k−3)2∥u∥L∞∥ux∥2L∞+(k−1)∥ux∥3L∞)dτ. | (3.34) |
Define h(t)=∥u∥L∞+∥ux∥L∞ and N=max{3,8k−36}. Then h(0)=∥u(0)∥L∞+∥ux(0)∥L∞. One can obtain
∥ux∥L∞≤h(t)≤h(0)+∫t0N∥u0∥k−2H1h3(t)dτ. | (3.35) |
Solving (3.35), we get
∥ux∥L∞≤h(t)≤h(0)√1−2h2(0)N∥u0∥k−2H1t. | (3.36) |
Therefore, let T=12N∥u0∥k−2H1(∥u(0)∥L∞+∥ux(0)∥L∞)2, for all t≤T, ∥ux∥L∞≤h(t) holds.
For the convenience, we firstly give several Lemmas.
Lemma 4.1. (L2k estimate)Let u0∈Hs, s≥3/2 and ∥u0x∥L2k<∞, k=2p+1, p is nonnegative integer. Let T be the lifespan of the solution to problem (1.1). The estimate
∥ux∥L2k≤ec0t(∥u0x∥L2k+c0t) |
holds for t∈[0,T).
Proof. Differentiating the first equation of Problem (2.1) respect with to x, we have
utx+12uk−1u2x+ukuxx=uk+1−(1−∂2x)−1(uk+1+2k−12uk−1u2x)−∂x(1−∂2x)−1(k−12uk−2u3x). | (4.1) |
Multiplying the above equation by 2ku2k−1x and integrating the resultant over R, we obtain
ddt∫Ru2kxdx=ddt∥ux∥2kL2k=2k∥ux∥2k−1L2kddt∥ux∥L2k≤c0∥ux∥2k−1L2k+c0∥u2k−1x∥L1∥u3x∥L1. | (4.2) |
In view of Hölder's inequality, we derive the following estimates
∥u2k−1x∥L1≤(∫Ru2kxdx)12(∫Ru2k−2xdx)12, | (4.3) |
∥u2k−1x∥L1≤(∫Ru2kxdx)12+14(∫Ru2k−4xdx)14, | (4.4) |
∥u2k−1x∥L1≤(∫Ru2kxdx)12+14+18(∫Ru2k−8xdx)18, | (4.5) |
and
∥u2k−1x∥L1≤(∫Ru2kxdx)12+14+18+116(∫Ru2k−16xdx)116, | (4.6) |
⋅⋅⋅⋅⋅⋅
On the other hand,
∥u3x∥L1≤(∫Ru2xdx)12(∫Ru4xdx)12, | (4.7) |
∥u3x∥L1≤(∫Ru2xdx)12+14(∫Ru6xdx)14, | (4.8) |
∥u3x∥L1≤(∫Ru2xdx)12+14+18(∫Ru10xdx)18, | (4.9) |
and
∥u3x∥L1≤(∫Ru2xdx)12+14+18+116(∫Ru18xdx)116, | (4.10) |
⋅⋅⋅⋅⋅⋅
Therefore, if 2k−2=2 (k=2), combining (4.3) and (4.7), we have
∥u2k−1x∥L1∥u3x∥L1≤∥u0∥H1(R)∫Ru2kxdx. | (4.11) |
If 2k−4=2 (k=3), combining (4.4) and (4.8), we have
∥u2k−1x∥L1∥u3x∥L1≤∥u0∥H1(R)∫Ru2kxdx. | (4.12) |
If 2k−8=2 (k=5), combining (4.5) and (4.9), we have
∥u2k−1x∥L1∥u3x∥L1≤∥u0∥H1(R)∫Ru2kxdx. | (4.13) |
and if 2k−16=2 (k=9), combining (4.6) and (4.10), we have
∥u2k−1x∥L1∥u3x∥L1≤∥u0∥H1(R)∫Ru2kxdx. | (4.14) |
⋅⋅⋅⋅⋅⋅
Therefore, if and only if k=2p+1, p is nonnegative integer, the following inequality follows
2k∥ux∥2k−1L2kddt∥ux∥L2k≤c0∥ux∥2k−1L2k+c0∥u2k−1x∥L1∥u3x∥L1≤c0∥ux∥2k−1L2k+c0∥ux∥2kL2k, | (4.15) |
where c0=c0(∥u0∥H1(R)).
ddt∥ux∥L2k≤c0+c0∥ux∥L2k. | (4.16) |
In view of Gronwall's inequality, we have for t∈[0,T)
∥ux∥L2k≤ec0t(∥u0x∥L2k+c0t). | (4.17) |
This completes the proof of Lemma 4.1.
