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Abstract: In this paper, we obtain a concise high-precision approximation for K(r):

2
π
K(r) >

22 (r′)2 + 84r′ + 22
7 (r′)3 + 57 (r′)2 + 57r′ + 7

,

which holds for all r ∈ (0, 1), whereK(r) is complete elliptic integral of the first kind and r′ =
√

1 − r2.
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1. Introduction

For r ∈ (0, 1), Legendre’s complete elliptic integrals of the first kind (see [1, 2]), denoted K(r), is
defined by

K(r) =

∫ π/2

0

dt√
1 − r2 sin2(t)

,

which is the particular case of the Gaussian hypergeometric function and can be a special power series
([3–9]):

K(r) =
π

2
F

(
1
2
,

1
2

; 1; r2
)

=
π

2

∞∑
n=0

(
1
2

)2

n

(n!)2 r2n

=
π

2

∞∑
n=0

[
(2n − 1)!!

(2n)!!

]2

r2n =:
π

2

∞∑
n=0

W2
n r2n. (1.1)

Many researchers have obtained the upper and lower bounds of this special function ([10–18]). Let’s
assume that r′ =

√
1 − r2. In this paper, we use the method similar to Padé approximation to obtain the
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following rational functions of the argument r′

F1,0(r′) =
3 − r′

2
,

F0,1(r′) =
2

r′ + 1
,

F1,1(r′) =
r′ + 7

5r′ + 3
,

F2,1(r′) =
−3 (r′)2 + 22r′ + 61

8 (7r′ + 3)
, (1.2)

F1,2(r′) =
8 (r′ + 1)

3 (r′)2 + 10r′ + 3
,

F2,2(r′) =
5 (r′)2 + 126r′ + 61

61 (r′)2 + 110r′ + 21
,

F3,2(r′) =
5579r′ + 495 (r′)2

− 35 (r′)3 + 1769

2
(
2050r′ + 1567 (r′)2 + 287

) ,

F2,3(r′) =
22 (r′)2 + 84r′ + 22

7 (r′)3 + 57 (r′)2 + 57r′ + 7

to approximate this special function K(r), and get the following series of results:

2
π
K(r) − F1,0(r′) = O(r4),

2
π
K(r) − F0,1(r′) = O(r4),

2
π
K(r) − F1,1(r′) = O(r6),

2
π
K(r) − F2,1(r′) = O(r8),

2
π
K(r) − F1,2(r′) = O(r8),

2
π
K(r) − F2,2(r′) = O(r10),

2
π
K(r) − F3,2(r′) = O(r12),

2
π
K(r) − F2,3(r′) = O(r12).

From the last formula above, it is not difficult to find that the bound F2,3(r′) is quite sharp. The
smaller r is, the smaller the error between 2K(r)/π and this bound F2,3(r′) is. The following is the
error analysis table of δ(r) = 2K(r)/π − F2,3(r′):

r 0.1 0.2 0.3 0.4 0.5 0.99
δ(r) 4. 680 × 10−18 2.118 × 10−14 3. 262 × 10−12 1. 327 × 10−10 2.747 × 10−9 1.969 × 10−2

which shows that F2,3(r′) has a high precision approximation to 2K(r)/π.
Since

F2,3(r′) − F3,2(r′) =
245
2

(1 − r′)6

(7r′ + 1) (r′ + 7) (r′ + 1)
(
2050r′ + 1567(r′)2 + 287

) > 0,
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F3,2(r′) − F2,2(r′) =
2135

2
(1 − r′)5(

110r′ + 61(r′)2 + 21
) (

2050r′ + 1567(r′)2 + 287
) > 0,

F2,2(r′) − F1,2(r′) = 15
(1 − r′)4

(3r′ + 1) (r′ + 3)
(
110r′ + 61(r′)2 + 21

) > 0,

F1,2(r′) − F2,1(r′) =
9
8

(1 − r′)4

(7r′ + 3) (r′ + 3) (3r′ + 1)
> 0,

F2,1(r′) − F1,1(r′) =
15
8

(1 − r′)3

(5r′ + 3) (7r′ + 3)
> 0,

F1,1(r′) − F0,1(r′) =
(1 − r′)2

(r′ + 1) (5r′ + 3)
> 0,

F0,1(r′) − F1,0(r′) =
1
2

(1 − r′)2

r′ + 1
> 0,

we have

F2,3(r′) > F3,2(r′) > F2,2(r′) > F1,2(r′) > F2,1(r′)
> F1,1(r′) > F0,1(r′) > F1,0(r′). (1.3)

We first show the following result:
Theorem 1.1. The inequality

2
π
K(r) >

22 (r′)2 + 84r′ + 22
7 (r′)3 + 57 (r′)2 + 57r′ + 7

= F2,3(r′) (1.4)

holds for all r ∈ (0, 1), where r′ =
√

1 − r2.
Then by (1.3) and the above theorem, we have

Theorem 1.2. Let Fi, j(r′) be defined as (1.2) . Then the following inequality chain

2
π
K(r) > F2,3(r′) > F3,2(r′)

> F2,2(r′) > F1,2(r′) > F2,1(r′) (1.5)
> F1,1(r′) > F0,1(r′) > F1,0(r′)

holds for all r ∈ (0, 1), where r′ =
√

1 − r2.

2. Lemmas

In order to prove our main results we need following lemmas.
Lemma 2.1.

H(n) =: Wn −
3
8

(2n − 1) (2n − 3) (2n − 5)
(
111n2 + 401n − 1600

)
n2 (

49n4 + 2010n3 − 13 763n2 + 28 212n − 17 804
) > 0 (2.1)

holds for all n ≥ 35.
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Proof. It is not difficult to verify that the inequality (2.1) holds when n = 35. If the inequality (2.1)
holds for n = m > 35, i.e

Wm >
3
8

(2m − 1) (2m − 3) (2m − 5)
(
111m2 + 401m − 1600

)
m2 (

49m4 + 2010m3 − 13 763m2 + 28 212m − 17 804
) .

So

Wm+1 =
(2m + 1)!!
(2m + 2)!!

=
2m + 1
2m + 2

Wm

>

(
2m + 1
2m + 2

)
3
8

(2m − 1) (2m − 3) (2m − 5)
(
111m2 + 401m − 1600

)
m2 (

49m4 + 2010m3 − 13 763m2 + 28 212m − 17 804
) .

In order to complete the proof of (2.1) it suffices to show that

(
2m + 1
2m + 2

)
3
8

(2m − 1) (2m − 3) (2m − 5)
(
111m2 + 401m − 1600

)
m2 (

49m4 + 2010m3 − 13 763m2 + 28 212m − 17 804
)

>
3
8

(2 (m + 1) − 1) (2 (m + 1) − 3) (2 (m + 1) − 5)
(
111 (m + 1)2 + 401 (m + 1) − 1600

)
(m + 1)2

[
49 (m + 1)4 + 2010 (m + 1)3

− 13 763 (m + 1)2 + 28 212 (m + 1) − 17 804
]

=
3
8

(2m − 1) (2m + 1) (2m − 3)
(
623m + 111m2 − 1088

)
(m + 1)2 (

6912m − 7439m2 + 2206m3 + 49m4 − 1296
) ,

which is

A
B

=:
(2m − 5)

(
111m2 + 401m − 1600

)
(2m + 2) m2 (

49m4 + 2010m3 − 13 763m2 + 28 212m − 17 804
)

>

(
623m + 111m2 − 1088

)
(m + 1)2 (

6912m − 7439m2 + 2206m3 + 49m4 − 1296
) =:

C
D
.

In fact,

AD − BC = 5439m7 − 202 236m6 + 2504 574m5 − 14 753 604m4 + 45 551 571m3

−72 508 896m2 + 51 673 680m − 10 368 000
= 9308 275 200 + 137 097 875 040 (m − 20) + 47 752 255 764 (m − 20)2

+6984 199 251 (m − 20)3 + 545 207 796 (m − 20)4 + 23 923 854 (m − 20)5

+559 224 (m − 20)6 + 5439 (m − 20)7

> 0.

�

Lemma 2.1.([17, 18]) Let {ak}
∞
k=0 be a nonnegative real sequence with am > 0 and

∑∞
k=m+1 ak > 0, and

S (t) = −

m∑
k=0

aktk +

∞∑
k=m+1

aktk
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be a convergent power series on the interval (0, r) (r > 0). Then the following statements are true:
(1) If S (r−) ≤ 0, then S (t) < 0 for all t ∈ (0, r);
(2) If S (r−) > 0, then there exists t0 ∈ (0, r) such that S (t) < 0 for t ∈ (0, t0) and S (t) > 0 for

t ∈ (t0, r).

3. Proof of Theorem 1.1

Let

f (r) =
[
49

(
r′
)6
− 2451

(
r′
)4

+ 2451
(
r′
)2
− 49

] 2
π
K(r)

−
[
154

(
r′
)5
− 666

(
r′
)4
− 3380

(
r′
)3

+ 3380
(
r′
)2

+ 666
(
r′
)
− 154

]
.

Then

f (r) =
[
49

(
r′
)6
− 2451

(
r′
)4

+ 2451
(
r′
)2
− 49

] 2
π
K(r)

−

[
666
√

1 − r2 − 3380
(
1 − r2

) 3
2

+ 154
(
1 − r2

) 5
2
− 2048r2 − 666r4 + 2560

]
=

(
−49r6 − 2304r4 + 2304r2

) ∞∑
n=0

W2
n r2n − 666

∞∑
n=7

(
−1

2

)
n

n!
r2n + 3380

∞∑
n=7

(
−3

2

)
n

n!
r2n

−154
∞∑

n=7

(
−5

2

)
n

n!
r2n + 2048r2 + 666r4 − 2560

= −49
∞∑

n=4

W2
n r2n+6 − 2304

∞∑
n=5

W2
n r2n+4 + 2304

∞∑
n=6

W2
n r2n+2

−666
∞∑

n=7

(
−1

2

)
n

n!
r2n + 3380

∞∑
n=7

(
−3

2

)
n

n!
r2n − 154

∞∑
n=7

(
−5

2

)
n

n!
r2n

= −49
∞∑

n=7

W2
n−3r2n − 2304

∞∑
n=7

W2
n−2r2n + 2304

∞∑
n=7

W2
n−1r2n

−666
∞∑

n=7

(
−1

2

)
n

n!
r2n + 3380

∞∑
n=7

(
−3

2

)
n

n!
r2n − 154

∞∑
n=7

(
−5

2

)
n

n!
r2n

= −49
∞∑

n=7

W2
n−3r2n − 2304

∞∑
n=7

W2
n−2r2n + 2304

∞∑
n=7

W2
n−1r2n

+3380
(
−

3
2

) (
−

1
2

) ∞∑
n=7

(
1
2

)
n−2

n!
r2n − 666

(
−

1
2

) ∞∑
n=7

(
1
2

)
n−1

n!
r2n

−154
(
−

5
2

) (
−

3
2

) (
−

1
2

) ∞∑
n=7

(
1
2

)
n−3

n!
r2n
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= −49
∞∑

n=7

W2
n−3r2n − 2304

∞∑
n=7

W2
n−2r2n + 2304

∞∑
n=7

W2
n−1r2n + 2535

∞∑
n=7

(
1
2

)
n−2

n!
r2n

+333
∞∑

n=7

(
1
2

)
n−1

n!
r2n +

1155
4

∞∑
n=7

(
1
2

)
n−3

n!
r2n

=:
∞∑

n=7

cnr2n,

where

cn = −49W2
n−3 − 2304W2

n−2 + 2304W2
n−1 + 2535

(
1
2

)
n−2

n!
+ 333

(
1
2

)
n−1

n!
+

1155
4

(
1
2

)
n−3

n!
.

By

Wn−1 =
2n

2n − 1
Wn and

(
1
2

)
n

=

(
1
2

)
n−1

(
1
2

+ (n − 1)
)

we have

cn = −49
(
2n − 4
2n − 5

2n − 2
2n − 3

2n
2n − 1

Wn

)2

− 2304
(
2n − 2
2n − 3

2n
2n − 1

Wn

)2

+ 2304
(

2n
2n − 1

Wn

)2

+
333(

1
2 + (n − 1)

)
(

1
2

)
n

n!
+

2535(
1
2 + (n − 1)

) (
1
2 + (n − 2)

)
+

1155

4
(

1
2 + (n − 1)

) (
1
2 + (n − 2)

) (
1
2 + (n − 3)

)
(

1
2

)
n

n!

= −64n2 28 212n − 13 763n2 + 2010n3 + 49n4 − 17 804
(2n − 3)2 (2n − 5)2 (2n − 1)2 W2

n + 24
401n + 111n2 − 1600

(2n − 3) (2n − 5) (2n − 1)
Wn

= −64n2 28 212n − 13 763n2 + 2010n3 + 49n4 − 17 804
(2n − 3)2 (2n − 5)2 (2n − 1)2 WnH(n).

It’s not difficult to verify that cn > 0 for n = 7, 8, · · · , 34, and according to Lemma 2.1, cn < 0 for all
n ≥ 35.

So those coefficients in power series of − f (r) satisfy the conditions of Lemma 2.2, and − f (1−) = ∞.
From Lemma 2.2, it follows that there is a unique r∗ ∈ (0, 1) such that − f (r) < 0 for r ∈ (0, r∗) and
− f (r) > 0 for r ∈ (r∗, 1), that is, f (r) > 0 for r ∈ (0, r∗) and f (r) < 0 for r ∈ (r∗, 1), and r∗ is the unique
zero of f (r) on (0, 1). At the same time, since

f (r) =
[
7
(
r′
)3
− 57

(
r′
)2

+ 57
(
r′
)
− 7

]
×{[

7
(
r′
)3

+ 57
(
r′
)2

+ 57
(
r′
)

+ 7
] 2
π
K(r) −

[
22

(
r′
)2

+ 84
(
r′
)

+ 22
]}
,

and the function

g(r) =: 7
(
r′
)3
− 57

(
r′
)2

+ 57
(
r′
)
− 7
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=
49 (r′)6

− 2451 (r′)4 + 2451 (r′)2
− 49

7 (r′)3 + 57 (r′)2 + 57 (r′) + 7

=
−49r6 − 2304r4 + 2304r2

7 (r′)3 + 57 (r′)2 + 57 (r′) + 7

=
−49r2

(
r − 4

√
3/7

) (
r + 4

√
3/7

) (
r2 + 48

)
7 (r′)3 + 57 (r′)2 + 57 (r′) + 7

has a unique zero 4
√

3/7 on (0, 1), which leads to r∗ = 4
√

3/7. Clearly, g(r) > 0 for r ∈ (0, r∗) and
g(r) < 0 for r ∈ (r∗, 1). That is to say, the two functions f (r) and g(r) have the same sign on both sides
of the point r∗, so we have

2
π
K(r) −

22 (r′)2 + 84 (r′) + 22
7 (r′)3 + 57 (r′)2 + 57 (r′) + 7

=
f (r)

g(r)
[
7 (r′)3 + 57 (r′)2 + 57 (r′) + 7

] > 0

holds for all r ∈ (0, 1) with r , r∗. But the continuity at r = r∗ of the functionsK(r) and F2,3(r) ensures
that the inequality (1.4) also holds for r = r∗.

The proof of Theorem 1.1 is complete.

4. Remark

Recently, Z. H. Yang, J. F. Tian and Y. R. Zhu [18] presented a new sharp lower bound for the
complete elliptic integral of the first kind as follows:

2
π
K(r) >

5 (r′)2 + 126r′ + 61
61 (r′)2 + 110r′ + 21

= F2,2(r′), (4.1)

where r ∈ (0, 1) and r′ =
√

1 − r2. It is not difficult to find that the above conclusion is a direct corollary
of Theorem 1.2.

5. Conclusions

This paper obtains a new lower bound for 2K(r)/π:

2
π
K(r) >

22 (r′)2 + 84r′ + 22
7 (r′)3 + 57 (r′)2 + 57r′ + 7

.

This lower bound approximates 2K(r)/π with high accuracy.
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