Research article

Supervised neural learning for the predator-prey delay differential system of Holling form-III

  • Received: 05 July 2022 Revised: 22 August 2022 Accepted: 30 August 2022 Published: 13 September 2022
  • MSC : 92B20, 34A34

  • The purpose of this work is to present the stochastic computing study based on the artificial neural networks (ANNs) along with the scaled conjugate gradient (SCG), ANNs-SCG for solving the predator-prey delay differential system of Holling form-III. The mathematical form of the predator-prey delay differential system of Holling form-III is categorized into prey class, predator category and the recent past effects. Three variations of the predator-prey delay differential system of Holling form-III have been numerical stimulated by using the stochastic ANNs-SCG procedure. The selection of the data to solve the predator-prey delay differential system of Holling form-III is provided as 13%, 12% and 75% for testing, training, and substantiation together with 15 neurons. The correctness and exactness of the stochastic ANNs-SCG method is provided by using the comparison of the obtained and data-based reference solutions. The constancy, authentication, soundness, competence, and precision of the stochastic ANNs-SCG technique is performed through the analysis of the correlation measures, state transitions (STs), regression analysis, correlation, error histograms (EHs) and MSE.

    Citation: Naret Ruttanaprommarin, Zulqurnain Sabir, Salem Ben Said, Muhammad Asif Zahoor Raja, Saira Bhatti, Wajaree Weera, Thongchai Botmart. Supervised neural learning for the predator-prey delay differential system of Holling form-III[J]. AIMS Mathematics, 2022, 7(11): 20126-20142. doi: 10.3934/math.20221101

    Related Papers:

    [1] Shuhai Li, Lina Ma, Huo Tang . Meromorphic harmonic univalent functions related with generalized (p, q)-post quantum calculus operators. AIMS Mathematics, 2021, 6(1): 223-234. doi: 10.3934/math.2021015
    [2] Bakhtiar Ahmad, Muhammad Ghaffar Khan, Basem Aref Frasin, Mohamed Kamal Aouf, Thabet Abdeljawad, Wali Khan Mashwani, Muhammad Arif . On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Mathematics, 2021, 6(4): 3037-3052. doi: 10.3934/math.2021185
    [3] Ying Yang, Jin-Lin Liu . Some geometric properties of certain meromorphically multivalent functions associated with the first-order differential subordination. AIMS Mathematics, 2021, 6(4): 4197-4210. doi: 10.3934/math.2021248
    [4] Hari Mohan Srivastava, Muhammad Arif, Mohsan Raza . Convolution properties of meromorphically harmonic functions defined by a generalized convolution q-derivative operator. AIMS Mathematics, 2021, 6(6): 5869-5885. doi: 10.3934/math.2021347
    [5] Tao He, Shu-Hai Li, Li-Na Ma, Huo Tang . Closure properties of generalized λ-Hadamard product for a class of meromorphic Janowski functions. AIMS Mathematics, 2021, 6(2): 1715-1726. doi: 10.3934/math.2021102
    [6] Zhuo Wang, Weichuan Lin . The uniqueness of meromorphic function shared values with meromorphic solutions of a class of q-difference equations. AIMS Mathematics, 2024, 9(3): 5501-5522. doi: 10.3934/math.2024267
    [7] Pinhong Long, Xing Li, Gangadharan Murugusundaramoorthy, Wenshuai Wang . The Fekete-Szegö type inequalities for certain subclasses analytic functions associated with petal shaped region. AIMS Mathematics, 2021, 6(6): 6087-6106. doi: 10.3934/math.2021357
    [8] Ekram E. Ali, Nicoleta Breaz, Rabha M. El-Ashwah . Subordinations and superordinations studies using q-difference operator. AIMS Mathematics, 2024, 9(7): 18143-18162. doi: 10.3934/math.2024886
    [9] Erhan Deniz, Hatice Tuǧba Yolcu . Faber polynomial coefficients for meromorphic bi-subordinate functions of complex order. AIMS Mathematics, 2020, 5(1): 640-649. doi: 10.3934/math.2020043
    [10] Huo Tang, Muhammad Arif, Khalil Ullah, Nazar Khan, Bilal Khan . Majorization results for non vanishing analytic functions in different domains. AIMS Mathematics, 2022, 7(11): 19727-19738. doi: 10.3934/math.20221081
  • The purpose of this work is to present the stochastic computing study based on the artificial neural networks (ANNs) along with the scaled conjugate gradient (SCG), ANNs-SCG for solving the predator-prey delay differential system of Holling form-III. The mathematical form of the predator-prey delay differential system of Holling form-III is categorized into prey class, predator category and the recent past effects. Three variations of the predator-prey delay differential system of Holling form-III have been numerical stimulated by using the stochastic ANNs-SCG procedure. The selection of the data to solve the predator-prey delay differential system of Holling form-III is provided as 13%, 12% and 75% for testing, training, and substantiation together with 15 neurons. The correctness and exactness of the stochastic ANNs-SCG method is provided by using the comparison of the obtained and data-based reference solutions. The constancy, authentication, soundness, competence, and precision of the stochastic ANNs-SCG technique is performed through the analysis of the correlation measures, state transitions (STs), regression analysis, correlation, error histograms (EHs) and MSE.



    Let denote the class of meromorphic function of the form:

    λ(ω)=1ω+t=0atωt, (1.1)

    which are analytic in the punctured open unit disc U={ω:ωC and 0<|ω|<1}=U{0}, where U=U{0}. Let δ(ω), be given by

    δ(ω)=1ω+t=0btωt, (1.2)

    then the Convolution (Hadamard product) of λ(ω) and δ(ω) is denoted and defined as:

    (λδ)(ω)=1ω+t=0atbtωt.

    In 1967, MacGregor [17] introduced the concept of majorization as follows.