Remark. In case of p=0, then k=2, and we obtain
∥ux∥L4≤ec0t(∥u0x∥L4+c0t), | (4.18) |
which is exactly the same as the Lemma 3.2 in [23].
Lemma 4.2. Given that u0∈Hs, s≥3/2. Let ∥u0x∥L2k<∞, k=2p+1, p is nonnegative integer and T be the lifespan of the solution to Problem (1.1) and (1.2). The estimate
∫R|uk−2u3x|dx≤α:=(ec0T(∥u0x∥L2k+c0T))3∥u0∥k−2H1 |
holds.
Proof. Applying Hölder'inequality, Lemma 4.1 and (1.3), we have
∫R|uk−2u3x|dx≤(∫R(u3x)2k3dx)32k(∫R(uk−2)2k2k−3dx)2k−32k≤(∫R(u2kx)dx)32k(∫Ru2k(k−2)2k−3dx)2k−32k≤(ec0t∥u0x∥L2k+c0t)3∥u∥(2k(k−2)2k−3−2)2k−32kL∞(∫Ru2dx)2k−32k≤(ec0t∥u0x∥L2k+c0t)3∥u0∥k−2H1. |
Lemma 4.3. Given that u0∈Hs, s≥3. For k=2p+1 and p is nonnegative integer. Then
u(t,q(t,x1))>0,for0<t<T1:=u0(x1)c0+cα. |
Proof. From the Young's inequality, Lemma 4.2 and (1.3), it follows that
∣u′(t)∣=∣−∂x(1−∂2x)−1(uk+1+2k−12uk−1u2x)+(1−∂2x)−1(k−12uk−2u3x)∣≤∣−∂x(1−∂2x)−1(uk+1+2k−12uk−1u2x)∣+∣(1−∂2x)−1(k−12uk−2u3x)∣≤c0+cα. | (4.19) |
Therefore,
−c0−cα≤u′(t)≤c0+cα. |
Integrating over the time interval [0,t] yields
u0(x1)−[c0+cα]t≤u(t,q(t,x1))≤u0(x1)+[c0+cα]t. | (4.20) |
So,
u(t,q(t,x1))>0,for0<t<T1:=u0(x1)c0+cα. |
Theorem 4.1. Let ∥u0x∥L2k<∞, k=2p+1, p is nonnegative integer and u0∈Hs(R) for s>32. Suppose that there exist some 0<λ<1 and x1∈R such that 12uk−10(2u20−u20x)+C2≤0, √2u0<−u0x, u0(x1)>0 and
ln((λu0(x1))k−12(2u20−u20x)+√2C(λu0(x1))k−12(2u20−u20x)−√2C)≤(1−λ)u0(x1)√C√2(λu0(x1))k−12. |
Then the corresponding solution u(t,x) blows up in finite time T∗ with
T∗≤T0=1√2(λu0(x1))k−12Cln((λu0(x1))k−12(2u20−u20x)+√2C(λu0(x1))k−12(2u20−u20x)−√2C), |
where C=√cα+c0.
