AIMS Mathematics, 6(10): 10881-10889.
ATIMS Mathematics DOI: 10.3934/math.2021632
%5 Received: 13 June 2021

o Accepted: 19 July 2021
http://www.aimspress.com/journal/Math Published: 28 July 2021

Research article

Concise high precision approximation for the complete elliptic integral of
the first kind

Ling Zhu*
Department of Mathematics, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
* Correspondence: Email: zhuling0571@163.com; Tel: +8657188802322; Fax: +8657188802322.

Abstract: In this paper, we obtain a concise high-precision approximation for K (r):
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which holds for all r € (0, 1), where K (r) is complete elliptic integral of the first kind and ¥ = V1 — r2.
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1. Introduction

For r € (0, 1), Legendre’s complete elliptic integrals of the first kind (see [1,2]), denoted K(r), is
defined by

X0 f”ﬂ dt
SO » V1= P2 si’()

which is the particular case of the Gaussian hypergeometric function and can be a special power series

([3-9D:

11 = (1)
K@) = gF(— —;1;r2):gz 2ﬂr2n

22 £ (n1)?
T [@2n-DN s — "
- EZ[ Qn)!! ] = EZ(; War. (D

Many researchers have obtained the upper and lower bounds of this special function ([10-18]). Let’s
assume that ¥’ = V1 — 2. In this paper, we use the method similar to Padé approximation to obtain the
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following rational functions of the argument r

/

3-7
Fro) = ——,
) 2
%,l(r ) - r, + 1,
, r+7
Fra(r) = m,
o =3 4220 461
Falr) = 877 +3)
8(r +1
Fial) = —o D
3(r) + 101 +3
, 5(r)* +126r +61
Foalr) = 20 ,
61 (r')* + 110 + 21
) 5579¢ + 495 (')* = 35 (')’ + 1769
Fa20r") = >
220507 + 1567 () + 287)
) 22(r') + 84r +22
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to approximate this special function K (r), and get the following series of results:

2
—K(r) = Fr0(r)
n
2
—K(r) = F1.1(r)
T
2
—K(r) = Fa1(r')
n
2
—K(r) = Fao(r)
T

2
=K (r) — F32(r")
n

owh),

o),

o),

o',

2

;W(r) — Foa(r') = O™,
2 ’ 8
K@) = F120) = 00,

Owﬁiwm—%xﬂ=owﬁ

(1.2)

From the last formula above, it is not difficult to find that the bound %5 3(r") is quite sharp. The
smaller r is, the smaller the error between 2K (r)/m and this bound ¥, 3(r’) is. The following is the
error analysis table of 6(r) = 2K (r)/m — Fo53(r'):

r

0.1

0.2

0.3

0.4

0.5

0.99

o(r)

4.680 x 10718

2.118 x 1071

3.262 x 10712

1.327 x 10710

2.747 x 107

1.969 x 1072

which shows that %, 3(r") has a high precision approximation to 2K (r)/x.

Since

72,3(”’) - 7'3,2(”’) =
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F32(r") = Fop(r) =
Foo(r') = Fia(r') =
Fro(r') = Foa(r') =
Foa(r') = Fia(r") =
Fra(r') = Foa(r) =

Foa(r') = Fro(r) =

we have

2135 (1-r)
> 0,
2 (1107 + 61(r")% + 21) (20507 + 1567(r") + 287)
(1-ry
15 >0,
Gr+1)(r +3)(110r + 61(r)* + 21)
9 (1-r)
— > 0,
8(7Tr +3)(r +3)(3r + 1)
15  (-ry
— > 0,
8 (5r +3)(7r +3)
2
1-7) >0,
™+ 1D)Br+3)
1(1-r)
2+ 1 >0,

Foa(r') > Fap(r') > Foo(r') > Fio(r') > Fou(r')

> F1.(") > Foa(r') > Fio(r).

We first show the following result:

Theorem 1.1. The inequality

%W(r) >
n

22(r')* + 84r +22
T + 57 +57r +7

= F2,3(r')

holds for all € (0, 1), where ¥’ = VI — 2.