    Definition 1. Let λ and δ be analytic in U. We say that λ is majorized by δ in U and written as λ(ω)δ(ω)ωU, if there exists a function φ(ω), analytic in U, satisfying

    |φ(ω)|1,  and  λ(ω)=φ(ω)δ(ω), ωU. (1.3)

    In 1970, Robertson [19] gave the idea of quasi-subordination as:

    Definition 2. A function λ(ω) is subordinate to δ(ω) in U and written as: λ(ω)δ(ω), if there exists a Schwarz function k(ω), which is holomorphic in U with |k(ω)|<1, such that λ(ω)=δ(k(ω)). Furthermore, if the function δ(ω) is univalent in U, then we have the following equivalence (see [16]):

    λ(ω)δ(ω)andλ(U)δ(U). (1.4)

    Further, λ(ω) is quasi-subordinate to δ(ω) in U and written is

    λ(ω)qδ(ω)  ( ωU),

    if there exist two analytic functions φ(ω) and k(ω) in U such that λ(ω)φ(ω) is analytic in U and

    |φ(ω)|1 and k(ω)|ω|<1  ωU,

    satisfying

      λ(ω)=φ(ω)δ(k(ω))  ωU. (1.5)

    (ⅰ) For φ(ω)=1 in (1.5), we have

      λ(ω)=δ(k(ω))  ωU,

    and we say that the λ function is subordinate to δ in U, denoted by (see [20])

    λ(ω)δ(ω)  ( ωU).

    (ⅱ) If k(ω)=ω, the quasi-subordination (1.5) becomes the majorization given in (1.3). For related work on majorization see [1,4,9,21].

    Let us consider the second order linear homogenous differential equation (see, Baricz [6]):

    ω2k(ω)+αωk(ω)+[βω2ν2+(1α)]k(ω)=0. (1.6)

    The function kν,α,β(ω), is known as generalized Bessel's function of first kind and is the solution of differential equation given in (1.6)

    kν,α,β(ω)=t=0(β)tΓ(t+1)Γ(t+ν+1+α+12)(ω2)2t+ν. (1.7)

    Let us denote

    Lν,α,βλ(ω)=2νΓ(ν+α+12)ων2+1kν,α,β(ω12),  =1ω+t=0(β)t+1Γ(ν+α+12)4t+1Γ(t+2)Γ(t+ν+1+α+12)(ω)t,

    where ν,α and β are positive real numbers. The operator Lν,α,β is a variation of the operator introduced by Deniz [7] (see also Baricz et al. [5]) for analytic functions. By using the convolution, we define the operator Lν,α,β as follows:

    ( Lν,α,βλ)(ω)=Lν,α,β(ω)λ(ω),=1ω+t=0(β)t+1Γ(ν+α+12)4t+1Γ(t+2)Γ(t+ν+1+α+12)at(ω)t. (1.8)

    The operator Lν,α,β was introduced and studied by Mostafa et al. [15] (see also [2]). From (1.8), we have

    ω(Lν,α,βλ(ω))j+1=(ν1+α+12)(Lν1,α,βλ(ω))j(ν+α+12)(Lν,α,βλ(ω))j. (1.9)

    By taking α=β=1, the above operator reduces to ( Lνλ)(ω) studied by Aouf et al. [2].

    Definition 3. Let 1B<A1,ηC{0},jW and ν,α,β>0. A function λ is said to be in the class Mν,jα,β(η,ϰ;A,B) of meromorphic functions of complex order η0 in U if and only if

    11η(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+ν+j)ϰ|1η(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+ν+j)|1+Aω1+Bω. (1.10)

    Remark 1.

    (i). For A=1,B=1 and ϰ=0, we denote the class

    Mν,jα,β(η,0;1,1)=Mν,jα,β(η).

    So, λMν,jα,β(η,ϰ;A,B) if and only if

    [11η(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+ν+j)]>0.

    (ii). For α=1,β=1, Mν,j1,1(η,0;1,1) reduces to the class Mν,j(η).

    [11η(ω(Lνλ(ω))j+1(Lνλ(ω))j+ν+j)]>0.

    Definition 4. A function λ is said to be in the class  Nν,jα,β(θ,b;A,B) of meromorphic spirllike functions of complex order b0 in U, if and only if

    1eiθbcosθ(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+j+1)1+Aω1+Bω, (1.11)

    where,

    (π2<θ<π2, 1β<A1,ηC{0}, jW, ν,α,β>0andωU ).

    (i). For A=1 and B=1, we set

    Nν,jα,β(θ,b;1,1)=Nν,jα,β(θ,b),

    where Nν,jα,β(θ,b) denote the class of functions λ satisfying the following inequality:

    [eiθbcosθ(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+j+1)]<1.

    (ii). For θ=0 and α=β=1 we write

    Nν,j1,1(0,b;1,1)=Nν,j(b),

    where Nν,j(b) denote the class of functions λ satisfying the following inequality:

    [1b(ω(Lνλ(ω))j+1(Lνλ(ω))j+j+1)]<1.

    A majorization problem for the normalized class of starlike functions has been examined by MacGregor [17] and Altintas et al. [3,4]. Recently, Eljamal et al. [8], Goyal et al. [12,13], Goswami et al. [10,11], Li et al. [14], Tang et al. [21,22] and Prajapat and Aouf [18] generalized these results for different classes of analytic functions.

    The objective of this paper is to examined the problems of majorization for the classes Mν,jα,β(η,ϰ;A,B) and Nν,jα,β(θ,b;A,B).

    In Theorem 1, we prove majorization property for the class Mν,jα,β(η,ϰ;A,B).