Proof. We track the dynamics of P(t)=(√2u−ux)(t,q(t,x1)) and Q(t)=(√2u+ux)(t,q(t,x1)) along the characteristics
P′(t)=√2(ut+uxqt)−(utx+uxxqt)=−12uk−1(2u2−u2x)−√2∂x(1−∂2x)−1(uk+1+2k−12uk−1u2x)+√2(1−∂2x)−1(k−12uk−2u3x)+(1−∂2x)−1(uk+1+2k−12uk−1u2x)−∂x(1−∂2x)−1(k−12uk−2u3x)≥−12uk−1PQ−C2 | (4.21) |
and
Q′(t)=√2(ut+uxqt)+(utx+uxxqt)=12uk−1(2u2−u2x)−√2∂x(1−∂2x)−1(uk+1+2k−12uk−1u2x)+√2(1−∂2x)−1(k−12uk−2u3x)−(1−∂2x)−1(uk+1+2k−12uk−1u2x)+∂x(1−∂2x)−1(k−12uk−2u3x)≤12uk−1PQ+C2. | (4.22) |
Then we obtain
P′(t)≥−12uk−1PQ−C2,Q′(t)≤12uk−1PQ+C2. | (4.23) |
The expected monotonicity conditions on P and Q indicate that we would like to have
12uk−1PQ+C2<0. | (4.24) |
It is shown from assumptions of Theorem 4.1 that the initial data satisfies
12uk−10(2u20−u20x)+C2<0,√2u0<−u0x. | (4.25) |
Therefore, along the characteristics emanating from x1, the following inequalities hold
12uk−10P(0)Q(0)+C2<0,P(0)>0,Q(0)<0 | (4.26) |
and
P′(0)>0,Q′(0)<0. | (4.27) |
Therefore over the time of existence the following inequalities always hold
P′(t)>0,Q′(t)<0. | (4.28) |
Letting h(t)=√−PQ(t) and using the estimate Q−P2≥h(t), we have
h′(t)=−P′Q+PQ′2√−PQ≥(12uk−1PQ+C2)Q−P(12uk−1PQ+C2)2√−PQ=−(12uk−1PQ+C2)(P−Q)2√−PQ≥12uk−1h2−C2, | (4.29) |
We focus on the time interval 0≤t≤T2:=(1−λ)u0(x1)c0+cα, it implies that
0<λu0(x1)≤u(t,q(t,x1))≤(2−λ)u0(x1). | (4.30) |
Solving for 0≤t≤T2
h′(t)≥12λk−1u0(x1)k−1h2−C2, | (4.31) |
we obtain
ln(λu0(x1))k−12h−√2C(λu0(x1))k−12h+√2C≥ln((λu0(x1))k−12h0−√2C(λu0(x1))k−12h0+√2C)+√2(λu0(x1))k−12Ct, | (4.32) |
It is observed from assumption of Theorem 4.1 that T0<T2, (4.32) implies that h→+∞ as t→T∗
T∗≤T0=1√2(λu0(x1))k−12Cln((λu0(x1))k−12h0+√2C(λu0(x1))k−12h0−√2C). | (4.33) |
Theorem 4.2. Let ∥u0x∥L2k<∞, k=2p+1, p is nonnegative integer and u0∈Hs(R) for s>32. Suppose that there exist some 0<λ<1 and x2∈R such that u0(x2)>0, u0x(x2)<−√ba and
ln(−u0x(x2)+√ba−u0x(x2)−√ba)≤2(1−λ)u0(x2)√ba, | (4.34) |
where a=k2λk−1uk−10(x2) and b=c0+cα.Then the corresponding solution u(t,x) blows up in finite time T∗∗ with
T∗∗≤T4=12√abln(−u0x(x2)+√ba−u0x(x2)−√ba), | (4.35) |
Proof. Now, we prove the blow-up phenomenon along the characteristics q(t,x2). From (2.1), it follows that
u′(t)=−∂x(1−∂2x)−1(uk+1+2k−12uk−1u2x)−(1−∂2x)−1(k−12uk−2u3x), | (4.36) |
and
u′x(t)=−12uk−1u2x+uk+1−(1−∂2x)−1(uk+1+2k−12uk−1u2x)−∂x(1−∂2x)−1(k−12uk−2u3x). | (4.37) |
Setting M(t)=u(t,q(t,x1)) and using the Young's inequality, Lemmas 4.2 and 4.3 and (2.8) again, from (4.37), we get
M′x(t)≤−12Mk−1M2x+b. | (4.38) |
where b=c0+cα. Now, we focus on the time interval 0≤t≤T3:=(1−λ)u0(x2)c0+cα, it implying that
0<λu0(x2)≤u(t,q(t,x2))≤(2−λ)u0(x2). | (4.39) |
Therefore, for 0≤t≤T3, we deduce from (4.38) that
M′x(t)≤−aM2x+b, | (4.40) |
where a=12λk−1uk−10(x2).
It is observed from assumption of Theorem 4.2 that u0x(x2)<−√ba and T4<T3. Solving (4.40) results in
Mx→−∞ast→T∗∗, | (4.41) |
where T∗∗≤T4=12√abln(u0x(x2)−√bau0x(x2)+√ba).
