In this paper, we obtain a concise high-precision approximation for K(r):
2πK(r)>22(r′)2+84r′+227(r′)3+57(r′)2+57r′+7,
which holds for all r∈(0,1), where K(r) is complete elliptic integral of the first kind and r′=√1−r2.
Citation: Ling Zhu. Concise high precision approximation for the complete elliptic integral of the first kind[J]. AIMS Mathematics, 2021, 6(10): 10881-10889. doi: 10.3934/math.2021632
[1] | Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu . Monotonicity properties and bounds for the complete p-elliptic integrals. AIMS Mathematics, 2020, 5(6): 7071-7086. doi: 10.3934/math.2020453 |
[2] | Tie-Hong Zhao, Miao-Kun Wang, Yu-Ming Chu . A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Mathematics, 2020, 5(5): 4512-4528. doi: 10.3934/math.2020290 |
[3] | Fei Wang, Bai-Ni Guo, Feng Qi . Monotonicity and inequalities related to complete elliptic integrals of the second kind. AIMS Mathematics, 2020, 5(3): 2732-2742. doi: 10.3934/math.2020176 |
[4] | Fei Wang, Bai-Ni Guo, Feng Qi . Correction: Monotonicity and inequalities related to complete elliptic integrals of the second kind. AIMS Mathematics, 2020, 5(6): 5683-5684. doi: 10.3934/math.2020363 |
[5] | Jeong-Kweon Seo, Byeong-Chun Shin . Reduced-order modeling using the frequency-domain method for parabolic partial differential equations. AIMS Mathematics, 2023, 8(7): 15255-15268. doi: 10.3934/math.2023779 |
[6] | Chun Huang, Zhao Li . Soliton solutions of conformable time-fractional perturbed Radhakrishnan-Kundu-Lakshmanan equation. AIMS Mathematics, 2022, 7(8): 14460-14473. doi: 10.3934/math.2022797 |
[7] | Ruifeng Wu . Bivariate multiquadric quasi-interpolation operators of Lidstone type. AIMS Mathematics, 2023, 8(9): 20914-20932. doi: 10.3934/math.20231065 |
[8] | Qian Ge, Jin Li . Extrapolation methods for solving the hypersingular integral equation of the first kind. AIMS Mathematics, 2025, 10(2): 2829-2853. doi: 10.3934/math.2025132 |
[9] | Hassanein Falah, Parviz Darania, Saeed Pishbin . Study of numerical treatment of functional first-kind Volterra integral equations. AIMS Mathematics, 2024, 9(7): 17414-17429. doi: 10.3934/math.2024846 |
[10] | Faheem Khan, Tayyaba Arshad, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar . Numerical solutions of 2D Fredholm integral equation of first kind by discretization technique. AIMS Mathematics, 2020, 5(3): 2295-2306. doi: 10.3934/math.2020152 |
In this paper, we obtain a concise high-precision approximation for K(r):
2πK(r)>22(r′)2+84r′+227(r′)3+57(r′)2+57r′+7,
which holds for all r∈(0,1), where K(r) is complete elliptic integral of the first kind and r′=√1−r2.