    Theorem 1. Let the function λ and suppose that δMν,jα,β(η,ϰ;A,B). If  (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U, then

    |(Lν,α,βλ(ω))j+1||(Lν,α,βδ(ω))j+1|,(|ω|<r0), (2.1)

    where r0=r0(η,ϰ,ν,α,β,A,B) is the smallest positive roots of the equation

    ρ(ν1+α+12)[(AB)|η|1ϰ(α+12)|B|]r3(ν1+α+12)[ρ(α+12)+ρ2|B||B|]r2(ν1+α+12)[(AB)|η|1ϰ(α+12)|B|+ρ2|B|1]r+ρ(ν1+α+12)(α+12)=0. (2.2)

    Proof. Since δMν,jα,β(η,ϰ;A,B), we have

    11η(ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j+ν+j)ϰ|1η(ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j+ν+j)|=1+Ak(ω)1+Bk(ω), (2.3)

    where k(ω)=c1ω+c2ω2+..., is analytic and bounded functions in U with

     |k(ω)||ω|  (ωU). (2.4)

    Taking

    §(ω)=11η(ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j+ν+j), (2.5)

    In (2.3), we have

    §(ω)ϰ|§(ω)1|=1+Ak(ω)1+Bk(ω),

    which implies

    §(ω)=1+(ABϰeiθ1ϰeiθ)k(ω)1+Bk(ω). (2.6)

    Using (2.6) in (2.5), we get

    ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j=ν+j+[(AB)η1ϰeiθ+(ν+j)B]k(ω)1+Bk(ω). (2.7)

    Application of Leibnitz's Theorem on (1.9) gives

    ω(Lν,α,βδ(ω))j+1=(ν1+α+12)(Lν1,α,βδ(ω))j(ν+j+α+12)(Lν,α,βδ(ω))j. (2.8)

    By using (2.8) in (2.7) and making simple calculations, we have

    (Lν1,α,βδ(ω))j(Lν,α,βδ(ω))j=α+12[(AB)η1ϰeiθ(α+12)B]k(ω)(1+Bk(ω))(ν1+α+12). (2.9)

    Or, equivalently

    (Lν,α,βδ(ω))j=(1+Bk(ω))(ν1+α+12)α+12[(AB)η1ϰeiθ(α+12)B]k(ω)(Lν1,α,βδ(ω))j. (2.10)

    Since |k(ω)||ω|, (2.10) gives us

    |(Lν,α,βδ(ω))j|[1+|B||ω|](ν1+α+12)α+12|(AB)η1ϰeiθ(α+12)B||ω||(Lν1,α,βδ(ω))j|[1+|B||ω|](ν1+α+12)α+12[(AB)|η|1ϰ(α+12)|B|]|ω||(Lν1,α,βδ(ω))j| (2.11)

    Since (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U. So from (1.3), we have

    (Lν,α,βλ(ω))j=φ(ω)(Lν,α,βδ(ω))j. (2.12)

    Differentiating (2.12) with respect to ω then multiplying with ω, we get

    (Lν,α,βλ(ω))j=ωφ(ω)(Lν,α,βδ(ω))j+ωφ(ω)(Lν,α,βδ(ω))j+1. (2.13)

    By using (2.8), (2.12) and (2.13), we have

    (Lν,α,βλ(ω))j+1=1(ν1+α+12)ωφ(ω)(Lν,α,βδ(ω))j+φ(ω)(Lν1,α,βδ(ω))j+1. (2.14)

    On the other hand, noticing that the Schwarz function φ satisfies the inequality

    |φ(ω)|1|φ(ω)|21|ω|2   (ωU). (2.15)

    Using (2.8) and (2.15) in (2.14), we get

    |(Lν,α,βλ(ω))j|[|φ(ω)|+ω(1|φ(ω)|2)[1+|B||ω|](ν1+α+12)(ν1+α+12)(1|ω|2)(α+12[(AB)|η|1ϰ(α+12)B]|ω|)]×|(Lν1,α,βδ(ω))j|,

    By taking

    |ω|=r,  |φ(ω)|=ρ    (0ρ1),

    reduces to the inequality

    |(Lν,α,βλ(ω))j|Φ1(ρ)(ν1+α+12)(1r2)(α+12[(AB)|η|1ϰ(α+12)B]r)|(Lν1,α,βδ(ω))j|,

    where

    Φ1(ρ)=[ρ(ν1+α+12)(1r2)(α+12[(AB)|η|1ϰ(α+12)B]r)+r(1ρ2)[1+|B|r](ν1+α+12)]=r[1+|B|r](ν1+α+12)ρ2+ρ(ν1+α+12)(1r2)(α+12[(AB)|η|1ϰ(α+12)B]r)+r[1+|B|r](ν1+α+12),           (2.16)

    takes in maximum value at ρ=1 with r0=r0(η,ϰ,ν,α,β,A,B) where r0 is the least positive root of the (2.2). Furthermore, if 0ξ0r0(η,ϰ,ν,α,β,A,B), then the function ψ1(ρ) defined by

    ψ1(ρ)=ξ0[1+|B|ξ0](ν1+α+12)ρ2+ρ(ν1+α+12)(1ξ20)(α+12[(AB)|η|1ϰ(α+12)B]ξ0)+ξ0[1+|B|ξ0](ν1+α+12),          (2.17)

    is an increasing function on the interval (0ρ1), so that

    ψ1(ρ)ψ1(1)=(ν1+α+12)(1ξ20)[α+12((AB)|η|1ϰ(α+12)B)ξ0](0ρ1, 0ξ0r0(η,ϰ,A,B)).

    Hence, upon setting ρ=1 in (2.17), we achieve (2.1).

    Special Cases: Let A=1 and B=1 in Theorem 1, we obtain the following corollary.

    Corollary 1. Let the function λ and suppose that δMν,jα,β(η,ϰ;A,B). If  (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U, then

    |(Lν,α,βλ(ω))j+1||(Lν,α,βδ(ω))j+1|,(|ω|<r1),

    where r1=r1(η,ϰ,ν,α,β) is the least positive roots of the equation

    ρ(ν1+α+12)[2|η|1ϰ(α+12)]r3(ν1+α+12)[ρ(α+12)+ρ21]r2(ν1+α+12)[ρ{2|η|1ϰ(α+12)}+ρ21]r+ρ(ν1+α+12)(α+12)=0. (2.18)

    Here, r=1 is one of the roots (2.18) and the other roots are given by

    r1=k0k204ρ2(ν1+α+12)[2|η|1ϰ(α+12)](ν1+α+12)(α+12)2ρ(ν1+α+12)[2|η|1ϰ(α+12)],

    where

    k0=(ν1+α+12)[ρ{2|η|1ϰ2(α+12)}+ρ21].