In this section, we will turn our attention to peakon solution for the Problem (1.1).
Theorem 5.1. The peakon function of the form
u(t,x)=c1ke−|x−ct|,c≠0isarbitaryconstant, | (5.1) |
is a global weak solution to (1.1) and (1.2) in the sense of Definition 2.1.
Proof. Let u=ae−|x−ct| be peakon solution for the Problems (1.1) and (1.2), where a≠0 is an undetermined constant. We firstly claim that
ut=asign(x−ct)u,ux=−sign(x−ct)u. | (5.2) |
Hence, using (2.6), (5.2) and integration by parts, we derive that
∫T0∫Ruφt+1k+1uk+1φxdxdt+∫Ru0(x)φ(0,x)dx=−∫T0∫Rφ(ut+ukux)dxdt=−∫T0∫Rφsign(x−ct)(cu−uk+1)dxdt. | (5.3) |
On the other hand,
∫T0∫RG∗(uk+1+2k−12uk−1u2x)φx−G∗[k−12uk−2u3x]φdxdt=∫T0∫R−φGx∗[2k−12uk−1u2x]−φp∗[k−12uk−2u3x−(k+1)ukux]dxdt. | (5.4) |
Directly calculate
k−12uk−2u3x+(k+1)ukux=(k+1)uk(−sign(x−ct)u)+k−12uk−2(−sign3(x−ct)u3)=−[(k+1)+k−12]sign(x−ct)uk+1=[k−12(k+1)+1]∂x(uk+1). | (5.5) |
Therefore, we obtain
∫T0∫RG∗(uk+1+2k−12uk−1u2x)φx−G∗[k−12uk−2u3x]φdxdt=∫T0∫RφGx∗[−2k−12uk−1u2x−(k−12(k+1)+1)uk+1]dxdt=−∫T0∫RφGx∗(k(k+2)k+1uk+1)dxdt. | (5.6) |
Note that Gx=−12sign(x)e−|x|. For x>ct,
Gx∗[(k(k+2)k+1uk+1]=−12∫Rsign(x−y)e−|x−y|(k(k+2)k+1ak+1e−(k+1)|y−ct|dy=−12(∫ct−∞+∫xct+∫∞x)sign(x−y)e−|x−y|k(k+2)k+1ak+1e−(k+1)|y−ct|dy=I1+I2+I3. | (5.7) |
We directly compute I1 as follows
I1=−12∫ct−∞sign(x−y)e−|x−y|k(k+2)k+1ak+1e−(k+1)|y−ct|dy=−12k(k+2)k+1ak+1∫ct−∞e−x−(k+1)cte(k+2)ydy=−12k(k+2)k+1ak+1e−x−(k+1)ct∫ct−∞e(k+2)ydy=−12(k+2)k(k+2)k+1ak+1e−x+ct. | (5.8) |
In a similar procedure, we obtain
I2=−12∫xctsign(x−y)e−|x−y|k(k+2)k+1ak+1e−(k+1)|y−ct|dy=−12k(k+2)k+1ak+1∫xcte−x+(k+1)cte−kydy=−12k(k+2)k+1ak+1e−x+(k+1)ct∫xcte−kydy=12kk(k+2)k+1ak+1(e−(k+1)(x−ct)−e−x+ct). | (5.9) |
and
I3=−12∫∞xsign(x−y)e−|x−y|k(k+2)k+1ak+1e−(k+1)|y−ct|dy=−12k(k+2)k+1ak+1∫∞xex+(k+1)cte−(k+2)ydy=−12k(k+2)k+1ak+1∫∞xe−(k+2)ydy=12(k+2)k(k+2)k+1ak+1e−(k+1)(x−ct). | (5.10) |
Substituting (5.8)–(5.10) into (5.7), we deduce that for x>ct
Gx∗[k(k+2)k+1uk+1]=2(k+1)k(k+2)Ωe−x+ct−2(k+1)k(k+2)Ωe−(k+1)(x−ct)=−ak+1e−x+ct+ak+1e−(k+1)(x−ct), | (5.11) |
where Ω=−12k(k+2)k+1ak+1.
