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1. Introduction

Nonlinear stochastic differential equations play a very important role in formulation and analysis
in mechanical, electrical, control engineering, physical sciences, economic and social sciences.
Recently, stochastic fractional differential equations have been considered greatly by research
community in various aspects due to its salient features for real world problems ( [1-6]). Also,
differential systems with impulses become an important area and many interesting works have been
reported in ( [7-9]). The Sobolev differential system is typically visible in the mathematical structure
of numerous physical processes, such as fluid flow through cracked rocks and thermodynamics.
Controllability problem for different kinds of fractional dynamical systems have been studied. The
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control hypothesis is an important area of mathematics that deals with the design and evaluation of
control mechanisms. Controllability has had a significant impact on the development of modern
mathematical control theory. Control system analysis and design frequently use the problem of
dynamical system controllability. In recent years, fractional-order control systems defined by
fractional-order differential equations have attracted a lot of attention ( [10-13]) and the references
therein.There are many interesting results on the existence and uniqueness of mild solutions for a
class of Sobolev type fractional evolution equations [14].

According to the aforementioned literature review, the existence and exact controllability of the
nonlinear Hilfer fractional stochastic differential equations of Sobolev-type have not been thoroughly
investigated. Because of this, we think about the existence solution and controllability for the
nonlinear Hilfer fractional stochastic differential equations of Sobolev-type with noninstantaneous
impulsive condition of the form

DY [Zx(t) + G(t, x(91(1))] = Ax(t) + f(2, x(9(2)), fot h(z, 5)g1(s, x(F3(s5)))ds)

+0—((t7 X(ﬂ4(t)), j(;t h(t7 S)gZ(S’ )C(ﬁ5(S)))dS i]_‘;)’ re (Sl" ti+1]’ i € [Oa m], (1 1)
x(1) = &(t, x(), 1€ t,s], i€[l,m], '
I(()L_q)(l_J)X(O) = Xo,

where D]’ is the Hilfer fractional derivative, 0 < ¢ < 1, 0 < j < 1, the state x(-) takes values in
a separable Hilbert space X with inner product (-, -) and norm || - ||. The symbol A and Z are linear
operators on X. Time interval J = (0,b] where, t;, s; are fixed number satisfying 0 = 59 < #; <
S1 <t < oo < Sy < by < Sy <ty = b and & is noninstataneous impulsive function for all
i=12,....m %) :J — J,i =1,2,3,4,5, are continuous functions. Let K be another separable
Hilbert space with inner product (-, -)x and norm || - ||x. Suppose {w(?)},o 1s given K-valued Wiener
process with a finite trace nuclear covariance operator Q > 0. We are also employing the same notation
|| - || for the norm L(K, X), where L(K, X) denotes the space of all bounded linear operators from K into
X. Also, h : J X J — Ris a continuous function and the mappings G : J XX = X, f : I X X XX — X,
o:JXXXX - Lp(K,X), g : /XX — Xand g, : JXX — X are nonlinear functions. Here Ly(K, X)
denotes the space of all Q-Hilbert Schmidt operator from K into X.

To the best of our knowledge, there is no work reported on existence solution and controllability
for nonlinear Hilfer fractional stochastic differential equations of Sobolev-type with noninstantaneous
impulsive condition of the form (1.1). Thus, we will make the first attempt to study such problem in
this paper. The presented work can be summarized as following:

Section 2 introduces some basic definitions and lemmas that will help you prove the important
points. In Section 3, we show that mild solutions of nonlinear Hilfer fractional stochastic differential
equations of the Sobolev type with non-instantaneousimpulsive conditionsexist and are unique. In
Section 4, we prove that nonlinear Hilfer fractional stochastic differential equations with
noninstantaneous impulsive circumstances are controllable. In the final Section 5, we consider an
example to verify the theoretical results. The work is ended by Section 6, which is the conclusion.

2. Preliminaries

In this section, some definitions and results are given which will be used throughout this paper.
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Definition 2.1. //5] The fractional integral operator of order ; > 0O for a function f can be defined as

L[
T Jo (=9

Ff) = t>0,
where I'(+) is the Gamma function.
Definition 2.2. [ /6] The Hilfer fractional derivative of order 0 < ¢ < 1 and 0 < j < 1 is defined as

DI (1) = 12077 % 197907D £,
Let (2,7, P) be a complete probability space furnished with complete family of right continuous
increasing sub o-algebras {1, : ¢ € J} satisfying T, € T. An X-valued random variable is an Y-
measurable function x(7) : 2 — X and a collection of random variables IT = {x(f, w) : Q — X]|t € J}
is called a stochastic process. Usually we suppress the dependence on w € Q and write x(7) instead
of x(t,w) and x(¢) : J — X in the place of II. Let 8,(f) (n = 1,2,...) be a sequence of real valued
one-dimensional standard Brownian motions mutually independent over (€2, Y, P). Set

W) =Y NUBDes, 120,
n=1

where 4,,, (n = 1,2, ...) are nonnegative real numbers and {e,} (n = 1,2, ...) is a complete orthonormal
basis in K. Let Q € L(K, K) be an operator defined by Qe, = A,¢, with finite Tr(Q) = 3,77 4, < oo, (Tr
denotes the trace of the operator). Then the above K-valued stochastic process w(t) is called Q-Wiener
process.

We assume that 1, = o{w(s) : 0 < s < t} is the o-algebra generated by w. For ¥ € L(K, X)
we define || ¥ ||2Q: Tr(PQ¥*) = X2, || VA4, Pe, P . If || P ||2Q< oo, then W is called a Q-Hilbert-
Schmidt operator. Let Lo(K, X) denote the space of all QO-Hilbert-Schmidt operators ¥ : K — X.
The completion Ly(K, X) of L(K, X) with respect to the topology induced by the norm || - ||, where
||‘P||2Q = (¥, ¥) is a Hilbert space with the above norm topology.

The collection of all strongly-measurable, square-integrable, X-valued random variables, denoted
by L,(€2, X) is a Banach space equipped with norm ||x(*)||,«.x) = (E||x(-, w)llz)%, where the expectation,
E is defined by E(x) = [ x(w)dP.

Let C(J, L,(€2, X)) be the Banach space of all continuous maps from J into L,(€2, X) satisfying the
condition sup,, E|x(®)|> < . Define Y = C,,((0,b], L, (2, X)) = {x : x € C(0,b], L,(Q,X)) :
lim, g 1190~} endowed with the norm || - [ly = (sup,¢ E||f 190D x(1)|?)z.

Obviously, Y is a Banach space.

Introduce the set B, = {x € Y : ||x||> < r}, where r > 0.

The operators A : D(A) c X — X and Z : D(Z) c X — X satisfy the following hypotheses:

(H1) A and Z are closed linear operators.

(H2) D(Z) € D(A) and Z is bijective.