    Taking ϰ=0 in corollary 1, we state the following:

    Corollary 2. Let the function λ and suppose that δMν,jα,β(η,ϰ;A,B). If  (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U, then

    |(Lv,α,βλ(ω))j+1||(Lv,α,βδ(ω))j+1|,(|ω|<r2),

    where r2=r2(η,ν,α,β) is the lowest positive roots of the equation

    ρ(ν1+α+12)[2|η|(α+12)]r3(ν1+α+12)[ρ(α+12)+ρ21]r2(ν1+α+12)[ρ{2|η|(α+12)}+ρ21]r+ρ(ν1+α+12)(α+12)=0, (2.19)

    given by

    r2=k1k214ρ2(ν1+α+12)[2|η|(α+12)](ν1+α+12)(α+12)2ρ(ν1+α+12)[2|η|(α+12)],

    where

    k1=(ν1+α+12)[ρ{2|η|2(α+12)}+ρ21].

    Taking α=β=1 in corollary 2, we get the following:

    Corollary 3. Let the function λ and suppose that δMν,jα,β(η,ϰ;A,B). If  (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U, then

    |(Lν,α,βλ(ω))j+1||(Lν,α,βδ(ω))j+1|,(|ω|<r3),

    where r3=r3(η,ν) is the lowest positive roots of the equation

    ρν[2|η|1]r3ν[ρ+ρ21]r2ν[ρ(2|η|1)+ρ21]r+ρν=0, (2.20)

    given by

    r3=k2k224ρ2ν[2|η|1]ν2ρν[2|η|1],

    where

    k2=ν[ρ{2|η|2}+ρ21].

    Secondly, we exam majorization property for the class Nν,jα,β(θ,b;A,B).

    Theorem 2. Let the function λ and suppose that δNν,jα,β(θ,b;A,B). If

    (Lν,α,βλ(ω))j(Lν,α,βδ(ω))j,(j0,1,2...),

    then

    |(Lν,α,βλ(ω))j+1||(Lν,α,βδ(ω))j+1|,(|ω|<r4), (3.1)

    where r4=r4(θ,b,ν,α,β,A,B) is the smallest positive roots of the equation

    ρ[|(BA)bcosθ+(ν+α+121)|B||]r3[ρ{ν+α+121}|B|(1ρ2)(ν1+α+12)]r2+[ρ{|(BA)bcosθ+(ν+α+121)|B||}+(1ρ2)(ν1+α+12)]r+ρ[ν+α+121]=0,(π2<θ<π2,1β<A1,ηC{0},ν,α,β>0,andωU). (3.2)

    Proof. Since δNν,jα,β(θ,b;A,B), so

    1eiθbcosθ(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+j+1)=1+Aω1+Bω, (3.3)

    where, k(ω) is defined as (2.4).

    From (3.3), we have

    ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j=[(BA)bcosθ(j+1)Beiθ]k(ω)(j+1)eiθeiθ(1+Bk(ω)). (3.4)

    Now, using (2.8) in (3.4) and making simple calculations, we obtain

    (Lν1,α,βδ(ω))j(Lν,α,βδ(ω))j=[(BA)bcosθ+(ν+α+121)Beiθ]k(ω)+[(ν+j+α+12)1]eiθeiθ(1+Bk(ω))(ν1+α+12), (3.5)

    which, in view of  |k(ω)||ω| (ωU), immediately yields the following inequality

    |(Lν,α,βδ(ω))j||eiθ|(1+|B||k(ω)|)(ν1+α+12)[|(BA)bcosθ+(ν+α+121)Beiθ|]|k(ω)|+[(ν+α+12)1]|eiθ|×|(Lν1,α,βδ(ω))j|. (3.6)

    Now, using (2.15) and (3.6) in (2.14) and working on the similar lines as in Theorem 1, we have

    |(Lν1,α,βλ(ω))j|[|φ(ω)|+|ω|(1|φ(ω)|2)(1+|B||ω|)(ν1+α+12)(1|ω|2)[{|(BA)bcosθ+(ν+α+121)B|}|ω|+[(ν+α+12)1]]]×|(Lν1,α,βδ(ω))j|.

    By setting |ω|=r,|φ(ω)|=ρ(0ρ1), leads us to the inequality

    |(Lν1,α,βλ(ω))j|[Φ2(ρ)(1r2)[{|(BA)bcosθ+(ν+α+121)B|}r+(ν+α+12)1]]×|(Lν1,α,βδ(ω))j|, (3.7)

    where the function Φ2(ρ) is given by

    Φ2(ρ)=ρ(1r2)[{|(BA)bcosθ+(ν+α+121)B|}r+(ν+α+12)1]+r(1ρ2)(1+Br)(ν1+α+12).

    Φ2(ρ) its maximum value at ρ=1 with r4=r4(θ,b,ν,α,β,A,B) given in (3.2). Moreover if 0ξ1r4(θ,b,ν,α,β,A,B), then the function.

    ψ2(ρ)=ρ(1ξ21)[{|(BA)bcosθ+(ν+α+121)B|}ξ1+(ν+α+12)1]+ξ1(1ρ2)(1+Bξ1)(ν1+α+12),

    increasing on the interval 0ρ1, so that ψ2(ρ) does not exceed

    ψ2(1)=(1ξ21)[{|(BA)bcosθ+(ν+α+121)B|}ξ1+(ν+α+12)1].

    Therefore, from this fact (3.7) gives the inequality (3.1). We complete the proof.

    Special Cases: Let A=1 and B=1 in Theorem 2, we obtain the following corollary.