For x<ct,
Gx∗[(k(k+2)k+1uk+1]=−12∫Rsign(x−y)e−|x−y|(k(k+2)k+1ak+1e−(k+1)|y−ct|dy=−12(∫x−∞+∫ctx+∫∞ct)sign(x−y)e−|x−y|k(k+2)k+1ak+1e−(k+1)|y−ct|dy=Δ1+Δ2+Δ3. | (5.12) |
We directly compute Δ1 as follows
Δ1=−12∫x−∞sign(x−y)e−|x−y|k(k+2)k+1ak+1e−(k+1)|y−ct|dy=−12k(k+2)k+1ak+1∫x−∞e−x−(k+1)cte(k+2)ydy=−12k(k+2)k+1ak+1e−x−(k+1)ct∫x−∞e(k+2)ydy=−12(k+2)k(k+2)k+1ak+1e(k+1)(x−ct). | (5.13) |
In a similar procedure, one has
Δ2=−12∫ctxsign(x−y)e−|x−y|k(k+2)k+1ak+1e−(k+1)|y−ct|dy=12k(k+2)k+1ak+1∫ctxex−(k+1)ctekydy=12k(k+2)k+1ak+1ex−(k+1)ct∫ctxekydy=12kk(k+2)k+1ak+1(−e(k+1)(x−ct)+ex−ct). | (5.14) |
and
Δ3=−12∫∞ctsign(x−y)e−|x−y|k(k+2)k+1ak+1e−(k+1)|y−ct|dy=12k(k+2)k+1ak+1∫∞ctex+(k+1)cte−(k+2)ydy=12k(k+2)k+1ak+1ex+(k+1)ct∫∞cte−(k+2)ydy=12(k+2)k(k+2)k+1ak+1ex−ct. | (5.15) |
Therefore, from (5.13)–(5.15), we deduce that for x<ct
Gx∗[k(k+2)k+1uk+1]=−2(k+1)k(k+2)Ωex−ct+2(k+1)k(k+2)Ωe(k+1)(x−ct), | (5.16) |
where Ω=12k(k+2)k+1ak+1.
Due to u=ae−|x−ct|,
sign(x−ct)(cu−uk+1)={−ace−x+ct+ak+1e−(k+1)(x−ct),forx>ct,acex−ct−ak+1e(k+1)(x−ct),forx≤ct. |
To ensure that u=ae−|x−ct| is a global weak solution of (2.1) in the sense of Definition 2.1, we let
ak+1=ac, | (5.17) |
Solving (5.17), we get
a=c1k,c>0. | (5.18) |
From (5.18), we derive that
u=c1ke−|x−ct|,c>0, | (5.19) |
which along with (5.11), (5.16) and (5.17) gives rise to
asign(x−ct)(cu−uk+1)(t,x)−Gx∗(k(k+2)k+1uk+1(t,x)=0. | (5.20) |
Therefore, we conclude that
∫T0∫Ruφt+1k+1uk+1φx+G∗(uk+1+2k−12uk−1u2x)φx+G∗(k−12uk−2u3x)φdxdt+∫Ru0(x)φ(0,x)dx=0, | (5.21) |
for every test function φ(t,x)∈C∞c([0,+∞)×R), which completes the proof of Theorem 5.1.
This work is supported by the GuiZhou Province Science and Technology Basic Project [Grant number QianKeHe Basic [2020]1Y011], Department of Guizhou Province Education project [grant number QianJiaoHe KY Zi [2019]124] and the GuiZhou Province Science and Technology Plan Project [Grant number QianKeHe Platform Talents [2018]5784-09].
There are no conflict of interest.