(H3) Z7' : X — D(Z) is continuous. Here, (H1) and (H2) together with the closed graph theorem
imply the boundedness of the linear operator AZ™!' : X — X.

(H4) For each t € J and for A € p(AZ™"), the resolvent of AZ™!, the resolvent R(1,AZ™') is compact
operator.
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Lemma 2.3. [17] Let T(¢) be a uniformly continuous semigroup generated by A. If the resolvent set
R(4,A) of A is compact for every A € p(A), then T'(¢) is a compact semigroup.

From the above fact, AZ~! generates a compact semigroup {S (f),# > 0} in X, which means that there
exists M > 1 such that sup,., [|S (1)l < M. We suppose that 0 € p(AZ™"), the resolvent set of AZ~! and
IS ()|l < M for some constant M > 1 and every ¢ > 0. We define the fractional power (AZ~')™ by

(AZ7H7 = %y) foo 718 (0dt, v > 0.
0

For y € (0,1], (AZ')” is a closed linear operator on its domain D((AZ~')). Furthermore, the
subspace D((AZ~!)) is dense in X. We will introduce the following basic properties of (AZ~!)”.
Theorem 2.4. (see [18]) The following results hold.

(i) Let 0 < y < 1, then X, := D((AZ7')?) is a Banach space with the norm llxll, = IAZ=Y x|,
x€X,.

() If 0 < B <y < 1, then D((AZ™')) — D((AZ~')’) and the embedding is compact whenever the
resolvent operator of (AZ™') is compact.

(ii1) For every 0 < y < 1, there exists a positive constant C, such that

C
IAZTY' S ()l < t—yy 0<r<b.

For x € X, we define two families of operators {S, ,(¢) : t > 0} and {P,(?) : 1 > 0} by

S, (0 = TP (0), Pty = 7' T (1), T/(1) = f ) JO¥ (0)S (+'6)d, 2.1
0
where
i -1
¥ ,(0) = (=9) ,0< <1, 0€(0,00), (2.2)

— (n—D'ITA —-ny)
is a function of Wright-type which satisfies

o I'l+71)
Y (0)dd = ———, for 6 > 0.
fo O = m ey o

Lemma 2.5. ( [19], Propositions 2.15-2.17) The operators S, ; and P, have the following properties.
(1) {P,(1) : t > 0} is continuous in the uniform operator topology.
(i1) For any fixed > 0, S, ,(¢) and P () are linear and bounded operators, and

12,0l < 2 s, o < 2y 2.3)
P (x| < x|, IS4, ®0xl| £ =———IIxll. (2.
! () * C(g(1 - )+ ))
(iii) {P,(1) : t > O} and (S, ,(?) : ¢ > O} are strongly continuous.
By Theorem 2.4 and Lemma 2.5, we have
Lemma 2.6. For any x € X, 8 € (0,1) and ¢ € (0, 1], we have

(AZNT,(0)x = (AZ7) T, (1)(AZ ', 0 <1 < b,

AIMS Mathematics Volume 7, Issue 11, 20105-20125.



20109

and

JCsT(2-0)
01 + (1 = 9))
Lemma 2.7. [20] (Burkholder-Davis-Gundy inequalities) Let 7 > 0 and (M,)y,<r be a continuous
local martingale such that M, = 0. For every 0 < p < oo, there exist universal constants ¢, and C,,

independent of T and (M,)o,< such that ¢, E (<M>§) < E((suporer IMA)) < C,E (<M>§).

llxll, 0 <t <b.

IAZ ™Y T (0)x]] <

3. Existence solution

In this section, we study the existence and uniqueness of mild solution for the nonlinear Hilfer
fractional stochastic differential equations of Sobolev-type with noninstantaneous impulsive condition
of the form (1.1).

Definition 3.1. (see [/9]) An T;-adapted stochastic process x(¢) : J — X is a mild solution of the
system (1.1) if the function AZ‘IP](t — 5)G(s, x(F(s)), s € (0,b) is integrable on (0,b) and the
following integral equation is verified:

x(t) = Z7'S,,(0[Zxy + G0, x(0)] = Z'G(t, x(94(t))

+ f Z'AZ7IP(t - 5)G(s, x(94(s))ds
0

+ f Z7IP (1 = 9)f (s, x(92(5)), f h(s, 1)g:1(7, x(F3(1))d)ds
0 0

+f Z7'P (1 — $)o7(s, x(D4(5)), fs h(s, T)g2(7, x(F5(1)))d7)dw(s), t € (0,1],
0 0

é:i(t’ X(t)), re (ti’ Si]a l = 1, 2’ ce. M,

Z7'8 4 (&t = s)&si, x(51) — Z7' G (1, x(D41(1))

x(1)
x(t)

- f Z'AZ7'P(t — $)G(s, x(91(s))dss

" f Z7'P (1 — ) f(s, x(B(s)). f (s, 781 (7, x(B3(1)))dr)ds
- 0

S

+f Z7'P(t = $)o (s, x(94(s)), fs h(s, 7)g2(t, x(Fs(7)))dr)dw(s), t € (i, il 0= 1,2,...,m.
Si 0
3.1)

In this paper we need the following assumptions.

(H5) (i) The function G : J X X — X is continuous and there exists constants K; > 0, K, > 0 such
that for t € J, ©¥,(t) € X we have

EI(AZ7'YG(t, x1(81 (1)) = (AZ VG2, xa (91 ))IP

K,

IA

KiEllx1(81(1) — x2(31 (D)1,
EIIAZ7'YG(, 0)I1.

(i1) The function f : J X X X X — X is continuous and there exists constants N; > 0, N, > 0 such
that for t € J, ¥,(¢), vi(?), v2(t) € X, we have

Ellf (2, i (@2(6)), v1 (1)) = f(2, 2(92(0)), vaO)P < N[E|x1 (320) = 222 + Ellva(r) = va(0)IP],
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N, = Elf@0,0).
(111) The function o : J X X XX — Ly(K, X) is continuous and there exists constants C; > 0, C, > 0
such that for ¢ € J, 94(¢), y1(¢), y2() € X, we have
Ello (7, x1(94(0)), y1 (1) = o°(t, x2(34(0)), y2 (D)l < CilElx1(B4(0) — X234 + Elly1 (£) = »2 (DI,
C; = Elo(0,0)3.
(iv) The functions &; : (t;, s;] X X — X are continuous and there exist constants C;, Cg > 0, such that
forallre (t,s],i=1,2,...,m,x,y € X, we have
Elli(t, x) = &, y)IP
Cs

C7E|lx = yIP,
€2, 0)IIP.

(H6) (i) g1 : J X X — X is continuous and there exist constants C; > 0, C4 > 0 such that for 7 € J and
¥3(1) € X, we have

Ellg (1, x:(35(1))) = 11, xa(BODIP - < C3Ellxi(B3(1) = x2(330))II,
Cy Ellg(, 0)I.

IA

(i1) g» : J X X — X is continuous and there exist constants C5 > 0, C¢ > 0 such that for r € J and
¥s(1) € X, we have

Ellga(t, x1(85(1))) — ga(t, x2(93(0))II° CsEllxi (93(1)) = xa(B3(0)I,
Co Ellg>(1, ).

(H7) There exists a constant C such that E|A(t, s)|> < C for (¢, s) € J X J.
(H8) There exists a constant g such that for all x;, x, € X,

Ellx(8:(1) = (DI < gEllxi (1) = x(0IF, fori=1,2,3,4,5.

IA

(H9) There exists a constant > 0 such that
25MP\\ 2711

Fz(q(l “ D+ [”Z“ZE”)Co”2 + ]W(%(IQE”)CO“2 + K) + (rC; + Cy)] + b2(1—q)(l—J)(rC7 + Cy)

e C%_ﬁ b2ﬁj+2(l—q)(l—1)r2(,3) 25| 7-1 ”2 M?2p2-241-))

251|127 \PIrK, + Ky [M? <
P RV ey T g ST
where
51 = (Ni(r +bC(rCs + Cy)) + No) + Tr(Q) (Cy(r + bC(rCs + Cg)) + C3) ,
My = IAZ7H)7P).

Theorem 3.2. If the hypotheses (H1)—(H9) are satisfied, then the system (1.1) has a mild solution on
J provided that

25117112 2 Mch—ﬁb ZBJFZ(ﬁ) M>Db q 14b 1+b

= YA M, K+ —— T

¢ = 25177 1P R LA |4 g M+ HCCs) + CTHO +HCC)]
M?p*a-bi-nc, }

+ +Cy < 1.
gl =p+)) ’
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Proof. Consider the operator ® on Y defined as follows:

Ox() = Z7'S, (O Zxy + G0, x(0))] — Z7'G(t, x(31 (1))

+ f Z7'AZ7'P(t — 5)G(s, x(91(5))ds
0

+ f Z7UP(t = 5)f (s, x(92(s)), f h(s, 1)g1(7, x(93(1))d7)ds
0 0

+ f Z7'P (1 = $)a (s, x(34(5)), f Sh(s,T)gz(T,X(ﬁs(T)))dT)dw(S), 1€(0,1],
0 0
Ox(t) = &(,x®), te€ sl i=12,...,m,
Ox(r) = Z7'Sy,(t = s)éi(si, x(s1) = Z7 G(t, (D (1))

+f Z_lAZ_le(t = 89G(s, x(F1(s5))ds

+ f Z7'P(t = 5)f (s, x(9(s)), f h(s, 7)g1(t, x(93(7)))dr)ds
; 0

Si

+f Z_le(t — 85)o (s, x(04(5)), fs h(s, 7)g2(T, x(¥5(7)))dr)dw(s), t € (si, tiy1], i =1,2,...,m.
i 0

It will be shown that the operator ® has a fixed point. This fixed point is then a mild solution of
a system (1.1). For x € B,, we show that ® maps B, into itself. From Lemmas 2.5-2.7 together with
Holder inequality, we have for ¢ € (0, #;]

Ioxy < 25sup 2 PUHENZTS (01 Zx0 + GO, xODNIP + ENZ™' G (e, x(th ()]

teJ

+E| f Z7'AZ 7P (1 — $)G(s, x(91(s)))ds]
0

+E| f Z_lP,(l—S)f(S,x(ﬁz(S)), f h(s,ﬂgl(nx(ﬁg(f)»df)dsuz
0 0

+E||fZ_le(t—S)G(S,X(194(S)), f h(S,T)gz(T,X(ﬁs(T)))dT)dw(S)IIZQ}
0 0

25M?\\ 27117
2@ -p+p

+251Z7YP[rK, + Kyl [ MG +

IA

UIZIPEllxoll* + Ma(K, Ellxoll” + K>)]

M2cf_ﬁb2ﬁ]+2(]—4)(1—J)F2(ﬁ) N 25“Z—] ”2M2b2—2q(1—1)51
(1 + B JT2())

IA

r,

fort e (ll', Si ]

IA

D% sup 2D E|E(e, x(0)IP

teJ
b2(1—q)(l—J)(rC7 + CS)

r,

VAN VAN
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and for t € (s;, tj41]

Dxl} < 25 sup PUINENZTS o, = s)éiCsi x(s)IP + ENZT'G (2, x(91)))IIP
+E|| f t Z'AZTIP (t = 5)G(s, x(91(s)))ds] I
+E|| f tZ‘lP,(t— s)f (S, x((5)), fo S h(s, 7)g:1(7, x(ﬁs(f)))df) dsl?
+E|| :Z‘lP,,(t— s)or(s, x(F4(s)), fo S h(s, 7)82(x, X(ﬁs(r)))dr) dw(s)lip}
21171112
< e e OO
+25(1Z7"1P[rKy + Ko ][ M2 + Mchffiﬁi;il(;jjrz(ﬁ) + 25”2_1“%2[(9; )
< r

Thus ® maps B, into itself.
We show that (®x)(7) is continuous on [0, b] for any x € B,. Let 0 < t < b and € > 0 be sufficiently
small, then for ¢ € (0, ;]

(@) + &) = (PN)O)lly = sup 1™V E|(@x)(7 + €) ~ (@)D

te]

< SsupTPUIENZTNS (2 + €)= S, () Zxo + G(O, x(0))]]?
teJ
+5sup T PIDENZTIG(t + €, x(91(t + €)) — Z7'G(t, x(9, ()P
J
h I+€
+5sup AP Z'AZTIP (t + € — $)G(s, x(D1(5)))ds
teJ 0

. f Z7AZ7P (1 - 9)G(s, 30 (s)dsIP
0

+5 sup {1-00=D g erE Z—lP](t +e—8)f (s, x((s)), fs h(s,7)g1(T, x(ﬂ3(T)))dT) ds
0 0

teJ

—f Z7P (1t - S)f(s, x(92(5)), f h(s, T)g (T, X(ﬁs(T)))dT) ds|?
0 0

+5 sup {A-00=)| f ‘ Z—lP](t +e— 8o (s, x(94(5)), fs h(s, 1)g(T, x(ﬂS(T)))d‘r) dw(s)
0 0

teJ

- f Z_IP](I—S)G(S,X(W(S)), f h(s,T)gz(T,X(ﬂs(T)))dT)dw(S)IIZQ,
0 0
(3.2)

for t € (¢, s;]

I(@x)(- + €) = (@)O)Ily = sup 1PV E|(@x)( + €) — (@) D)I

teJ

AIMS Mathematics Volume 7, Issue 11, 20105-20125.
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< sup PTPIDE|E( + €, x(t + €)) — E(t, x(D), (3.3)

teJ

and for r € (s;, ;1]

[(@x)(- + €) = (X))l = sup P VE|(Dx)(t + €) — (D))

teJ

Ssup tTVIDENZTNS , (t + € = 5) — S 4, (t = s))E(si, x(s)IP

teJ

IA

+5sup t"PUIDEZTIG(t + €, x(94(t + €) = Z7 G (¢, (31 ()P

teJ

+5sup PR f Z'AZT'P(t + € — 5)G(s, x((5)))ds

teJ

. f 27 AZ P (1 - )G (s, (0 (s)dsIP

Si
1+€

+5 sup t(l—q)(l—J)E” Z—lP](t +e—-s)f (s, x(%(s)), fs h(s,7)g1(T, x(ﬂ3(‘r)))dr) ds
0

teJ Si

_f Z7'P(t - S)f(S, x(ﬁz(s)),f h(s,7)g (1, x(l%(T)))dT)dSHz
S °

+5 sup {1-00=)| Z—lP](t +e— 8o (s, x(94(5)), fs h(s, 7)g2(T, x(1s (T)))d‘l’) dw(s)
0

teJ Si

_ f Z‘IPJ(t—S)O'(s,x(ﬁzt(S)), f | h(s,r>g2<r,x(ﬂs(r»)dr)dw(sﬂlé
K 0
(3.4)

Clearly, the right hand sides of (3.2)—(3.4) are tends to zero as € — 0. Hence, (®x)() is continuous
on [0, b].

Next for xy, x, € B,, we show that @ is a contraction mapping. From Lemmas 2.5-2.7 together with
Holder inequality, we obtain for ¢ € (0, #]

El|(Dx,)(1) - (Csz)(r)H
25127 IPUIAZ) PIPEIAZ PGt 21 (81(0) — (AZ7 PG (1, 2201 (D)

+E|| f (t — Y NAZ YT (t — AZTYVG (s, x1(91(5))) — (AZ7VG(s, x2(I1(5)]dsII*
0

IA

+E|| f P,(t = $)[f (s, x1(Da(5)), f (s, 7)1 (7, 51 (B5(1))d)
0 0
—f(5,x2((5)), f h(s, 7)g1 (7, x2(35(2)))d)]ds]
0
+E]| f P(t = 9)[o(s, x1(D4(s)), f h(s, 7)gx(t, x1(D5(1)))d7)
0 0

—O'(S,Xz(174(s)),f h(s, T)ga2(t, 2 (Ds5(1)))dT)dw(s) |’}
0
M2Cf_ﬁb2ﬁfl"2(,8)} - M2b2]q

2
W By pro) PT0)

< 25||z—1||2{ AN+ beCy)

AIMS Mathematics Volume 7, Issue 11, 20105-20125.
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+CiTr(Q)(1 + bCCs)]}EIIX1 0 - nOI, (3.5)

fort € (¢;, s;]
E||(®@x,)(1) — (Px) ()|
< ElE, x1(0) = £, xa()IP < C7 Ellxa (1) = %01, (3.6)

and for r € (s, t;11]
E|[(®@x1)(1) — (Px) ()|
251Z7 IPLENS g (2 = si)(ECsir x1(50)) = EiCsin 2 (s
HIAZ Y PIPENAZT G, xy(81(1) - (AZPG(t, (01 (D)

+E||f(t Y HAZYT (1 = HUAZTYG(s, x1(91(5)) = (AZ'YG(s, o ()]s

IA

+Ellf P (1 = $)[f (s, x1(D2(5)), f h(s, 7)g1 (7, x1(93(1)))dT)
— [ (s, %2(8(5)), f h(s,7)g1 (7, 2(93(7)))d7)]ds|
0
+E||fP,(I—S)[O'(S,xl(ﬁzt(S)),f h(s, 7)g2(T, x1(95(7)))d7)
i 0

=07 (s, x2(F4(5)), f h(s, T)g2(7, x2(95(1))d7)dw(s)I)
0

250127 | M2 MEC b T B) Mbq 1+ 1+b

< 251271 M K+ N T

< 251z IR{ |3 + S A |45 g N+ BCCs) + CLTHO +HCC)]
MEPa-D0-)C, }
+ Ellx,(£) — x2 (D)% (3.7)
g(1-p+p) " ’

Therefore, by combining (3.5)—(3.7) , we get
sup PPN E|[(@x)) (1) = (Px) (@I < & sup 2T PIDE|x,(6) — %000

teJ teJ

This implies that
|®x; — Dxally < llxy — xall3-

Then, @ is a contraction mapping and hence there exists unique fixed point x € B, such that ®x = x.
Hence, any fixed point of ® is a mild solution of (1.1) on J. The proof is completed.

4. Controllability results

In this section, we study the controllability of the following Sobolev-type nonlinear Hilfer fractional
stochastic differential equations with noninstantaneous impulsive condition:

DY [Zx(1) + G(t, x(91(D)))] = Ax(t) + Bu(r) + f(t, x(92(1)), fot h(t, s)g:1(s, x(3(s)))ds)

+o (1, x(94(1)), j(; h(t, 5)g2(s, x(95(5)))ds)%2, t € (s;, 11411, i €[0,m] .1
x(t) = &, x(), te(t,s], i€[l,m] '
I(()i__q)(l_j)X(O) = X,
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20115

where B : U — X is a bounded linear operator and the control function u € L,(J, U), the Hilbert
space of admissible control functions with U a Hilbert space.
Definition 4.1. An Y';-adapted stochastic process x(¢) : J — X is a mild solution of the system (4.1)
if the function AZ~'P (= 5)G(s, x(01(s)), s € (0,b) 1s integrable on (0, b) and the following integral
equation is verified:

x(t) = Z7'S,,(0[Zxo + G0, x(0)] — Z7'G(t, x(9 (1))
+ f Z_IAZ_lPJ(t —8)G(s, x(F(s))ds + f Z_lPJ(t — $)Bu(s)ds
0 0
+ f Z7'P(t - 5)f (s, x(92(5)), f h(s, 7)g1(t, x(¥3(7)))d7)ds
0 0
+ f Z_le(t — )0 (s, x(F4(s)), fs h(s, 7)g2(T, x(¥s5(7)))dr)dw(s), t e (0,1]
0 0
x(t) = &t x(), te(t,s), i=1,2,...,m
x() = Z7'Sg,(t = spélsi x(s) — Z7'G(t, x(91(1))

+ f Z'AZ7'P(t - $)G(s, x(91(s5))ds + f Z7'P,(t — s)Bu(s)ds

Si

v f Z7P (1 - )f(s. x(02(5)). f (s, D)1 (1, X(B5()dr)ds
) 0

Si

+f Z7'P (1 — )0 (s, x(94(5)), fs h(s, 7)ga2(7, x(95(1)))dr)dw(s), t € (8,111, i =1,2,...,m.
i 0
4.2)

Definition 4.2. The system (4.1) is said to be controllable on J, if for every xy, x; € X, there exists a
control u € L,(J, U) such that the mild solution x(#) of the system (4.1) satisfies x(b) = x;, where x;
and b are the preassigned terminal state and time respectively.

To establish the result, we need the following additional hypotheses

(H10) The linear operator W from U into X defined by

b
Wu = f Z_lPJ(b — 8)Bu(s)ds
0

has an inverse bounded operator W~! which takes values in L,(J, U)\ ker W, where the kernel space of
W is defined by ker W = {x € L,(J,U) : Wx = 0} and B is bounded operator.
(H11) There exists a constant » > 0 such that

[ 55+ 4 ,  MPCT P dUoiri @)Y 36|z R a0,
+ + 02+
Pqd-p+p | ° 21+ JB()) ’ 7))
Msz’IIZ‘lIIZIIBIIZIIW‘IIIZ] N 36M?b> 240D\ 27| BIPIW P E|| X, |12
JFT)) 7))
+* 1PN Cr + Cy) <

X |1+

where

8, = 36|Z7'rK, + K>,
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03
04

36 M| Z7 M PHNZIPElxol* + Ma(K Ellxoll* + K21,
36 M Z7YP(rCq + Cy).

Theorem 4.3. If the hypotheses (H1)—(H8), (H10) and (H11) are satisfied then, the system (4.1) is
controllable on J. provided that

M*C?_ b2 (B) M2b%
_ﬂ q
K+ —[N;(1 + bCC Cc,\T 1 +bCC
2(1 + JB)2()) gk + le—‘z(J)[ (1 + 3) +CiTr(Q)(1 + 5)]
M?p* DD C, 36M2b™||Z7IMIBIPIW P
1+ - < 1.

-+ PT2())

0:= 36||Z‘1||2{ [Mg +

Proof. Using the assumption (H10), define the control
u(ty = WHx =Z7'S, (O[Zx0 + G(0, x(O)] + Z7' G(b, x(31(h)))

b
—~ f Z'AZ7'P (b — $)G(s, x(I1(5)))dss
0
b X
- f Z7'P (b~ 9)f (s, x(9(5)), f h(s,7)g1 (7, x(F3(1)))d7)ds
0 0

b s
- f Z7'P(b - $)o (s, x(D4(5)), f h(s, 7)g2(t, x(F5(1)))dT)dw(s)}
0 0

, L€ (O’ tl],
u(t) = W =Z7'S,,(t = spéisi, x(5:) + Z7' G(b, x(B1(b)))

b
- f Z'AZ7'P (b — $)G(s, x(I1(5)))dss
Sib )
- [ 2P0 96200, [ 001 xS
S 0
b X
- f Z7'P(b - $)o (s, x(D4(5)), fo h(s, 7)ga2(7, x(F5(7)))d7)dw(s)}
Al , LE(Si,tiyn].
Consider the operator ®@* on Y defined as follows:
O*x(t) = Z7'S,,(O[Zxo + G0, x(0)] — Z7'G(t, x(91 (1))
+ f Z7'AZTP (1 — $)G(s, x(91(s))ds + f Z7'P(t - s)Bu(s)ds
0 0
+ f Z_]Pj(t -85f (s, x(9,(s)), fs h(s,1)g (T, x(ﬁg(T)))dT) ds
0 0

+ f Z7'P,(1 = $)(s, x(Ba(s)), f (s Dga(r, xOs(NdDds), 1€ (0,1,
0 0

&t x(1), te(t,s], i=1,2,...,m,
Z7'S , (t = s)Esi x(s0) — Z7' G(t, x(941(D))

D" x(1)
D x(1)
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+ f Z7'AZ7P (1 — $)G(s, x(D1(s))ds + f Z7'P(t - s)Bu(s)ds

n f Z‘IP,(t—s)f(s, X(B(s)). f (s, D1 x(z%(r)))dr)ds
. 0

S,

+f Z7'P (t — 5)0(s, x(94(5)), fs h(s, 7)g2(7, x(Fs(1)))dr)dw(s), t € (i, 1], 0= 1,2,...,m.
Si 0

It will be shown that the operator ®* has a fixed point. This fixed point is then a mild solution of a
system (4.1). For x € B,, we show that ®* maps B, into itself. From Lemmas 2.5-2.7 together with
Holder inequality, yields for ¢ € (0, #]

|0 xI; < 36 su})z““‘”“‘”{EIIZ“Sq,J(t)[ZxO+G(O,x(0))]||2+E||Z“G(t,x(19‘1(t))||2
+E|| f Z'AZ7IP(t — $)G(s, x(91(s))ds||* + E|| f Z7'P,(t — 5)Bu(s)ds|]
0 0
+E]| f Z7P (1~ 9)f (s,x(ﬁz(s)), f h(SaT)gl(Tax(03(7)))d7)d3”2
0 0

+E|| f Z*lP](t - 8o (s, x(94(9)), f h(s, 1)g (T, x(ﬂ5(‘r)))d‘r) dw(s)llé
0 0

NZIPEllxol* + MK, E|lxolI* + K2)]

{ 36M?|1Z711?
(g1 -+

MZC% br20-00-D12(3)
+361 27 |PIrK, + Ko [ME + b

[2(1 + BT ()
[(N\(r + bC(rC5 + Cy)) + N»)

]

36||Z—1 ||2M2b2—2q(1—j)
+
AR©)

+Tr(Q) (Ci(r + bC(rCs + C¢)) + Cz)]} I+

M2b2’||2‘1IIZIIBIIZIIW‘IIIZ]
7T2())
+36M2b2‘2"“")IIZ‘1||2||B||2||W‘1||2

E 2
20 Al

_ [ 53 +(M2+ M2C12_,6b2ﬂ1+2(1—61)(1—J)I"2(ﬁ)) 49||Z‘1||2M2b2_2q(1_1)51]
Rgi-p+p \° (1 + B)()) ’ JT2())
x[l M2b21||Z“||2||B||2||W“||2]+49M2b2‘2‘7<“f>||z“||2||B||2||W“||2E||x1||2<r
JT()) JFT()) o

fort € (¢, s;]

2
10" xly

IA

sup PP EE( x()I1P

teJ
b2(1—q)(1—1)(rc7 + CS)

r,

IAIA
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and for t € (s;, tj41]

DAl < 36 suytz““”“‘”{EIIZ‘lSq,,(t—s,~)§i(si,x(s,‘))llz+E||Z‘1G(t,x(z91(t))ll2
+E|| f Z'AZ7'P(t — $)G(s, x(91(s))ds||* + E|| f Z7'P,(t — 5)Bu(s)ds|
+E|| f Z7'P (1= 9)f (s,x(ﬂz(s)), f h(s,f)gl(f,x(ﬂa(r)))df)olsll2

S; 0

+E|| f Z7'P(t - s)o (s, x(94(s)), f h(s, 7)g2(T, x(ﬂ5(‘r)))d‘r) dw(s)llz
i 0

MZ Z—l 2
{ 36M-||Z7°| (rCy + Cy)

2@ -p+p

M2C12 pP#r20-00-D12()
+36|Z7"PIrK + Ko ][ M2 + o

(1 + jB)I2(y)
[(N] (l" + bC(l"C3 + C4)) + N2)

36||Z—1 ||2M2b2—2q(1—])
AR©)

+T7r(Q) (C(r + bC(rCs + Cp)) + Cz)]}

1+

M2b2f||z1||2||B||2||W1||2]
PT2()
D 72 - L

Ellx,|I*
7T

5 MACY b 2000 D) oz a2 240705
_[2 4 oz 12 : P | ||22 1]
=gl =)+ =1 + 81>y 7=
« [1 MZbZ’IIZ‘l||2||B||2||W‘1||2] N 49M2 b2 =D Z- P BIFIW P Ellx 12 <
<r
7)) 72
Thus ®* maps B, into itself.

We show that (®*x)(¢) is continuous on [0, b] for any x € B,. Let 0 < ¢ < b and € > 0 be sufficiently
small, then,then for 7 € (0, ;]

(@) + €) = (@0} = sup P PVE@" 0 (1 + €) = (@ )OI

teJ

< 6supTPIIENZTNS (2 + ) = S, (1)) Zxo + G(O, x(0))]]*

teJ

+6 sup PV ENZTIG(t + €, x(91(t + €)) — Z7 G (t, x(9, ()P

teJ

I+€
+6sup VU f Z'AZ7'P(t + € — 5)G(s, x(D(5)))ds
0

teJ

. f Z7AZ7P (1 - )G (s, x(01(s)dsIP
0

I+€ !
+6sup TPV E| f Z7'P(t + € — 5)Bu(s)ds — f Z7'P,(t — 5)Bu(s)ds|]
0 0

teJ
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i3

+6 sup t(l—q)(l—J)E” - Z—lP](t +e—s)f (s, x(%(s)), fs h(s,7)g1(T, x(ﬁk(‘r)))dr) ds
0

teJ 0

—f Z7Pt - 5)f (S, x(F2(s)), f h(s,7)g:(x, x(z%(r)))dr) ds|’
0 0

teJ

+6 sup A-00=0) f ‘ Z—lP](t +e— 8o (s, x(94(5)), fs h(s, 17)g(T, x(ﬂ5(7)))dr) dw(s)
0 0

_ f Z‘lP](t—s)a(s,X(I%(S)), f h(S»T)gz(T,x(ﬂs(T)))dT)dw(s)HzQ’
0 0

4.3)
fort € (¢, s;]
(D" x)(- + €) — (@ X))} = sup T PIDE|(@" x)(t + €) — (@)D
teJ
< sup PTPIDE|E( + €, x(t + €) — Elt, x(D)]P (4.4)

teJ

and for 7 € (s;, t;41]

I(@*X)(- + €) = (@)l = sup 1PV E@ x)(t + €) — (D" X))

teJ
< 6sup P VENZTNS (€= 50) = S 4 (¢ — s))ECsi, x(s)II
teJ
+6 sup PV ENZTIG(t + €, x(91(t + €)) — Z7 G (t, x(9, ()P
teJ

teJ

I+€
+6sup 1TV E|| f Z'AZ7'P(t + € — 5)G(s, x(D(5)))ds
! ;
—~ f Z'AZTP (t - 5)G(s, x(91(s)))ds] I

I+€ !
+6sup PR f Z_IP.,(t + € — s)Bu(s)ds — f Z_le(t — s)Bu(s)ds|*
teJ Si Si

I+€

+6 sup {1-00=D g Z‘le(t +e—9)f (s, x((9)), fs h(s,7)g (T, x(%(r)))dr) ds
0

teJ Si

—f Z7P (1t~ S)f(s, x(D2(5)), f h(s,7)g:(x, x(ﬁa(T)))dT) ds|’
Si 0

+6 sup {1-00-)| f a Z—le(t +€e—98)o (s, x(94(9)), fs h(s, 7)g(T, x(t%(‘r)))d‘r) dw(s)
i 0

teJ

- f Z—IP]a—s)a(s,x(m(s)), f h(S,T)gz(T,x(ﬂs(T)))dT)dw(SN@,
i 0
(4.5)

Clearly, the right hand sides of (4.3)—(4.5) are tends to zero as € — 0. Hence, (®*x)(¢) is continuous
on [0, b].

Next for x;, x, € B,, we show that ®* is a contraction mapping. From Lemmas 2.5-2.7 together
with Holder inequality, we obtain for ¢ € (0, #,]

E|I(@"x1)(1) = (D" x)(1)II°
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36127 IHIAZ ™) PIPEIAZ PG, x1(91(1) = (AZ™ PG (1, xa( ()]
+E||f(l— Y THAZTY T (1 = HUAZTYG(s, x1(91(5)) = (AZ7 Y G(s, xa (1 (5)))dslI?
0

IA

+E]| fo t P (1 = 9)f(s, x1(D2()), fo S h(s, 7)g1(7, x1(95(1)))d7)

— [ (5, %2(9(5)), fo s h(s, T)g1 (1, 2(95(7)))d7))ds|

+E]| fo I Pt — )[o(s, x1(F4(s)), fo S h(s, 7)g2(T, x1(95(1)))d7)

—0 (s, 2(04()), fo S h(s, T)g2 (T, 2(95(1))d)ldw(s)|1*)

+36E|| fo t Z7'P,(t — )BW HZ ' (AZ) PI(AZ PG (b, x, (9, (b))

—(AZ"YG(b, x2(91(b)))] - fo b Z7 (b = )N AZY T (b - HIAZT YV G (s, x1(D1(5)))
~(AZ"YG(s, x2(D1(5))]ds — j; b Z7'P,(b = D f (1, 1 (B(7)), j; T h(t, g1 (1, x1(F3(m)))dn)
~froxaa(on, [ e w@mdidr

- 2P - Dl w04, | e mgstnxcoscmam)

-0 (7, x2(94(1)), fo h(t, m)g2(1, x2(Fs(M))dn)dew () }ds|]®

36127112 | 2 MG, ) K+ M0 THO)(1 + b
< - - -
< 36171 [ M5 + S |45 g N+ BCCs) + CLTHO + ccsl
49M2b2] Z—l 4 B 2 W—l 2
x{1+ 12 AW VBl (0 - 0, (4.6)
VR 0))

fort e (ll', Si]

EJI(@"x1)(1) = (@"x) )|
< ElEt, x1(0) = &, xa)IP < Cr Ellxi (1) = (), 4.7)

and for r € (s;, t;41]

EJI(@"x1)(1) = (@ x) ()|
< 36lIZ7HIPHLENS o (1 = s)(EiCsi, x1(50)) = EiCsi, xa(s)IP
+HIAZ Y PIPEIAZ Gt 21 (81(0) = (AZ” PG (1, 2201 (O)IP

+E|| f (t = ) MAZTYT (1t = HUAZTYG(s, x1(B1(5))) = (AZ7 P G(s, o1 (s))1ds]®
+E|| f Pt = $)Lf(s, x1(9(5)), fo (s, D)1 (7 X1 (95(1)dT)
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—f (s, x2(D2(5)), f | h(s, 7)1 (T, X2(95(1)))dv)]ds|]>

0
+E|| f P (t = $)[o(s, x1(F4(5)), fo h(s, 7)g2(t, x,(95(1)))dr)
0 (s, X2(94(5)), f h(s, 7)g2(T, X2(I5(1)))d7)ldw(s)|I*}

0

+36L]| f Z7'P(t - )BW H=Z7'S, (b — s)(&(si, x1(s0)) — Eisiy X2(5,)))

+Z 1Az )_'8[(142_1 YG(b, x1(91(b)))
b

—(AZ"YG(b, x2(91(b)))] — f Z7(b = )" AZY'PT (b — AZ VG (s, x1(91(5)))
i b T

—(AZ"YG(s, 2(31(s)))ds — f Z7'P (b — D) f (1, x1(D2(1)), f h(t,m)g1(n, x1(F3()))dn)
K 0

—f (T, x2(92(7)), f(; h(t,m)g1(n, x2(93(n)))dn)]dr

b T
—f Z7'Pyb - 1)o(x, Xl(ﬂzt(T)),fo h(t,m)g>(n7, x1(Fs5(1)))dn)

—0(7, X2(94(7)), f h(z, Mg, x(Bs(m)dmdw(T)ds|
0

M ZCf_IBbQﬁJFZ(ﬁ)} M2b¥g
qii

IA

z! 2{ M? K +— 1 T 1
36l1Z7| °+Wﬂ+ﬁﬁw) +ﬂwﬁwx+mxgﬂar@x+mrm
A42b“q‘”“‘”cb}{l4_36A42b”HZ‘HﬁHBHﬂHV‘HP

+Fz(q( Il-p+) 7T2())

}Enxl(t) o 4.8)
Therefore, by combining (4.6)—(4.8), we get

sup 2D EN(@"x)(1) — (@ x) DI < o sup 2PN VExy (1) — xa(0)I

teJ teJ
This implies that
* * 2 2
1D7x) — D xolly < ollx1 — xaly.
Then, ®* is a contraction mapping and hence there exists unique fixed point x € B, such that

®*x(t) = x(¢). Therefore the system (4.1) has a mild solution satisfying x(b) = x;. Thus, system (4.1)
is controllable on J.

5. Application
In this section, we present an example to illustrate our main result. Let us consider the following
Sobolev-type Hilfer fractional stochastic partial differential equation with noninstantaneous impulsive

condition
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20122

D (. y) = %y (6,3) + Gt x(t = pr,y)] = T892+ 01, y) + x(t - 2. )
+f sin x(s — p3, y)ds + x(t — ps, y) + ft e)‘(“’S y)dw(s),
fE(O,S]U(5,5]U(3,1] 0<z<m,
x(2,0) =x(t,7) =0, t € (0,1], (5.1
x(t,y) = %e‘("%)—lmggi)y”)”, te (1 2] 0<y<m,

_ 3 =3 Ikl
x(t,y) = 2775 T L€ (5, 5] 0<y<m,

4
Ip;(x(0,y)) = xo(y), 0 <y <,

13
where D;;° is the Hilfer fractional derivative of order g = %, J= %

Let X = U = L,([0,n]), define the operator Z : D(Z) c X — X and A : D(A) ¢ X — X by
Zx = x — xy, and Ax = x,, where domains D(Z) and D(A) are given by {x € X : x, x, are absolutely
continuous, x,, € X, x(0) = x(mr) = 0}. Then A and Z can be written as

o0

Ax Z n2(x, x,)x%,, x € D(A),
Zx Z (1 + n®){x, x,)x,, x € D(Z).
n=1

Furthermore, for x € X we have

S|
-1 _
7 x = ; 1+ 2 <-X, xn)-xn’
1 o
AZ 'x = nzz; T2 (X, X,)%,.
It is known that AZ™! is self-adjoin and has the eigenvalues 1, = —-n’z*, n € N, with the
corresponding normalized eigenvectors e,(p) = V2 sin(nmp). Furthermore, AZ~' generates a

uniformly strongly continuous semigroup of bounded linear operators S (), > 0, on X which is given
by

(o)

2
SHx = Z e (x, x,)x,, x € X,

n=1

with ISl < e < 1.

Moreover, the two operators S 1 3(¢) and P% (#) can be defined by

13
35

Si13()x =

5

f f 0t — s)T5 T Y; (Q)T(s5 O)xdlds,

Lol
vl

S5T(5)

Ps(H)x = 3 f 015 W5 ()T (550)xd0.
3 5 0 5
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Clearly,

1
IO < . 1S 00 <

I($s)

We define the bounded operator B: U — X by B = 1.
Also, We define the following functions:

x(t)y = x(t,y),

— l —([—%) ||x(t7y)||
e A ey Frr

3 ey Ix@l
R M ey P

Gt 5 ONG) = Gt x(t = proy)
f h(t, 5)g1(5, XBx()O)ds = f Sin x(s - p3, y)ds,
0 0

f h(t, $)g2(s, x(Ps(s)(y)ds = f PV g ¢
0 0
/ (t’ X0 f hz, $)81(s, x(’%(s)))dS) ) = x(t—p2y)+ f sin x(s — p3,y)ds,
0 0
o (t, x(4(0)), f h(t, s)g(s, x(ﬁs(s)))ds) ) = x(t—ps,y)+ f P s,
0 0

where h(t, s) = 1.
Hence, with the above choices, system (5.1) can be rewritten in the abstract form of (4.1). On the
other hand, all the hypotheses of Theorem 4 are satisfied and

M>C_bPT*(B) M*b*q

(1 + B JFT2())

+M2b2(q‘““‘”C7}{ 36M2b2JIIZ‘1||4||B||2||W‘1||2} <1
(g1 =+ JFT2()) !

0 :=36|Z"" ||2{ M} + gk, + [Ni(1 + bCC3) + C,Tr(Q)(1 + bCCs)]

Thus, we can conclude that the Sobolev-type Hilfer fractional stochastic partial differential
inclusions with noninstantaneous impulsive condition (5.1) is controllable on (0, 1].

6. Conclusions

In this paper, we show that there is a moderate solution for nonlinear Hilfer fractional stochastic
differential equations of Sobolev type with non-instantaneous impulsive in Hilbert space. For nonlinear
Hilfer fractional stochastic differential equations of Sobolev type with non-instantaneous impulsive
circumstances, we established suitable controllability criteria. To demonstrate the acquired results, an
example is given.

AIMS Mathematics Volume 7, Issue 11, 20105-20125.



20124

Contflict of interest

The author declares that they have no competing interests.

References

1.
2.

10.

11.

12.

X. Mao, Stochastic differential equations and their applications, Horwood, Chichester, 1997.

A. Atangana, S. I. Araz, Fractional stochastic differential equations: Applications to Covid-19
modeling, Springer Singapore, 2022. https://doi.org/10.1007/978-981-19-0729-6

F. A. Rihan, C. Rajivganthi, P. Muthukumar, Fractional stochastic differential equations with Hilfer
fractional derivative: Poisson iumps and optimal control, Discrete Dyn. Nat. Soc., 2017 (2017),
5394528. https://doi.org/10.1155/2017/5394528

H. Ahmad, N. Alam, M. Omri, New computational results for a prototype of an excitable system,
Results Phys., 28 (2021), 104666. https://doi.org/10.1016/j.rinp.2021.104666

M. Adel, Numerical simulations for the variable order two-dimensional reaction
sub diffusion equation: Linear and nonlinear, Fractals, 30 (2022), 2240019.
https://doi.org/10.1142/S0218348X22400199

M. Adel, M. Elsaid, An efficient approach for solving fractional variable order
reaction sub-diffusion equation base on Hermite formula, Fractals, 30 (2022), 2240020.
https://doi.org/10.1142/S0218348X22400205

M. M. Khader, J. F. Gomez-Aguilar, M. Adel, Numerical study for the fractional RL, RC, and
RLC electrical circuits using Legendre pseudo-spectral method, Int. J. Circ. Theor. App., 49 (2021),
3266-3285. https://doi.org/10.1002/cta.3103

M. Adel, H. M. Srivastava, M. M. Khader, Implementation of an accurate method for
the analysis and simulation of electrical R-L circuits, Math. Method. Appl. Sci., 2022.
https://doi.org/10.1002/mma.8062

H. M. Ahmed, M. M. El-Borai, A. S. O. El Bab, M. E. Ramadan, Approximate controllability of
noninstantaneous impulsive Hilfer fractional integrodifferential equations with fractional Brownian
motion, Bound Value Probl., 2020 (2020), 1-25. https://doi.org/10.1186/s13661-020-01418-0

J. P. Dauer, N. I. Mahmudov, Exact null controllability of semilinear integrodifferential
systems in Hilbert spaces, J. Math. Anal. Appl, 299 (2004), 322-332.
https://doi.org/10.1016/j.jmaa.2004.01.050

H. M. Ahmed, M. M. El-Borai, A. S. O. El Bab, M. E. Ramadan, Boundary controllability of
nonlocal Hilfer fractional stochastic differential systems with fractional Brownian motion and
Poisson jumps, Adv. Differ. Equ., 2019 (2019), 82. https://doi.org/10.1186/s13662-019-2028-1

P. Muthukumar, K. Thiagu, Existence of solutions and approximate controllability of fractional
nonlocal neutral impulsive stochastic differential equations of order 1 < ¢ < 2 with infinite delay
and Poisson jumps, J. Dyn. Control Syst., 23 (2017), 213-235. https://doi.org/10.1007/s10883-
015-9309-0

AIMS Mathematics Volume 7, Issue 11, 20105-20125.


http://dx.doi.org/https://doi.org/10.1007/978-981-19-0729-6
http://dx.doi.org/https://doi.org/10.1155/2017/5394528
http://dx.doi.org/https://doi.org/10.1016/j.rinp.2021.104666
http://dx.doi.org/https://doi.org/10.1142/S0218348X22400199
http://dx.doi.org/https://doi.org/10.1142/S0218348X22400205
http://dx.doi.org/https://doi.org/10.1002/cta.3103
http://dx.doi.org/https://doi.org/10.1002/mma.8062
http://dx.doi.org/https://doi.org/10.1186/s13661-020-01418-0
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2004.01.050
http://dx.doi.org/https://doi.org/10.1186/s13662-019-2028-1
http://dx.doi.org/ https://doi.org/10.1007/s10883-015-9309-0
http://dx.doi.org/ https://doi.org/10.1007/s10883-015-9309-0

20125

13. A. Chadha, S. N. Bora, Approximate controllability of impulsive neutral stochastic
differential equations driven by Poisson jumps, J. Dyn. Control Syst., 24 (2018), 101-128.
https://doi.org/10.1007/s10883-016-9348-1

14. H. M. Ahmed, M. M. El-Borai, A. S. O. El Bab, M. E. Ramadan, Controllability and constrained
controllability for nonlocal Hilfer fractional differential systems with Clarke’s subdifferential, J.
Inequal. Appl., 2019 (2019), 233. https://doi.org/10.1186/s13660-019-2184-6

15. K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential
equations, New York: John Wiley, 1993.

16. R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000.
https://doi.org/10.1142/3779

17. R. F. Curtain, H. Zwart, An introduction to infinite dimensional linear systems theory, New York:
Springer, 1995. https://doi.org/10.1007/978-1-4612-4224-6

18. A. Pazy, Semigroups of linear operators and applications to partial differential equations, In:
Applied mathematical sciences, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-
5561-1

19. H. Gu, J. J. Tryjillo, Existence of mild solution for evolution equation with Hilfer fractional
derivative, Appl. Math. Comput., 257 (2015), 344-354. https://doi.org/10.1016/j.amc.2014.10.083

20. I. Yaroslavtsev, Burkholder-Davis-Gundy inequalities in UMD banach spaces, Commun. Math.
Phys., 379 (2020), 417-459. https://doi.org/10.1007/s00220-020-03845-7

©2022 the Author(s), licensee AIMS Press. This

E is an open access article distributed under the
% AIMS Press terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 11, 20105-20125.


http://dx.doi.org/https://doi.org/10.1007/s10883-016-9348-1
http://dx.doi.org/https://doi.org/10.1186/s13660-019-2184-6
http://dx.doi.org/https://doi.org/10.1142/3779
http://dx.doi.org/ https://doi.org/10.1007/978-1-4612-4224-6
http://dx.doi.org/https://doi.org/10.1007/978-1-4612-5561-1
http://dx.doi.org/https://doi.org/10.1007/978-1-4612-5561-1
http://dx.doi.org/https://doi.org/10.1016/j.amc.2014.10.083
http://dx.doi.org/https://doi.org/10.1007/s00220-020-03845-7
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Existence solution
	Controllability results
	Application
	Conclusions