For r∈(0,1), Legendre's complete elliptic integrals of the first kind (see [1,2]), denoted K(r), is defined by
K(r)=∫π/20dt√1−r2sin2(t), |
which is the particular case of the Gaussian hypergeometric function and can be a special power series ([3,4,5,6,7,8,9]):
K(r)=π2F(12,12;1;r2)=π2∞∑n=0(12)2n(n!)2r2n=π2∞∑n=0[(2n−1)!!(2n)!!]2r2n=:π2∞∑n=0W2nr2n. | (1.1) |
Many researchers have obtained the upper and lower bounds of this special function ([10,11,12,13,14,15,16,17,18]). Let's assume that r′=√1−r2. In this paper, we use the method similar to Padé approximation to obtain the following rational functions of the argument r′
F1,0(r′)=3−r′2,F0,1(r′)=2r′+1,F1,1(r′)=r′+75r′+3,F2,1(r′)=−3(r′)2+22r′+618(7r′+3),F1,2(r′)=8(r′+1)3(r′)2+10r′+3,F2,2(r′)=5(r′)2+126r′+6161(r′)2+110r′+21,F3,2(r′)=5579r′+495(r′)2−35(r′)3+17692(2050r′+1567(r′)2+287),F2,3(r′)=22(r′)2+84r′+227(r′)3+57(r′)2+57r′+7 | (1.2) |
to approximate this special function K(r), and get the following series of results:
2πK(r)−F1,0(r′)=O(r4),2πK(r)−F0,1(r′)=O(r4),2πK(r)−F1,1(r′)=O(r6),2πK(r)−F2,1(r′)=O(r8),2πK(r)−F1,2(r′)=O(r8),2πK(r)−F2,2(r′)=O(r10),2πK(r)−F3,2(r′)=O(r12),2πK(r)−F2,3(r′)=O(r12). |
From the last formula above, it is not difficult to find that the bound F2,3(r′) is quite sharp. The smaller r is, the smaller the error between 2K(r)/π and this bound F2,3(r′) is. The following is the error analysis table of δ(r)=2K(r)/π−F2,3(r′):
r | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.99 |
δ(r) | 4.680×10−18 | 2.118×10−14 | 3.262×10−12 | 1.327×10−10 | 2.747×10−9 | 1.969×10−2 |
which shows that F2,3(r′) has a high precision approximation to 2K(r)/π.
Since
F2,3(r′)−F3,2(r′)=2452(1−r′)6(7r′+1)(r′+7)(r′+1)(2050r′+1567(r′)2+287)>0,F3,2(r′)−F2,2(r′)=21352(1−r′)5(110r′+61(r′)2+21)(2050r′+1567(r′)2+287)>0,F2,2(r′)−F1,2(r′)=15(1−r′)4(3r′+1)(r′+3)(110r′+61(r′)2+21)>0,F1,2(r′)−F2,1(r′)=98(1−r′)4(7r′+3)(r′+3)(3r′+1)>0,F2,1(r′)−F1,1(r′)=158(1−r′)3(5r′+3)(7r′+3)>0,F1,1(r′)−F0,1(r′)=(1−r′)2(r′+1)(5r′+3)>0,F0,1(r′)−F1,0(r′)=12(1−r′)2r′+1>0, |
we have
F2,3(r′)>F3,2(r′)>F2,2(r′)>F1,2(r′)>F2,1(r′)>F1,1(r′)>F0,1(r′)>F1,0(r′). | (1.3) |
We first show the following result:
Theorem 1.1. The inequality
2πK(r)>22(r′)2+84r′+227(r′)3+57(r′)2+57r′+7=F2,3(r′) | (1.4) |
holds for all r∈(0,1), where r′=√1−r2.
Then by (1.3) and the above theorem, we have
Theorem 1.2. Let Fi,j(r′) be defined as (1.2). Then the following inequality chain
2πK(r)>F2,3(r′)>F3,2(r′)>F2,2(r′)>F1,2(r′)>F2,1(r′)>F1,1(r′)>F0,1(r′)>F1,0(r′) | (1.5) |
holds for all r∈(0,1), where r′=√1−r2.
In order to prove our main results we need following lemmas.
Lemma 2.1.
H(n)=:Wn−38(2n−1)(2n−3)(2n−5)(111n2+401n−1600)n2(49n4+2010n3−13763n2+28212n−17804)>0 | (2.1) |
holds for all n≥35.