[1] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000, 87–130. http://doi.org/10.1142/9789812817747_0002 |
[2] |
S. Asawasamrit, Y. Thadang, S. K. Ntouyas, J. Tariboon, Non-instantaneous impulsive boundary value problems containing Caputo fractional derivative of a function with respect to another function and Riemann–Stieltjes fractional integral boundary conditions, Axioms, 10 (2021), 130. https://doi.org/10.3390/axioms10030130 doi: 10.3390/axioms10030130
![]() |
[3] |
M. S. Abdo, S. K. Pancha, Fractional integro-differential equations involving ψ-Hilfer fractional derivative, Adv. Appl. Math. Mech., 11 (2019), 338–359. http://doi.org/10.4208/aamm.OA-2018-0143 doi: 10.4208/aamm.OA-2018-0143
![]() |
[4] |
M. R. Ali, A. R. Hadhoud, H. M. Srivastava, Solution of fractional Volterra–Fredholm integro-differential equations under mixed boundary conditions by using the HOBW method, Adv. Differ. Equ., 2019 (2019), 115. https://doi.org/10.1186/s13662-019-2044-1 doi: 10.1186/s13662-019-2044-1
![]() |
[5] |
A. Anguraj, P. Karthikeyan, M. Rivero, J. J. Trujillo, On new existence results for fractional integro-differential equations with impulsive and integral conditions, Comput. Math. Appl., 66 (2014), 2587–2594. https://doi.org/10.1016/j.camwa.2013.01.034 doi: 10.1016/j.camwa.2013.01.034
![]() |
[6] |
R. Agarwal, S. Hristova, D. O'Regan, Non-instantaneous impulses in Caputo fractional differential equations, Fract. Calc. Appl. Anal., 20 (2017), 595–622. https://doi.org/10.1515/fca-2017-0032 doi: 10.1515/fca-2017-0032
![]() |
[7] |
M. S. Abdo, S. K. Panchal, A. M. Saeed, Fractional boundary value problem with ψ-Caputo fractional derivative, Proc. Indian Acad. Sci., Math. Sci., 129 (2019), 65. https://doi.org/10.1007/s12044-019-0514-8 doi: 10.1007/s12044-019-0514-8
![]() |
[8] | S. Kailasavalli, M. MallikaArjunan, P. Karthikeyan, Existence of solutions for fractional boundary value problems involving integro-differential equations in Banach spaces, Nonlinear Stud., 22 (2015), 341–358. |
[9] | P. Karthikeyan, K. Venkatachalam, S. Abbas, Existence results for fractional impulsive integro differential equations with integral conditions of Katugampola type, Acta Math. Univ. Comenianae, 90 (2021), 421–436. |
[10] |
C. Nuchpong, S. K. Ntouyas, J. Tariboon, Boundary value problems of Hilfer-type fractional integro-differential equations and inclusions with nonlocal integro-multipoint boundary conditions, Open Math., 18 (2020), 1879–1894. https://doi.org/10.1515/math-2020-0122 doi: 10.1515/math-2020-0122
![]() |
[11] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[12] | I. Podlubny, Fractional differential equations, San Diego: Acadamic Press, 1999. |
[13] |
H. M. Srivastava, Fractional-order derivatives and integrals: Introductory overview and recent developments, Kyungpook Math. J., 60 (2020), 73–116. https://doi.org/10.5666/KMJ.2020.60.1.73 doi: 10.5666/KMJ.2020.60.1.73
![]() |
[14] | H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex Anal., 22 (2021), 1501–1520. |
[15] |
H. M. Srivastava, An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions, J. Adv. Engrg. Comput., 5 (2021), 135–166. http://doi.org/10.55579/jaec.202153.340 doi: 10.55579/jaec.202153.340
![]() |
[16] |
M. I. Abbas, Non-instantaneous impulsive fractional integro-differential equations with proportional fractional derivatives with respect to another function, Math. Methods Appl. Sci., 44 (2021), 10432–10447. https://doi.org/10.1002/mma.7419 doi: 10.1002/mma.7419
![]() |
[17] |
K. Aissani, M. Benchohra, N. Benkhettou, On fractional integro-differential equations with state-dependent delay and non-instantaneous impulses, Cubo, 21 (2019), 61–75. http://doi.org/10.4067/S0719-06462019000100061 doi: 10.4067/S0719-06462019000100061