    Corollary 4. Let the function λ and suppose that δNν,jα,β(θ,b;A,B). If

    (Lν,α,βλ(ω))j(Lν,α,βδ(ω))j,(j0,1,2,...),

    then

    |(Lν,α,βλ(ω))j+1||(Lν,α,βδ(ω))j+1|,(|ω|<r5),

    where r5=r5(θ,b,ν,α,β) is the lowest positive roots of the equation

    ρ[|2bcosθ+(ν+α+121)|]r3[ρ{ν+α+121}(1ρ2)(ν1+α+12)]r2+[ρ{|2bcosθ+(ν+α+121)|}+(1ρ2)(ν1+α+12)]r+ρ[ν+α+121]=0. (3.8)

    Where r=1 is first roots and the other two roots are given by

    r5=κ0κ20+4ρ2[|2bcosθ+(ν+α+121)|][ν+α+121]2ρ[|2bcosθ+(ν+α+121)|],

    and

    κ0=[(1ρ2)(ν1+α+12)ρ{|2bcosθ+2(ν+α+121)|}].

    Which reduces to Corollary 4 for θ=0.

    Corollary 5. Let the function λ and suppose that δNν,jα,β(θ,b;A,B). If

    (Lν,α,βλ(ω))j(Lν,α,βδ(ω))j,(j0,1,2,...),

    then

    |(Lν,α,βλ(ω))j+1||(Lν,α,βδ(ω))j+1|,(|ω|<r6),

    where r6=r6(b,ν,α,β) is the least positive roots of the equation

    ρ[|2b+(ν+α+121)|]r3[ρ{ν+α+121}(1ρ2)(ν1+α+12)]r2+[ρ{|2b+(ν+α+121)|}+(1ρ2)(ν1+α+12)]r+ρ[ν+α+121]=0, (3.9)

    given by

    r6=κ1κ21+4ρ2[|2b+(ν+α+121)|][ν+α+121]2ρ[|2b+(ν+α+121)|],

    and

    κ1=[(1ρ2)(ν1+α+12)ρ{|2b+2(ν+α+121)|}].

    Taking α=β=1 in corollary 5, we get.

    Corollary 6. Let the function λ and suppose that δNν,jα,β(θ,b;A,B). If

    (Lν,α,βλ(ω))j(Lν,α,βδ(ω))j,(j0,1,2,...),

    then

    |(Lν,α,βλ(ω))j+1||(Lν,α,βδ(ω))j+1|,(|ω|<r7),

    where r7=r7(b,ν) is the lowest positive roots of the equation

    ρ|2b+ν|r3[ρν(1ρ2)ν]r2+[ρ|2b+ν|+(1ρ2)ν]r+ρ[ν]=0, (3.10)

    given by

    r7=κ2κ22+4ρ2[|2b+ν|][ν]2ρ[|2b+ν|],

    and

    κ2=[(1ρ2)νρ{|2b+2ν|}].

    In this paper, we explore the problems of majorization for the classes Mν,jα,β(η,ϰ;A,B) and Nν,jα,β(θ,b;A,B) by using a convolution operator Lν,α,β. These results generalizes and unify the theory of majorization which is an active part of current ongoing research in Geometric Function Theory. By specializing different parameters like ν,η,ϰ,θ and b, we obtain a number of important corollaries in Geometric Function Theory.

    The work here is supported by GUP-2019-032.

    The authors agree with the contents of the manuscript, and there is no conflict of interest among the authors.