Then by (1.3) and the above theorem, we have
Theorem 1.2. Let F; ;(r’) be defined as (1.2) . Then the following inequality chain

2
;‘K(r) > Fos(r') > F32(r)

> Foo(r') > Fr2(r") > Fou(r)
> F1.(") > Fou(r') > Fro()

holds for all r € (0, 1), where ¥’ = V1 — r2.

2. Lemmas

In order to prove our main results we need following lemmas.

Lemma 2.1.

H(n) =W,

holds for all n > 35.
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2n-1)2n-3)(2n-5) (llln2 +401n - 1600)

812 (49n* + 201013 — 13763n2 + 28 212n — 17 804)

>0

(1.3)

(1.4)

(1.5)

2.1)
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Proof. 1t is not difficult to verify that the inequality (2.1) holds when n = 35. If the inequality (2.1)
holds for n = m > 35, i.e

3 (2m—1)Q2m - 3)@2m - 5) (111m* + 401m — 1600)
8 m? (49m* + 2010m® — 13763m> + 28 212m — 17 804)"

m

So

Q2m + ! _ 2m + IW

Cm+2)!! 2m+2 "

Ym+1\3 Cm—1)2m—-3)(2m - 5)(111m2 +401m — 1600)
(Zm + 2) 8 m2 (49m* + 2010m>® — 13763m? + 28 212m — 17 804)

Woet =

In order to complete the proof of (2.1) it suffices to show that

(2m N 1) 3 @m—1)@2m-3)(@2m - 5)(111m? + 401m - 1600)

2m + 2] 8 m2 (49m* + 2010m> — 13763m2 + 28 212m — 17 804)

3 Qm+1) = D) Q2@m+1)=3)2@m+1)=5)(111(n+ 1)* + 401 (m + 1) = 1600)
8 (m+ 1) [49 (m+ 1" +2010(m + 1) = 13763 (m + 1)* +28212(m + 1) — 17 804]
3 (@m—1)@2m+1)(@2m - 3)(623m + 111m> - 1088)

8 (m + 1)>(6912m — 7439m? + 2206m> + 49m* — 1296)

which is
A (2m - 5) (111m? + 401m - 1600)
B Q2m+2)m?(49m* + 2010m3 — 13 763m? + 28 212m — 17 804)
(623m + 111m* - 1088) C
(m + 1) (6912m — 7439m2 + 2206m3 + 49m* — 1296) D’
In fact,
AD — BC = 5439m’ —202236m° + 2504 574m> — 14753 604m™ + 45551 571m’
—72508 896m* + 51 673 680m — 10368 000
= 9308275200 + 137097 875040 (m — 20) + 47 752255 764 (m — 20)*
+6984 199 251 (m — 20)° + 545207 796 (m — 20)* + 23923 854 (m — 20)°
+559 224 (m — 20)° + 5439 (m — 20)’
> 0.

O

Lemma 2.1.([17, 18]) Let {a;};7 , be a nonnegative real sequence with a,, > 0 and 3 ;2 | a; > 0, and

m 0

S(t) = —Zasz‘ + Z att

k=0 k=m+1
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be a convergent power series on the interval (0, r) (r > 0). Then the following statements are true:
(HIfES(r ) <0,then S(r) < Oforall e (0,r);
2) If S(r7) > 0, then there exists 7y € (0, r) such that S(r) < 0 for ¢t € (0,7) and S(¢) > O for
t € (ty, 7).

3. Proof of Theorem 1.1

Let
f) = [49(r)° - 2451 ()" + 2451 () - 49 %7((;»)
—|154 ()’ - 666 (')" - 3380 (')’ + 3380 ()" + 666 (') — 154].
Then
£ = [49(7)° - 2451 ()" + 2451 (')’ - 49] 2k

[666\/1—r2 3380 (1 - )%+154( ) 2048r—666r+2560]