![]() |
[18] |
V. Gupta, J. Dabas, Nonlinear fractional boundary value problem with not-instantaneous impulse, AIMS Mathematics, 2 (2020), 365–376. http://doi.org/10.3934/Math.2017.2.365 doi: 10.3934/Math.2017.2.365
![]() |
[19] |
A. G. Ibrahim, A. A. Elmandouh, Existence and stability of solutions of ψ-Hilfer fractional functional differential inclusions with non-instantaneous impulses, AIMS Mathematics, 6 (2021), 10802–10832. http://doi.org/10.3934/math.2021628 doi: 10.3934/math.2021628
![]() |
[20] |
C. Long, J. Xie, G. Chen, D. Luo, Integral boundary value problem for fractional order differential equations with non-instantaneous impulses, Int. J. Math. Anal., Ruse, 14 (2020), 251–266. https://doi.org/10.12988/ijma.2020.912110 doi: 10.12988/ijma.2020.912110
![]() |
[21] |
E. Hernandez, D. O'Regan, On a new class of abstract impulsive differential equation, Proc. Am. Math. Soc., 141 (2013), 1641–1649. http://doi.org/10.1090/S0002-9939-2012-11613-2 doi: 10.1090/S0002-9939-2012-11613-2
![]() |
[22] |
R. Terzieva, Some phenomena for non-instantaneous impulsive differential equations, Int. J. Pure Appl. Math., 119 (2018), 483–490. http://doi.org/10.12732/ijpam.v119i3.8 doi: 10.12732/ijpam.v119i3.8
![]() |
[23] |
A. Salim, M. Benchohra, J. R. Graef, J. E. Lazreg, Boundary value problem for fractional order generalized Hilfer-type fractional derivative with non-instantaneous impulses, Fractal Fract., 5 (2021), 1–21. https://doi.org/10.3390/fractalfract5010001 doi: 10.3390/fractalfract5010001
![]() |
[24] |
D. Yang, J. R. Wang, Integral boundary value problems for nonlinear non-instantaneous impulsive differential equations, J. Appl. Math. Comput., 55 (2017), 59–78. http://doi.org/10.1007/s12190-016-1025-8 doi: 10.1007/s12190-016-1025-8
![]() |
[25] |
A. Zada, S. Ali, Y. Li, Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition, Adv. Differ. Equ., 2017 (2017), 317. http://doi.org/10.1186/s13662-017-1376-y doi: 10.1186/s13662-017-1376-y
![]() |
[26] |
A. Zada, S. Ali, Stability of integral Caputo type boundary value problem with non instantaneous impulses, Int. J. Appl. Comput. Math., 5 (2019), 55. https://doi.org/10.1007/s40819-019-0640-0 doi: 10.1007/s40819-019-0640-0
![]() |
[27] |
A. Zada, N. Ali, U. Riaz, Ulam's stability of multi-point implicit boundary value problems with non-instantaneous impulses, Boll. Unione Mat. Ital., 13 (2020), 305–328. https://doi.org/10.1007/s40574-020-00219-8 doi: 10.1007/s40574-020-00219-8
![]() |
[28] |
S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, Bull. Korean Math. Soc., 55 (2018), 1639–1657. https://doi.org/10.4134/BKMS.b170887 doi: 10.4134/BKMS.b170887
![]() |
[29] |
N. I. Mahmudov, S. Emin, Fractional-order boundary value problems with Katugampola fractional integral conditions, Adv. Differ. Equ., 2018 (2018), 81. https://doi.org/10.1186/s13662-018-1538-6 doi: 10.1186/s13662-018-1538-6
![]() |
[30] |
J. V. da Costa Sousa, E. Capelas de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator, Differ. Equ. Appl., 11 (2017), 87–106. http://doi.org/10.7153/dea-2019-11-02 doi: 10.7153/dea-2019-11-02
![]() |
[31] |
N. Phuangthong, S. K. Ntouyas, J. Tariboon, K. Nonlaopon, Nonlocal sequential boundary value problems for Hilfer type fractional integro-differential equations and inclusions, Mathematics, 9 (2021), 615. https://doi.org/10.3390/math9060615 doi: 10.3390/math9060615
![]() |
[32] |
S. Sitho, S. K. Ntouyas, A. Samadi, J. Tariboon, Boundary value problems for ψ-Hilfer type sequential fractional differential equations and inclusions with integral multi-point boundary conditions, Mathematics, 9 (2021), 1001. https://doi.org/10.3390/math9091001 doi: 10.3390/math9091001
![]() |
[33] |