Proof. It is not difficult to verify that the inequality (2.1) holds when n=35. If the inequality (2.1) holds for n=m>35, i.e
Wm>38(2m−1)(2m−3)(2m−5)(111m2+401m−1600)m2(49m4+2010m3−13763m2+28212m−17804). |
So
Wm+1=(2m+1)!!(2m+2)!!=2m+12m+2Wm>(2m+12m+2)38(2m−1)(2m−3)(2m−5)(111m2+401m−1600)m2(49m4+2010m3−13763m2+28212m−17804). |
In order to complete the proof of (2.1) it suffices to show that
(2m+12m+2)38(2m−1)(2m−3)(2m−5)(111m2+401m−1600)m2(49m4+2010m3−13763m2+28212m−17804)>38(2(m+1)−1)(2(m+1)−3)(2(m+1)−5)(111(m+1)2+401(m+1)−1600)(m+1)2[49(m+1)4+2010(m+1)3−13763(m+1)2+28212(m+1)−17804]=38(2m−1)(2m+1)(2m−3)(623m+111m2−1088)(m+1)2(6912m−7439m2+2206m3+49m4−1296), |
which is
AB=:(2m−5)(111m2+401m−1600)(2m+2)m2(49m4+2010m3−13763m2+28212m−17804)>(623m+111m2−1088)(m+1)2(6912m−7439m2+2206m3+49m4−1296)=:CD. |
In fact,
AD−BC=5439m7−202236m6+2504574m5−14753604m4+45551571m3−72508896m2+51673680m−10368000=9308275200+137097875040(m−20)+47752255764(m−20)2+6984199251(m−20)3+545207796(m−20)4+23923854(m−20)5+559224(m−20)6+5439(m−20)7>0. |
Lemma 2.1.([17,18]) Let {ak}∞k=0 be a nonnegative real sequence with am>0 and ∑∞k=m+1ak>0, and
S(t)=−m∑k=0aktk+∞∑k=m+1aktk |
be a convergent power series on the interval (0,r) (r>0). Then the following statements are true:
(1) If S(r−)≤0, then S(t)<0 for all t∈(0,r);
(2) If S(r−)>0, then there exists t0∈(0,r) such that S(t)<0 for t∈(0,t0) and S(t)>0 for t∈(t0,r).
Let
f(r)=[49(r′)6−2451(r′)4+2451(r′)2−49]2πK(r)−[154(r′)5−666(r′)4−3380(r′)3+3380(r′)2+666(r′)−154]. |
Then
f(r)=[49(r′)6−2451(r′)4+2451(r′)2−49]2πK(r)−[666√1−r2−3380(1−r2)32+154(1−r2)52−2048r2−666r4+2560]=(−49r6−2304r4+2304r2)∞∑n=0W2nr2n−666∞∑n=7(−12)nn!r2n+3380∞∑n=7(−32)nn!r2n−154∞∑n=7(−52)nn!r2n+2048r2+666r4−2560=−49∞∑n=4W2nr2n+6−2304∞∑n=5W2nr2n+4+2304∞∑n=6W2nr2n+2−666∞∑n=7(−12)nn!r2n+3380∞∑n=7(−32)nn!r2n−154∞∑n=7(−52)nn!r2n |
=−49∞∑n=7W2n−3r2n−2304∞∑n=7W2n−2r2n+2304∞∑n=7W2n−1r2n−666∞∑n=7(−12)nn!r2n+3380∞∑n=7(−32)nn!r2n−154∞∑n=7(−52)nn!r2n=−49∞∑n=7W2n−3r2n−2304∞∑n=7W2n−2r2n+2304∞∑n=7W2n−1r2n+3380(−32)(−12)∞∑n=7(12)n−2n!r2n−666(−12)∞∑n=7(12)n−1n!r2n−154(−52)(−32)(−12)∞∑n=7(12)n−3n!r2n=−49∞∑n=7W2n−3r2n−2304∞∑n=7W2n−2r2n+2304∞∑n=7W2n−1r2n+2535∞∑n=7(12)n−2n!r2n+333∞∑n=7(12)n−1n!r2n+11554∞∑n=7(12)n−3n!r2n=:∞∑n=7cnr2n, |
where
cn=−49W2n−3−2304W2n−2+2304W2n−1+2535(12)n−2n!+333(12)n−1n!+11554(12)n−3n!. |
By
Wn−1=2n2n−1Wnand(12)n=(12)n−1(12+(n−1)) |
we have
cn=−49(2n−42n−52n−22n−32n2n−1Wn)2−2304(2n−22n−32n2n−1Wn)2+2304(2n2n−1Wn)2+333(12+(n−1))(12)nn!+2535(12+(n−1))(12+(n−2))+11554(12+(n−1))(12+(n−2))(12+(n−3))(12)nn!=−64n228212n−13763n2+2010n3+49n4−17804(2n−3)2(2n−5)2(2n−1)2W2n+24401n+111n2−1600(2n−3)(2n−5)(2n−1)Wn=−64n228212n−13763n2+2010n3+49n4−17804(2n−3)2(2n−5)2(2n−1)2WnH(n). |
It's not difficult to verify that cn>0 for n=7,8,⋯,34, and according to Lemma 2.1, cn<0 for all n≥35.
So those coefficients in power series of −f(r) satisfy the conditions of Lemma 2.2, and −f(1−)=∞. From Lemma 2.2, it follows that there is a unique r∗∈(0,1) such that −f(r)<0 for r∈(0,r∗) and −f(r)>0 for r∈(r∗,1), that is, f(r)>0 for r∈(0,r∗) and f(r)<0 for r∈(r∗,1), and r∗ is the unique zero of f(r) on (0,1). At the same time, since
f(r)=[7(r′)3−57(r′)2+57(r′)−7]×{[7(r′)3+57(r′)2+57(r′)+7]2πK(r)−[22(r′)2+84(r′)+22]}, |
and the function
g(r)=:7(r′)3−57(r′)2+57(r′)−7=49(r′)6−2451(r′)4+2451(r′)2−497(r′)3+57(r′)2+57(r′)+7=−49r6−2304r4+2304r27(r′)3+57(r′)2+57(r′)+7=−49r2(r−4√3/7)(r+4√3/7)(r2+48)7(r′)3+57(r′)2+57(r′)+7 |
has a unique zero 4√3/7 on (0,1), which leads to r∗=4√3/7. Clearly, g(r)>0 for r∈(0,r∗) and g(r)<0 for r∈(r∗,1). That is to say, the two functions f(r) and g(r) have the same sign on both sides of the point r∗, so we have
2πK(r)−22(r′)2+84(r′)+227(r′)3+57(r′)2+57(r′)+7=f(r)g(r)[7(r′)3+57(r′)2+57(r′)+7]>0 |
holds for all r∈(0,1) with r≠r∗. But the continuity at r=r∗ of the functions K(r) and F2,3(r) ensures that the inequality (1.4) also holds for r=r∗.
The proof of Theorem 1.1 is complete.
Recently, Z. H. Yang, J. F. Tian and Y. R. Zhu [18] presented a new sharp lower bound for the complete elliptic integral of the first kind as follows:
2πK(r)>5(r′)2+126r′+6161(r′)2+110r′+21=F2,2(r′), | (4.1) |
where r∈(0,1) and r′=√1−r2. It is not difficult to find that the above conclusion is a direct corollary of Theorem 1.2.
This paper obtains a new lower bound for 2K(r)/π:
2πK(r)>22(r′)2+84r′+227(r′)3+57(r′)2+57r′+7. |
This lower bound approximates 2K(r)/π with high accuracy.
The author is thankful to reviewers for their valuable comments on the original version of this paper.
The research was supported by National Natural Science Foundation of China (Grants No. 61772025).
The author declares that he has no conflict of interest.
[1] | F. Bowman, Introduction to Elliptic Function with Applications, Dover Publications, New York, 1961. |
[2] | P. F. Byrd, M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer-Verlag, New York, 1971. |
[3] | G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps, John Wiley & Sons, New York, 1997. |
[4] |
G. D. Anderson, S. L. Qiu, M. Vuorinen, Precise estimates for differences of the Gaussian hypergeometric function, J. Math. Anal. Appl., 215 (1997), 212–234. doi: 10.1006/jmaa.1997.5641
![]() |
[5] | S. Ponnusamy, M. Vuorinen, Univalence and convexity properties for Gaussian hypergeometric functions, Rocky Mountain J. Math., 31 (2001), 327–353. |
[6] |
Y. Q. Song, P. G. Zhou, Y. M. Chu, Inequalities for the Gaussian hypergeometric function, Sci. China Math., 57 (2014), 2369–2380. doi: 10.1007/s11425-014-4858-3
![]() |
[7] | M. K. Wang, Y. M. Chu, Y. P. Jiang, Ramanujan's cubic transformation inequalities for zero-balanced hypergeometric functions, Rocky Mountain J. Math., 46 (2016), 679–691. |
[8] | M. K. Wang, Y. M. Chu, Y. Q. Song, Asymptotical formulas for Gaussian and generalized zero-balanced hypergeometric functions, Appl. Math. Comput., 276 (2016), 44–60. |
[9] |
M. K. Wang, Y. M. Chu, Refinenemts of transformation inequalities for zero-balanced hypergeometric functions, Acta Math. Sci., 37 (2017), 607–622. doi: 10.1016/S0252-9602(17)30026-7
![]() |
[10] | B. C. Carlson, M. Vuorinen, Inequality of the AGM and the logarithmic mean, SIAM. Rev., 33 (1991), 653–654. |
[11] | M. K. Vamanamurthy, M. Vuorinen, Inequalities for means, J. Math. Anal. Appl., 183 (1994), 155–166. |
[12] |
S. L. Qiu, M. K. Vamanamurthy, Sharp estimates for complete elliptic integrals, SIAM. J. Math. Anal., 27 (1996), 823–834. doi: 10.1137/0527044
![]() |
[13] |
H. Alzer, Sharp inequalities for the complete elliptic integral of the first kind, Math. Proc. Cambridge Philos. Soc., 124 (1998), 309–314. doi: 10.1017/S0305004198002692
![]() |
[14] |
G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Functional inequalities for hypergeometric functions and complete elliptic integrals, SIAM. J. Math. Anal., 23 (1992), 512–524. doi: 10.1137/0523025
![]() |
[15] |
H. Alzer, S. L. Qiu, Monotonicity theorem and inequalities for the complete elliptic integrals, J. Comput. Appl. Math., 172 (2004), 289–312. doi: 10.1016/j.cam.2004.02.009
![]() |
[16] | Zh. H. Yang, Y. Q. Song, Y. M. Chu, Sharp bounds for the arithmetic-geometric mean, J. Inequal. Appl., 192 (2014), 13. |
[17] |
Z. H. Yang, W. M. Qian, Y. M. Chu, W. Zhang, On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind, J. Math. Anal. Appl., 462 (2018), 1714–1726. doi: 10.1016/j.jmaa.2018.03.005
![]() |
[18] |
Z. H. Yang, J. F. Tian, Y. R. Zhu, A rational approximation for the complete elliptic integral of the first kind, Mathematics., 8 (2020), 635. doi: 10.3390/math8040635
![]() |
1. | Ling Zhu, A Natural Approximation to the Complete Elliptic Integral of the First Kind, 2022, 10, 2227-7390, 1472, 10.3390/math10091472 | |
2. | Genhong Zhong, Xiaoyan Ma, Fei Wang, Approximations related to the complete p-elliptic integrals, 2022, 20, 2391-5455, 1046, 10.1515/math-2022-0493 | |
3. | Ling Zhu, A new upper bound for the complete elliptic integral of the first kind, 2023, 117, 1578-7303, 10.1007/s13398-023-01453-3 |