    [1] J. D. Ferreira, C. A. T. Salazar, P. C. C. Tabares, Weak Allee effect in a predator-prey model involving memory with a hump, Nonlinear Anal.: Real World Appl., 14 (2013), 536–548. https://doi.org/10.1016/j.nonrwa.2012.07.014 doi: 10.1016/j.nonrwa.2012.07.014
    [2] M. Cavani, M. Farkas, Bifurcations in a predator-prey model with memory and diffusion. I: Andronov-Hopf bifurcation, Acta Math. Hung., 63 (1994), 213–229. https://doi.org/10.1007/bf01874129 doi: 10.1007/bf01874129
    [3] M. Umar, Z. Sabir, M. A. Z. Raja, Intelligent computing for numerical treatment of nonlinear prey-predator models, Appl. Soft Comput., 80 (2019), 506–524. https://doi.org/10.1016/j.asoc.2019.04.022 doi: 10.1016/j.asoc.2019.04.022
    [4] Z. Sabir, T. Botmart, M. A. Z. Raja, W. Weera, An advanced computing scheme for the numerical investigations of an infection-based fractional-order nonlinear prey-predator system, Plos One, 17 (2022), 1–13. https://doi.org/10.1371/journal.pone.0265064 doi: 10.1371/journal.pone.0265064
    [5] U. Ghosh, S. Pal, M. Banerjee, Memory effect on Bazykin's prey-predator model: Stability and bifurcation analysis, Chaos Solitons Fract., 143 (2021), 1–10. https://doi.org/10.1016/j.chaos.2020.110531 doi: 10.1016/j.chaos.2020.110531
    [6] A. Gökçe, The influence of past in a population system involving intraspecific competition and Allee effect, Eur. Phys. J. Plus, 137 (2022), 1–11. https://doi.org/10.1140/epjp/s13360-022-02425-z doi: 10.1140/epjp/s13360-022-02425-z
    [7] B. Sahoo, S. Poria, Dynamics of predator-prey system with fading memory, Appl. Math. Comput., 347 (2019), 319–333. https://doi.org/10.1016/j.amc.2018.11.013 doi: 10.1016/j.amc.2018.11.013
    [8] L. Berec, E. Angulo, F. Courchamp, Multiple Allee effects and population management, Trends Ecol. Evol., 22 (2007), 185–191. https://doi.org/10.1016/j.tree.2006.12.002 doi: 10.1016/j.tree.2006.12.002
    [9] B. Souayeh, Z. Sabir, M. Umar, M. W. Alam, Supervised neural network procedures for the novel fractional food supply model, Fractal Fract., 6 (2022), 1–15. https://doi.org/10.3390/fractalfract6060333 doi: 10.3390/fractalfract6060333
    [10] E. Angulo, G. M. Luque, S. D. Gregory, J. W. Wenzel, C. Bessa‐Gomes, L. Berec, et al., Allee effects in social species, J. Anim. Ecol., 87 (2018), 47–58. https://doi.org/10.1111/1365-2656.12759
    [11] T. Perälä, J. A. Hutchings, A. Kuparinen, Allee effects and the Allee-effect zone in northwest Atlantic cod, Biol. Lett., 18 (2022), 1–6. https://doi.org/10.1098/rsbl.2021.0439 doi: 10.1098/rsbl.2021.0439
    [12] B. Dennis, Allee effects: Population growth, critical density, and the chance of extinction, Nat. Resour. Model., 3 (1989), 481–538. https://doi.org/10.1111/j.1939-7445.1989.tb00119.x doi: 10.1111/j.1939-7445.1989.tb00119.x
    [13] T. Botmart, Z. Sabir, M. A. Z. Raja, M. R. Ali, R. Sadat, A. A. Aly, et al., A hybrid swarming computing approach to solve the biological nonlinear Leptospirosis system, Biomed. Signal Process. Control, 77 (2022), 103789. https://doi.org/10.1016/j.bspc.2022.103789
    [14] F. Courchamp, L. Berec, J. Gascoigne, Allee effects in ecology and conservation, 1 Ed., New York: Oxford University Press Inc., 2008. https://doi.org/10.1093/acprof:oso/9780198570301.001.0001
    [15] C. Çelik, H. Merdan, O. Duman, Ö. Akın, Allee effects on population dynamics with delay, Chaos Solitons Fract., 37 (2008), 65–74. https://doi.org/10.1016/j.chaos.2006.08.019
    [16] J. P. Tripathi, P. S. Mandal, A. Poonia, V. P. Bajiya, A widespread interaction between generalist and specialist enemies: The role of intraguild predation and Allee effect, Appl. Math. Model., 89 (2021), 105–135. https://doi.org/10.1016/j.apm.2020.06.074 doi: 10.1016/j.apm.2020.06.074
    [17] P. C. Tabares, J. D. Ferreira, V. Rao, Weak Allee effect in a predator-prey system involving distributed delays, Comput. Appl. Math., 30 (2011), 675–699. https://doi.org/10.1590/S1807-03022011000300011 doi: 10.1590/S1807-03022011000300011
    [18] T. Botmart, W. Weera, Guaranteed cost control for exponential synchronization of cellular neural networks with mixed time-varying delays via hybrid feedback control, Abstr. Appl. Anal., 2013 (2013), 175796. https://doi.org/10.1155/2013/175796 doi: 10.1155/2013/175796
    [19] M. JovanoviĆ, M. KrstiĆ, Extinction in stochastic predator-prey population model with Allee effect on prey, Discrete Cont. Dyn. Syst. Ser. B, 22 (2017), 2651–2667. https://doi.org/10.3934/dcdsb.2017129 doi: 10.3934/dcdsb.2017129
    [20] P. J. Pal, T. Saha, M. Sen, M. Banerjee, A delayed predator–prey model with strong Allee effect in prey population growth, Nonlinear Dyn., 68 (2012), 23–42. https://doi.org/10.1007/s11071-011-0201-5 doi: 10.1007/s11071-011-0201-5
    [21] A. Surendran, M. J. Plank, M. J. Simpson, Population dynamics with spatial structure and an Allee effect, Proc. Math. Phys. Eng. Sci., 476 (2020), 20200501. https://doi.org/10.1098/rspa.2020.0501 doi: 10.1098/rspa.2020.0501
    [22] M. Jankovic, S. Petrovskii, Are time delays always destabilizing? Revisiting the role of time delays and the Allee effect, Theor. Ecol., 7 (2014), 335–349. https://doi.org/10.1007/s12080-014-0222-z doi: 10.1007/s12080-014-0222-z
    [23] A. W. Stoner, M. Ray-Culp, Evidence for Allee effects in an over-harvested marine gastropod: Density-dependent mating and egg production, Mar. Ecol. Prog. Ser., 202 (2000), 297–302. http://dx.doi.org/10.3354/meps202297
    [24] F. Courchamp, B. T. Grenfell, T. H. Clutton‐Brock, Impact of natural enemies on obligately cooperative breeders, Oikos, 91 (2000), 311–322. https://doi.org/10.1034/j.1600-0706.2000.910212.x
    [25] M. Kuussaari, I. Saccheri, M. Camara, I. Hanski, Allee effect and population dynamics in the Glanville fritillary butterfly, Oikos, 82 (1998), 384–392. https://doi.org/10.2307/3546980 doi: 10.2307/3546980
    [26] Z. Ma, Hopf bifurcation of a generalized delay-induced predator-prey system with habitat complexity, Int. J. Bifurcat. Chaos, 30 (2020), 2050082. https://doi.org/10.1142/S0218127420500820 doi: 10.1142/S0218127420500820
    [27] H. Yu, M. Zhao, R. P. Agarwal, Stability and dynamics analysis of time delayed eutrophication ecological model based upon the Zeya reservoir, Math. Comput. Simul., 97 (2014), 53–67. https://doi.org/10.1016/j.matcom.2013.06.008 doi: 10.1016/j.matcom.2013.06.008
    [28] Y. Tang, L. Zhou, Stability switch and Hopf bifurcation for a diffusive prey–predator system with delay, J. Math. Anal. Appl., 334 (2007), 1290–1307. https://doi.org/10.1016/j.jmaa.2007.01.041 doi: 10.1016/j.jmaa.2007.01.041
    [29] A. Gökçe, A mathematical study for chaotic dynamics of dissolved oxygen-phytoplankton interactions under environmental driving factors and time lag, Chaos Solitons Fract., 151 (2021), 1–13. https://doi.org/10.1016/j.chaos.2021.111268 doi: 10.1016/j.chaos.2021.111268
    [30] K. Chakraborty, M. Chakraborty, T. K. Kar, Bifurcation and control of a bioeconomic model of a prey–predator system with a time delay, Nonlinear Anal.: Hybrid Syst., 5 (2011), 613–625. https://doi.org/10.1016/j.nahs.2011.05.004 doi: 10.1016/j.nahs.2011.05.004