W. Sudsutad, C. Thaiprayoon, S. K. Ntouyas, Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions, AIMS Mathematics, 6 (2021), 4119–4141. http://doi.org/10.3934/math.2021244 doi: 10.3934/math.2021244
![]() |
[34] |
R. Subashini, C. Ravichandran, K. Jothimani, H. M. Baskonus, Existence results of Hilfer integro-differential equations with fractional order, AIMS Mathematics, 13 (2020), 911–923. http://doi.org/10.3934/dcdss.2020053 doi: 10.3934/dcdss.2020053
![]() |
[35] |
Y. Wang, S. Liang, Q. Wang, Existence results for fractional differential equations with integral and multipoint boundary conditions, Bound. Value Probl., 2018 (2018), 4. https://doi.org/10.1186/s13661-017-0924-4 doi: 10.1186/s13661-017-0924-4
![]() |
[36] |
X. Yu, Existence and β-Ulam-Hyers stability for a class of fractional differential equations with non-instantaneous impulses, Adv. Differ. Equ., 2015 (2015), 104. http://doi.org/10.1186/s13662-015-0415-9 doi: 10.1186/s13662-015-0415-9
![]() |
[37] |
X. Zhang, P. Agarwal, Z. Liu, X. Zhang, W. Ding, A. Ciancio, On the fractional differential equations with not instantaneous impulses, Open Physics, 14 (2016), 676–684. https://doi.org/10.1515/phys-2016-0076 doi: 10.1515/phys-2016-0076
![]() |
[38] |
K. D. Kucchea, J. P. Kharadea, J. V. da Costa Sousa, On the nonlinear impulsive ψ-Hilfer fractional differential equations, Math. Model. Anal., 25 (2020), 642–660. https://doi.org/10.3846/mma.2020.11445 doi: 10.3846/mma.2020.11445
![]() |
[39] |
H. M. Srivastava, J. V. da Costa Sousa, Multiplicity of solutions for fractional-order differential equations via the κ(x)-Laplacian operator and the Genus theory, Fractal Fract., 6 (2022), 481. https://doi.org/10.3390/fractalfract6090481 doi: 10.3390/fractalfract6090481
![]() |
[40] |
A. Zada, J. Alzabut, H. Waheed, I. L. Popa, Ulam-Hyers stability of impulsive integrodifferential equations with Riemann–Liouville boundary conditions, Adv. Differ. Equ., 2020 (2020), 64. https://doi.org/10.1186/s13662-020-2534-1 doi: 10.1186/s13662-020-2534-1
![]() |
[41] | I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107. |
[42] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer-Verlag, 2005. |
[43] |
M. Rashid, A. Kalsoom, A. Ghaffar, M. Inc, N. Sene, A multiple fixed point result for (θ,ϕ,ψ)-type contractions in the partially ordered s-distance spaces with an application, J. Funct. Spaces, 2022 (2022), 6202981. https://doi.org/10.1155/2022/6202981 doi: 10.1155/2022/6202981
![]() |
[44] |
N. Sene, Fundamental results about the fractional integro-differential equation described with Caputo derivative, J. Funct. Spaces, 2022 (2022), 9174488. https://doi.org/10.1155/2022/9174488 doi: 10.1155/2022/9174488
![]() |
[45] |
C. Dineshkumar, K. S. Nisar, R. Udhayakumar, V. Vijayakumar, A discussion on approximate controllability of Sobolev-type Hilfer neutral fractional stochastic differential inclusions, Asian J. Control, 24 (2022), 2378–2394. https://doi.org/10.1002/asjc.2650 doi: 10.1002/asjc.2650
![]() |
[46] |
K. Kavitha, K. S. Nisar, A. Shukla, V. Vijayakumar, S. Rezapour, A discussion concerning the existence results for the Sobolev-type Hilfer fractional delay integro-differential systems, Adv. Differ. Equ., 2021 (2021), 467. https://doi.org/10.1186/s13662-021-03624-1 doi: 10.1186/s13662-021-03624-1
![]() |
1. | Ying Wang, Yunxi Guo, Several Dynamic Properties for the gkCH Equation, 2022, 14, 2073-8994, 1772, 10.3390/sym14091772 | |
2. | Wenbing Wu, Uniqueness and stability analysis to a system of nonlocal partial differential equations related to an epidemic model, 2023, 0170-4214, 10.1002/mma.8990 | |
3. | Ying Wang, Yunxi Guo, Persistence properties and blow-up phenomena for a generalized Camassa–Holm equation, 2023, 2023, 1687-2770, 10.1186/s13661-023-01738-x |