1 3
(—49r° - 2304r* + 23047°) sz 2 6662( 2, P 33802( 2, P2

n=0 I’L'
) _§
—154 Z ) n20 420487 + 6661 — 2560
n=7

_492 WZ 2n+6 23042 Wz 2n+4 +2304Z Wz 2n+2
n=5 n=6

_3
2

—6662 ), 2"+3380Z = 2"—1542 n‘" P2

= —49 i W22 — 2304 Z 2 42304 Z

n=7

—6662 ), P+ 33802 ), P 1542 n'" 2
= —492 W2 r 23042 2r2”+23()4z
n=T7

+3380(—%)(—%)Z ({Z' =22 666(—%); (%’zf;—lrzn
e D S
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0 ) ) o (1L
= =49 3 W2 2304 3T W2, + 2304 > W2 42535 ) (23';—2 P2
n=1 n=1 n=7 n=7 '
1

+333i (%)n—lr2n+ 1155 (f)n—3r2n

= n! 4 = n!
=: Zc,f”,
n=7

where
1 1 1
2 2 1155\>

€y = —49W2 , — 2304W2 , +2304W2 | + 2535(2)—”—2 + 33»3(2)”—1 + (2)"‘3.
n! n! 4 n!
By
2n 1 1 1
Wn— = Wn d |- = - — -1
= (3) =(3) (3 o)
we have

n-42n-2 2 2 -2 2 2 2 2
¢ = —49( oo & W) —2304( & & W) +2304(2 ”1Wn)
n

2n-52n-32n-1" 2n-32n-1" -
333 (3), 2535
+ 1 | + 1 1
(f+@-n)n (t+@-D)(i+@n-2)
1155 (3),
+
A+ m=-D)i+m-2) (i +@n-3) "
_ —64n228 212n - 13 763;12 + 201()2113 + 49n42— 17 804W3 .\ 4015 + 111n2% = 1600 -
2n-3202n-5722n-1) 2n-3)2n-52n-1)
282121 — 1376312 + 20101 + 491 — 17 804
— 64 " . - i W,H(n).
2n-3202n-572n-1)
It’s not difficult to verify that ¢, > 0 forn = 7,8, - - , 34, and according to Lemma 2.1, ¢, < 0 for all

n > 35.

So those coefficients in power series of — f(r) satisfy the conditions of Lemma 2.2, and —f(17) = oo.
From Lemma 2.2, it follows that there is a unique r* € (0, 1) such that —f(r) < O for r € (0, r") and
—f(r) > 0forre (r,1),thatis, f(r)> 0forr e (0,r")and f(r) < 0 forr e (r*, 1), and r* is the unique
zero of f(r) on (0, 1). At the same time, since

fo) = |70 =577 +57() - 7| X
{[7 () + 570" +57() +7] %W(r) — 2207 +84(r) + 22]},
and the function
gr) = 1Y =57()V+57() -1
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49 (r')° = 2451 ()" + 2451 (')’ — 49
TE +57(7)? +57() +7
—497° — 2304r* + 230472
T +57()? +57() + 7
—4972 (r — 4V3/7) (r + 4V3/7) (r* + 48)
T +57()Y +57(r) + 7
has a unique zero 4 V3 /7 on (0, 1), which leads to r* = 4 V3 /7. Clearly, g(r) > 0 for r € (0,r") and

g(r) < Ofor r € (r*, 1). That is to say, the two functions f(r) and g(r) have the same sign on both sides
of the point r*, so we have

2 22 (r’)2 + 84 (r') +22

—K(r) - 3 >

Vg Ty +57() +57()+7
_ £0) o

g |76 +57 () +57 () + 7]

holds for all » € (0, 1) with r # r*. But the continuity at » = r* of the functions K(r) and %, 3(r) ensures
that the inequality (1.4) also holds for r = r*.
The proof of Theorem 1.1 is complete.

4. Remark

Recently, Z. H. Yang, J. F. Tian and Y. R. Zhu [18] presented a new sharp lower bound for the
complete elliptic integral of the first kind as follows:
2 5() + 126 + 61
Zx(ry > 2 T
n 61 ()" + 110r + 21

= Fa0(r'), (4.1)

where r € (0, 1) and ¥ = V1 — r2. Itis not difficult to find that the above conclusion is a direct corollary
of Theorem 1.2.

5. Conclusions

This paper obtains a new lower bound for 2K (r)/x:
22(r')° + 841 +22
T +5T(Y +577 +7

This lower bound approximates 2% (r)/x with high accuracy.

%7((1”) >
bis
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