    [31] H. Zhao, X. Huang, X. Zhang, Hopf bifurcation and harvesting control of a bioeconomic plankton model with delay and diffusion terms, Phys. A: Stat. Mech. Appl., 421 (2015), 300–315. https://doi.org/10.1016/j.physa.2014.11.042 doi: 10.1016/j.physa.2014.11.042
    [32] A. Gökçe, Numerical bifurcation analysis for a prey-predator type interactions with a time lag and habitat complexity, Bitlis Eren Ü niv. Fen Bilim. Derg., 10 (2021), 57–66. https://doi.org/10.17798/bitlisfen.840245 doi: 10.17798/bitlisfen.840245
    [33] K. Gopalsamy, G. Ladas, On the oscillation and asymptotic behavior of ˙N(t)=N(t)[a+bN(tτ)cN2(tτ)], Quart. Appl. Math., 48 (1990), 433–440.
    [34] M. Umar, Z. Sabir, F. Amin, J. L. Guirao, M. A. Z. Raja, Stochastic numerical technique for solving HIV infection model of CD4+ T cells, Eur. Phys. J. Plus, 135 (2020), 1–19. https://doi.org/10.1140/epjp/s13360-020-00417-5 doi: 10.1140/epjp/s13360-020-00417-5
    [35] Z. Sabir, Stochastic numerical investigations for nonlinear three-species food chain system, Int. J. Biomath., 15 (2022), 2250005. https://doi.org/10.1142/S179352452250005X doi: 10.1142/S179352452250005X
    [36] Z. Sabir, M. R. Ali, R. Sadat, Gudermannian neural networks using the optimization procedures of genetic algorithm and active set approach for the three-species food chain nonlinear model, J. Ambien. Intell. Human. Comput., 13 (2022), 1–10. https://doi.org/10.1007/s12652-021-03638-3 doi: 10.1007/s12652-021-03638-3
    [37] M. Umar, Z. Sabir, M. A. Z. Raja, M. Shoaib, M. Gupta, Y. G. Sánchez, A stochastic intelligent computing with neuro-evolution heuristics for nonlinear SITR system of novel COVID-19 dynamics, Symmetry, 12 (2020), 1–17. https://doi.org/10.3390/sym12101628
    [38] M. Umar, F. Amin, H. A. Wahab, D. Baleanu, Unsupervised constrained neural network modeling of boundary value corneal model for eye surgery, Appl. Soft Comput., 85 (2019), 1–16. https://doi.org/10.1016/j.asoc.2019.105826 doi: 10.1016/j.asoc.2019.105826
    [39] B. Wang, J. F. Gomez-Aguilar, Z. Sabir, M. A. Z. Raja, W. F. Xia, H. Jahanshahi, et al., Numerical computing to solve the nonlinear corneal system of eye surgery using the capability of Morlet wavelet artificial neural networks, Fractals, 30 (2022), 1–19. https://doi.org/10.1142/S0218348X22401478
    [40] Z. Sabir, Neuron analysis through the swarming procedures for the singular two-point boundary value problems arising in the theory of thermal explosion, Eur. Phys. J. Plus, 137 (2022), 1–18. https://doi.org/10.1140/epjp/s13360-022-02869-3 doi: 10.1140/epjp/s13360-022-02869-3
    [41] Z. Sabir, H. A. Wahab, Evolutionary heuristic with Gudermannian neural networks for the nonlinear singular models of third kind, Phys. Scr., 96 (2021), 1–12. https://doi.org/10.1088/1402-4896/ac3c56 doi: 10.1088/1402-4896/ac3c56
    [42] T. Saeed, Z. Sabir, M. S. Alhodaly, H. H. Alsulami, Y. G. Sánchez, An advanced heuristic approach for a nonlinear mathematical based medical smoking model, Results Phys., 32 (2022), 1–13. https://doi.org/10.1016/j.rinp.2021.105137
    [43] A. Gökçe, A dynamic interplay between Allee effect and time delay in a mathematical model with weakening memory, Appl. Math. Comput., 430 (2022), 127306. https://doi.org/10.1016/j.amc.2022.127306 doi: 10.1016/j.amc.2022.127306
    [44] M. R. Ali, S. Raut, S. Sarkar, U. Ghosh, Unraveling the combined actions of a Holling type III predator–prey model incorporating Allee response and memory effects, Comp. Math. Methods., 3 (2021), 1–18. https://doi.org/10.1002/cmm4.1130 doi: 10.1002/cmm4.1130
    [45] A. Rojas-Palma, E. González-Olivares, Optimal harvesting in a predator-prey model with Allee effect and sigmoid functional response, Appl. Math. Model., 36 (2012), 1864–1874. https://doi.org/10.1016/j.apm.2011.07.081
    [46] T. Botmart, N. Yotha, P. Niamsup, W. Weera, Hybrid adaptive pinning control for function projective synchronization of delayed neural networks with mixed uncertain couplings, Complexity, 2017 (2017), 4654020. https://doi.org/10.1155/2017/4654020 doi: 10.1155/2017/4654020
    [47] P. Lakshminarayana, K. Vajravelu, G. Sucharitha, S. Sreenadh, Peristaltic slip flow of a Bingham fluid in an inclined porous conduit with Joule heating, Appl. Math. Nonlinear Sci., 3 (2018), 41–54. https://doi.org/10.21042/AMNS.2018.1.00005 doi: 10.21042/AMNS.2018.1.00005
    [48] T. Sajid, S. Tanveer, Z. Sabir, J. L. G. Guirao, Impact of activation energy and temperature-dependent heat source/sink on Maxwell–Sutterby fluid, Math. Probl. Eng., 2020 (2020), 1–15. https://doi.org/10.1155/2020/5251804 doi: 10.1155/2020/5251804
    [49] R. Ahmad, A. Farooqi, J. Zhang, N. Ali, Steady flow of a power law fluid through a tapered non-symmetric stenotic tube, Appl. Math. Nonlinear Sci., 4 (2019), 255–266. https://doi.org/10.2478/AMNS.2019.1.00022 doi: 10.2478/AMNS.2019.1.00022
    [50] Z. Sabir, A. Imran, M. Umar, M. Zeb, M. Shoaib, M. A. Z. Raja, A numerical approach for 2-D Sutterby fluid-flow bounded at a stagnation point with an inclined magnetic field and thermal radiation impacts, Therm. Sci., 25 (2021), 1975–1987. https://doi.org/10.2298/TSCI191207186S doi: 10.2298/TSCI191207186S
    [51] Z. Sabir, M. A. Z. Raja, M. Shoaib, J. F. Aguilar, FMNEICS: Fractional Meyer neuro-evolution-based intelligent computing solver for doubly singular multi-fractional order Lane–Emden system, Comp. Appl. Math., 39 (2020), 1–18. https://doi.org/10.1007/s40314-020-01350-0 doi: 10.1007/s40314-020-01350-0
    [52] H. Günerhan, E. Çelik, Analytical and approximate solutions of fractional partial differential-algebraic equations, Appl. Math. Nonlinear Sci., 5 (2020), 109–120. https://doi.org/10.2478/amns.2020.1.00011
    [53] K. A. Touchent, Z. Hammouch, T. Mekkaoui, A modified invariant subspace method for solving partial differential equations with non-singular kernel fractional derivatives, Appl. Math. Nonlinear Sci., 5 (2020), 35–48. https://doi.org/10.2478/amns.2020.2.00012 doi: 10.2478/amns.2020.2.00012
    [54] Z. Sabir, M. A. Z. Raja, J. L. Guirao, T. Saeed, Meyer wavelet neural networks to solve a novel design of fractional order pantograph Lane-Emden differential model, Chaos Solitons Fract., 152 (2021), 1–14. https://doi.org/10.1016/j.chaos.2021.111404 doi: 10.1016/j.chaos.2021.111404
    [55] E. İlhan, İ. O. Kıymaz, A generalization of truncated M-fractional derivative and applications to fractional differential equations, Appl. Math. Nonlinear Sci., 5 (2020), 171–188. https://doi.org/10.2478/amns.2020.1.00016 doi: 10.2478/amns.2020.1.00016
    [56] H. M. Baskonus, H. Bulut, T. A. Sulaiman, New complex hyperbolic structures to the lonngren-wave equation by using sine-gordon expansion method, Appl. Math. Nonlinear Sci., 4 (2019), 129–138. https://doi.org/10.2478/AMNS.2019.1.00013 doi: 10.2478/AMNS.2019.1.00013
  • This article has been cited by:

    1. Syed Ghoos Ali Shah, Saqib Hussain, Akhter Rasheed, Zahid Shareef, Maslina Darus, Fanglei Wang, Application of Quasisubordination to Certain Classes of Meromorphic Functions, 2020, 2020, 2314-8888, 1, 10.1155/2020/4581926
    2. Syed Ghoos Ali Shah, Saima Noor, Saqib Hussain, Asifa Tasleem, Akhter Rasheed, Maslina Darus, Rashad Asharabi, Analytic Functions Related with Starlikeness, 2021, 2021, 1563-5147, 1, 10.1155/2021/9924434
    3. Syed Ghoos Ali Shah, Saqib Hussain, Saima Noor, Maslina Darus, Ibrar Ahmad, Teodor Bulboaca, Multivalent Functions Related with an Integral Operator, 2021, 2021, 1687-0425, 1, 10.1155/2021/5882343
    4. Syed Ghoos Ali Shah, Shahbaz Khan, Saqib Hussain, Maslina Darus, q-Noor integral operator associated with starlike functions and q-conic domains, 2022, 7, 2473-6988, 10842, 10.3934/math.2022606
    5. Neelam Khan, Muhammad Arif, Maslina Darus, Abdellatif Ben Makhlouf, Majorization Properties for Certain Subclasses of Meromorphic Function of Complex Order, 2022, 2022, 1099-0526, 1, 10.1155/2022/2385739
    6. Ibrar Ahmad, Syed Ghoos Ali Shah, Saqib Hussain, Maslina Darus, Babar Ahmad, Firdous A. Shah, Fekete-Szegö Functional for Bi-univalent Functions Related with Gegenbauer Polynomials, 2022, 2022, 2314-4785, 1, 10.1155/2022/2705203
    7. F. Müge SAKAR, Syed Ghoos Ali SHAH, Saqib HUSSAİN, Akhter RASHEED, Muhammad NAEEM, q-Meromorphic closed-to-convex functions related with Janowski function, 2022, 71, 1303-5991, 25, 10.31801/cfsuasmas.883970
    8. Syed Ghoos Ali Shah, Sa’ud Al-Sa’di, Saqib Hussain, Asifa Tasleem, Akhter Rasheed, Imran Zulfiqar Cheema, Maslina Darus, Fekete-Szegö functional for a class of non-Bazilevic functions related to quasi-subordination, 2023, 56, 2391-4661, 10.1515/dema-2022-0232
    9. Abdul Basir, Muhammad Adil Khan, Hidayat Ullah, Yahya Almalki, Saowaluck Chasreechai, Thanin Sitthiwirattham, Derivation of Bounds for Majorization Differences by a Novel Method and Its Applications in Information Theory, 2023, 12, 2075-1680, 885, 10.3390/axioms12090885
    10. Shatha S. Alhily, Alina Alb Lupas, Certain Class of Close-to-Convex Univalent Functions, 2023, 15, 2073-8994, 1789, 10.3390/sym15091789
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1975) PDF downloads(245) Cited by(4)

Figures and Tables

Figures(7)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog