
In this paper, our main purpose is to study the soliton solutions of conformable time-fractional perturbed Radhakrishnan-Kundu-Lakshmanan equation. New soliton solutions have been obtained by the extended (G′/G)-expansion method, first integral method and complete discrimination system for the polynomial method, respectively. The solutions we obtained mainly include hyperbolic function solutions, solitary wave solutions, Jacobi elliptic function solutions, trigonometric function solutions and rational function solutions. Moreover, we draw its three-dimensional graph.
Citation: Chun Huang, Zhao Li. Soliton solutions of conformable time-fractional perturbed Radhakrishnan-Kundu-Lakshmanan equation[J]. AIMS Mathematics, 2022, 7(8): 14460-14473. doi: 10.3934/math.2022797
[1] | Kun Zhang, Xiaoya He, Zhao Li . Bifurcation analysis and classification of all single traveling wave solution in fiber Bragg gratings with Radhakrishnan-Kundu-Lakshmanan equation. AIMS Mathematics, 2022, 7(9): 16733-16740. doi: 10.3934/math.2022918 |
[2] | Emad H. M. Zahran, Omar Abu Arqub, Ahmet Bekir, Marwan Abukhaled . New diverse types of soliton solutions to the Radhakrishnan-Kundu-Lakshmanan equation. AIMS Mathematics, 2023, 8(4): 8985-9008. doi: 10.3934/math.2023450 |
[3] | Abdulah A. Alghamdi . Analytical discovery of dark soliton lattices in (2+1)-dimensional generalized fractional Kundu-Mukherjee-Naskar equation. AIMS Mathematics, 2024, 9(8): 23100-23127. doi: 10.3934/math.20241123 |
[4] | Emad H. M. Zahran, Ahmet Bekir, Reda A. Ibrahim, Ratbay Myrzakulov . The new soliton solution types to the Myrzakulov-Lakshmanan-XXXII-equation. AIMS Mathematics, 2024, 9(3): 6145-6160. doi: 10.3934/math.2024300 |
[5] | M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199 |
[6] | M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam . Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411. doi: 10.3934/math.2019.3.397 |
[7] | M. TarikulIslam, M. AliAkbar, M. Abul Kalam Azad . Traveling wave solutions in closed form for some nonlinear fractional evolution equations related to conformable fractional derivative. AIMS Mathematics, 2018, 3(4): 625-646. doi: 10.3934/Math.2018.4.625 |
[8] | S. Owyed, M. A. Abdou, A. Abdel-Aty, H. Dutta . Optical solitons solutions for perturbed time fractional nonlinear Schrodinger equation via two strategic algorithms. AIMS Mathematics, 2020, 5(3): 2057-2070. doi: 10.3934/math.2020136 |
[9] | Mahmoud Soliman, Hamdy M. Ahmed, Niveen Badra, Taher A. Nofal, Islam Samir . Highly dispersive gap solitons for conformable fractional model in optical fibers with dispersive reflectivity solutions using the modified extended direct algebraic method. AIMS Mathematics, 2024, 9(9): 25205-25222. doi: 10.3934/math.20241229 |
[10] | Xiaoli Wang, Lizhen Wang . Traveling wave solutions of conformable time fractional Burgers type equations. AIMS Mathematics, 2021, 6(7): 7266-7284. doi: 10.3934/math.2021426 |
In this paper, our main purpose is to study the soliton solutions of conformable time-fractional perturbed Radhakrishnan-Kundu-Lakshmanan equation. New soliton solutions have been obtained by the extended (G′/G)-expansion method, first integral method and complete discrimination system for the polynomial method, respectively. The solutions we obtained mainly include hyperbolic function solutions, solitary wave solutions, Jacobi elliptic function solutions, trigonometric function solutions and rational function solutions. Moreover, we draw its three-dimensional graph.
Due to the wide application in the fields of physics, communication and engineering, the study of soliton solutions of the Radhakrishnan-Kundu-Lakshmanan (RKL) equation has attracted much attention[1,2,3,4,5,6,7]. Especially in nonlinear optical fibers, the RKL equation usually describes the propagation of optical pulses, which is represented by the higher-order nonlinear Schrödinger equation. In recent years, many powerful mathematical methods have been proposed to derive soliton solutions [8,9,10,11,12,13,14,15,16,17,18,19,20,21] for the RKL equation, such as the first integral method[22], the generalized exponential rational function method [23], the Laplace-Adomian decomposition method [24], the dynamical system method[25], the Painlevé analysis[26], the auxiliary equation method and extended simple equation method[27], the modified simple equation and exp(−φ(q)) method [28].
In the paper, we consider the fractional perturbed Radhakrishnan-Kundu-Lakshmanan (FPRKL) equation[29,30,31,32]:
iDαtϕ+aϕxx+b|ϕ|2ϕ−iδϕx−iλ(|ϕ|2ϕ)x−iσ(|ϕ|2)xϕ−iγϕxxx=0, 0<α≤1, | (1.1) |
where ϕ is the complex-valued wave function.
Definition 1.1. Let ψ:[0,∞)→R. Then, the conformable fractional derivative of ψ of order α is defined as
Dαtψ(t)=limε→0ψ(t+εt1−α )−ψ(t)ε, | (1.2) |
for all t>0 and α∈(0,1]. Further, some properties of conformable fractional derivative is given
(i) Dαt(tδ)=μtδ−α, ∀δ∈R.
(ii) Dαt(ψ(t)+φ(t))=Dαtψ(t)+Dαtφ(t).
(iii) Dαt(ψ∘φ)(t)=t1−αφ(t)α−1φ′(t)Dαt(ψ(t))|t=φ(t).
This article is arranged as follows. In Section 2, we employ three different methods to solve the FPRKL equation. In Section 3, we draw three-dimensional graph of Eq (1.1). In Section 4, we give a brief conclusion.
Making the complex transformation
ϕ(x,t)=u(ξ)eiτ, ξ=μ(x−νtαα), τ=−kx+ϖtαα+θ. | (2.1) |
Substituting Eq (2.1) into Eq (1.1), separating into real and imaginary parts yields
μ2(a−3kγ)u″+(b−kλ)u3−(ϖ+ak2+δk−γk3)u=0, | (2.2) |
μ2γu‴+(ν+2ak+δ−3k2γ)u′+(3λ+2σ)u2u′=0. | (2.3) |
Integrating Eq (2.3) once, we have
3μ2γu″+3(ν+2ak+δ−3k2γ)u+(3λ+2σ)u3=0. | (2.4) |
Since the function U satisfies both Eq (2.3) and Eq (2.4), the following constraint condition is obtained
a+3kγ3−γ=ϖ+ak2+δk−γk3ν+2ak+δ+3k2−γ=−b−kλ3λ+2σ. | (2.5) |
So, k and c in Eq (2.5) can be obtained
k=−3b−γ+2aσ+3aλ6−γ(λ+σ), ν=−γ(ϖ+ak2+δk−γk3)a+3k−γ−(2ak+δ+3−γk2). | (2.6) |
Balancing u3 and u″ in Eq (2.4), we have N=1. So, the solution form of Eq (2.4) is
u(ξ)=a1(G′G)+a0+a−1(G′G)−1. | (2.7) |
Here G=G(ξ) satisfies the following nonlinear ordinary differential equation
GG″=A(G′)2+BGG′+CG2, | (2.8) |
where A, B, C are real parameters, Eq (2.8) satisfies the following equation
G′(ξ)G(ξ)={B2(1−A)+√Δ12(1−A)C1sinh√Δ12ξ+C2cosh√Δ12ξC1cosh√Δ12ξ+C2sinh√Δ12ξ,when Δ1=B2−4(A−1)C>0,A≠1,β2(1−A)+√Δ22(1−A)−C1sin√Δ22ξ+C2cos√Δ22ξC1cos√Δ22ξ+C2sin√Δ22ξ,when Δ2=4(A−1)C−B2>0,A≠1,11−A(C1C1ξ+C2+B2),when 4(A−1)C−B2=0,A≠1. | (2.9) |
Then we can obtain a nonlinear algebraic equations.
(G′G)3: 6μ2−γ(A−1)2a1−(3λ+2σ)a31=0.
(G′G)2: 9μ2−γB(A−1)2a1−3(3λ+2σ)a21a0=0.
(G′G)1: 3μ2−γ[2C(A−1)+B2]a1−3(ν+2ak+δ+3k2−γ)a1−3(3λ+2σ)(a20a1+a21a−1)=0.
(G′G)0: 3μ2−γ[BCa1+B(A−1)a−1]−3(ν+2ak+δ+3k2−γ)a0−(3λ+2σ)(6a20a1a−1+a30)=0.
(G′G)−1: 3μ2−γ[2C(A−1)+B2]a−1−3(ν+2ak+δ+3k2−γ)a−1−3(3λ+2σ)(a20a−1+a2−1a1)=0.
(G′G)−2: 9μ2−γB(A−1)a−1−3(3λ+2σ)a2−1a0=0.
(G′G)−3: 6μ2−γC2a−1−(3λ+2σ)a3−1=0.
Next, we get the following the results:
Case 1.1. a1=±√6μ2−γ(A−1)23λ+2σ, a0=±√μ2−γ[B2+2C(A−1)]−(ν+2ak+δ+3k2−γ)3λ+2σ, a−1=0,
γ=−μ2−γ[B2+2C(A−1)]+2(ν+2ak+δ+3k2−γ)6μ2(A−1)C.
Case 1.2. a1=0, a0=±√μ2−γ[B2+2C(A−1)]−(ν+2ak+δ+3k2−γ)3λ+2σ, a−1=±√6μ2−γC23λ+2σ,
γ=−μ2−γ[B2+2C(A−1)]+2(ν+2ak+δ+3k2−γ)6μ2(A−1)C.
Family 1. When A≠1, Δ1=B2+4C−4AC>0, we obtain
ϕ1(x,t)={±√μ2−γ[B2+2C(A−1)]−(ν+2ak+δ+3k2−γ)3λ+2σ±√3μ2−γB22(3λ+2σ)±√3μ2−γ(B2+4C−4AC)2(3λ+2σ)(C1sinh√B2+4C−4AC2ξ+C2cosh√B2+4C−4AC2ξC1cosh√B2+4C−4AC2ξ+C2sinh√B2+4C−4AC2ξ)}ei(−kx+ϖtαα+θ). | (2.10) |
ϕ2(x,t)={±√μ2−γ[B2+2C(A−1)]−(ν+2ak+δ+3k2−γ)3λ+2σ±√6μ2−γC23λ+2σ[√B2+4C−4AC2(1−A)(C1sinh√B2+4C−4AC2ξ+C2cosh√B2+4C−4AC2ξC1cosh√B2+4C−4AC2ξ+C2sinh√B2+4C−4AC2ξ)+B2(1−A)]−1}ei(−kx+ϖtαα+θ), | (2.11) |
where C1 and C2 are arbitrary constants.
Especially, if C1≠0, and C2=0 in Eq (2.7), we have
ϕ11(x,t)={±√μ2−γ[B2+2C(A−1)]−(ν+2ak+δ+3k2−γ)3λ+2σ±√3μ2−γB23λ+2σ±√3μ2−γC2(B2+4C−4AC)2(3λ+2σ)tanh√B2+4C−4AC2ξ}ei(−kx+ϖtαα+θ). | (2.12) |
ϕ12(x,t)={±√μ2−γ[B2+2C(A−1)]−(ν+2ak+δ+3k2−γ)3λ+2σ±√3μ2−γB23λ+2σ±√3μ2−γC2(B2+4C−4AC)2(3λ+2σ)coth√B2+4C−4AC2ξ}ei(−kx+ϖtαα+θ). | (2.13) |
ϕ21(x,t)={±√μ2−γ[B2+2C(A−1)]−(ν+2ak+δ+3k2−γ)3λ+2σ±√6μ2−γC23λ+2σ[√B2+4C−4AC2(1−A)tanh√B2+4C−4AC2ξ+B2(1−A)]−1}ei(−kx+ϖtαα+θ). | (2.14) |
ϕ22(x,t)={±√μ2−γ[B2+2C(A−1)]−(ν+2ak+δ+3k2−γ)3λ+2σ±√6μ2−γC23λ+2σ[√B2+4C−4AC2(1−A)coth√B2+4C−4AC2ξ+B2(1−A)]−1}ei(−kx+ϖtαα+θ). | (2.15) |
Family 2. When A≠1, and Δ2=B2+4C−4AC<0, we obtain
ϕ3(x,t)={±√μ2−γ[B2+2C(A−1)]−(ν+2ak+δ+3k2−γ)3λ+2σ±√3μ2−γB22(3λ+2σ)±√3μ2−γ(4AC−B2−4C)2(3λ+2σ)(−C1sin√4AC−B2−4C2ξ+C2cos√4AC−B2−4C2ξC1cos√4AC−B2−4C2ξ+C2sin√4AC−B2−4C2ξ)}ei(−kx+ϖtαα+θ). | (2.16) |
ϕ4(x,t)={±√μ2−γ[B2+2C(A−1)]−(ν+2ak+δ+3k2−γ)3λ+2σ±√6μ2−γC23λ+2σ[√B2+4C−4AC2(1−A)(−C1sin√4AC−B2−4C2ξ+C2cos√4AC−B2−4C2ξC1cos√4AC−B2−4C2ξ+C2sin√4AC−B2−4C2ξ)+B2(1−A)]−1}ei(−kx+ϖtαα+θ). | (2.17) |
Family 3. When A≠1, and B2+4C−4AC=0, we obtain the rational function solution of Eq (1.1) as
ϕ5(t,x,y)={±√μ2−γ[B2+2C(A−1)]−(ν+2ak+δ+3k2−γ)3λ+2σ±√6μ2−γ3λ+2σ(C1C1ξ+C2+B2)}ei(−kx+ϖtαα+θ). | (2.18) |
ϕ6(t,x,y)={±√μ2−γ[B2+2C(A−1)]−(ν+2ak+δ+3k2−γ)3λ+2σ±√6μ2−γC2(1−A)23λ+2σ(C1C1ξ+C2+B2)−1}ei(−kx+ϖtαα+θ). | (2.19) |
Now, Eq (2.4) is equivalent to the following of two dimensional system
{Xξ(ξ)=Y(ξ),Yξ(ξ)=ν+3ak+δ+3k2−γμ2−γX(ξ)+3λ+2σ3μ2−γX(ξ)3, | (2.20) |
where Q(X,Y)=∑mi=0ai(X)Yi,
P(X(ξ),Y(ξ))=m∑i=0ai(X)Yi=0, | (2.21) |
Then, based on the division theorem, there exists a polynomial g(X)+h(X)Y in C[X,Y] such that
dQdξ=∂Q∂XdXdξ+∂Q∂YdYdξ=[g(X)+h(X)Y(ξ)]m∑i=0ai(X)Yi(ξ). | (2.22) |
Case 2.1. If m=1.
Substituting Eq (2.21) into Eq (2.22) and calculating the coefficients of Yi(ξ)=(i=0,1,2) both sides of Eq (2.22), we have
g(X)a0(X)=a1(X)[−(ν+3ak+δ−3k2γ)μ2γX(ξ)−(3λ+2σ)3μ2γX(ξ)3]. | (2.23) |
da0(X)dX=g(X)a1(X)+h(X)a0(X). | (2.24) |
da1(X)dX=h(X)a1(X). | (2.25) |
Since ai(X)(i=0,1) are polynomials, then we obtain when deg(g(X))=1
g(X)=A1(X)+B0. | (2.26) |
a0(X)=12A1(X)2+B0(X)+A0. | (2.27) |
Substitutinga0(X),a1(X),g(X) into Eq (2.23) and setting all the coefficients of powers X to be zero, then, we obtain
A1=±√−2(3λ+2σ)3μ2γ,B0=0,A0=±ν+3ak+δ−3k2γ√−23(3λ+2σ)μ2γ. | (2.28) |
Using the conditions Eq (2.28) in Eq (2.21), we obtain
X′(ξ)=±ν+3ak+δ−3k2γ√−23(3λ+2σ)μ2γ∓√−(3λ+2σ)6μ2γX2(ξ). | (2.29) |
Combining Eq (2.29) with Eq (2.20), we obtain the exact solution for FPRKL equation which can be written as
Type 1. If c+3ak+δ−3k2γγ<0,(3λ+2σ)γ<0, we get
ϕ7(x,t)=±√ν+3ak+δ−3k2γ3λ+2σtanh(√−ν+3ak+δ−3k2γ2μ2γξ−εlnξ02)ei(−kx+ϖtαα+θ),if ξ0>0. | (2.30) |
ϕ8(x,t)=±√ν+3ak+δ−3k2γ3λ+2σcoth(√−ν+3ak+δ−3k2γ2μ2γξ−εlnξ02)ei(−kx+ϖtαα+θ),if ξ0<0. | (2.31) |
ϕ9(x,t)=±√ν+3ak+δ−3k2γ3λ+2σei(−kx+ϖtαα+θ),if ξ0=0. | (2.32) |
Type 2. If c+3ak+δ−3k2γγ>0,(3λ+2σ)γ>0, we get
ϕ10(x,t)=±√ν+3ak+δ−3k2γ3λ+2σtan(√−ν+3ak+δ−3k2γ2μ2γξ+ξ0)ei(−kx+ϖtαα+θ). | (2.33) |
ϕ11(x,t)=±√ν+3ak+δ−3k2γ3λ+2σcot(√−ν+3ak+δ−3k2γ2μ2γξ+ξ0)ei(−kx+ϖtαα+θ). | (2.34) |
Type 3. If ν+3ak+δ−3k2γγ=0,(3λ+2σ)γ<0, we get
ϕ12(x,t)=±1√−3λ+2σ6μ2γξ+ξ0ei(−kx+ϖtαα+θ). | (2.35) |
Case 2.2. If m=2.
Comparing the coefficients of Yi(ξ)=(0,1,2,3) on both sides of Eq (2.22), we obtain
g(X)a0(X)=a1(X)[−(ν+3ak+δ−3k2γ)μ2γX(ξ)−(3λ+2σ)3μ2γX(ξ)3]. | (2.36) |
da0(X)dX+2a2(X)[ν+3ak+δ−3k2γμ2γX(ξ)+(3λ+2σ)3μ2γX(ξ)3]=g(X)a1(X)+h(X)a0(X). | (2.37) |
da1(X)dX=h(X)a1(X)+g(X)a2(X). | (2.38) |
da2(X)dX=h(X)a2(X). | (2.39) |
Balancing the degrees of g(X) and a1(X), we get deg(g(X))=1, deg(a1(X))=2, then
g(X)=A1(X)+B0. | (2.40) |
a1(X)=12A1(X)2+B0(X)+A0,A1≠0, | (2.41) |
where A1,A0,B0 are all constants to be determined.
Now, Eq (2.37) becomes
a0(X)=[3λ+2σ6μ2γ+18A21]X(ξ)4+12A1B0X(ξ)3+[ν+3ak+δ−3k2γμ2γ+12A1A0+12B20]X(ξ)2+A0B0X(ξ)+d, | (2.42) |
where d is the constant of integration.
Substituting a0(X),g(X),a1(X) into Eq (2.36) and setting all the coefficients of powers X to be zero, we obtain
A1=±2√−2(3λ+2σ)3μ2γ, B0=0,A0=±√6(ν+3ak+δ−3k2γ)√−(3λ+2σ)μ2γ,d=−(ν+3ak+δ−3k2γ)22(3λ+2σ)μ2γ. | (2.43) |
From Eq (2.43) into Eq (2.21), we obtain
X′(ξ)=±√6(ν+3ak+δ−3k2γ)2√−(3λ+2σ)μ2γ±√−2(3λ+2σ)3μ2γX2(ξ). | (2.44) |
This shows that the two cases m=1 and m=2 give the same solutions.
Multiplying u′ on both sides of Eq (2.4), and again integrating it on ξ, we can get
(u′)2=a4u4+a2u2+a0, | (2.45) |
where a4=−3λ+2σ6μ2γ, a2=−ν+2ak+δ−3k2γμ2γ, and a0 is the constant.
Making the transformation ψ=±√−(2(3λ+2σ)3μ2γ)−13u, ξ1=−(2(3λ+2σ)3μ2γ)13ξ, Eq (2.45) becomes
(ψ′)2=ψ(ψ2+p1ψ+p0), | (2.46) |
where p1=−4(ν+2ak+δ−3k2γ)μ2γ(−2(3λ+2σ)3μ2γ)−23, p0=−4a0(2(3λ+2σ)3μ2γ)−13.
Integrating Eq (2.46), we have
±(ξ1−ξ0)=∫du√ψ(ψ2+p1ψ+p0), | (2.47) |
where ξ0 is the integration constant.
Suppose that Δ=p21−4p0 and G(ψ)=ψ2+p1ψ+p0, there are four cases for the solutions of Eq (2.4).
Case 3.1. Δ=0.
When ψ>0, we have
±(ξ1−ξ0)=∫dψ√ψ(ψ+p12). | (2.48) |
If p1<0, the corresponding solutions are
ϕ16(x,t)=±[3(ν+2ak+δ−3k2γ)3λ+2σ]12tanh{[−18(ν+2ak+δ−3k2γ)μ2γ(3λ+2σ)2]16[(−2(3λ+2σ)3μ2γ)13ξ−ξ0]}ei(−kx+ϖtαα+θ). | (2.49) |
ϕ17(x,t)=±[3(ν+2ak+δ−3k2γ)3λ+2σ]12coth{[−18(ν+2ak+δ−3k2γ)μ2γ(3λ+2σ)2]16[(−2(3λ+2σ)3μ2γ)13ξ−ξ0]}ei(−kx+ϖtαα+θ). | (2.50) |
If p1>0, the corresponding solutions are
ϕ18(x,t)=±[3(ν+2ak+δ−3k2γ)3λ+2σ]12tan{[−18(ν+2ak+δ−3k2γ)μ2γ(3λ+2σ)2]16[(−2(3λ+2σ)3μ2γ)13ξ−ξ0]}ei(−kx+ϖtαα+θ). | (2.51) |
If p1=0, we get the corresponding solutions
ϕ19(x,t)=1[−2(3λ+2σ)3μ2γ]12ξ−[−2(3λ+2σ)3μ2γ]16ξ0ei(−kx+ϖtαα+θ). | (2.52) |
Case 3.2. Δ>0 and p0=0. As for ψ>−p1, we have
±(ξ1−ξ0)=∫dψψ√ψ+p1. | (2.53) |
If p1>0, the solutions are given as follows
ϕ20(x,t)=±[3(ν+2ak+δ−3k2γ)3λ+2σ]12{tanh2[(−18(ν+2ak+δ−3k2γ)μ2γ(3λ+2σ)2)16((−2(3λ+2σ)3μ2γ)13ξ−ξ0)]−1}ei(−kx+ϖtαα+θ). | (2.54) |
ϕ21(x,t)=±[3(ν+2ak+δ−3k2γ)3λ+2σ]12{coth2[(−18(ν+2ak+δ−3k2γ)μ2γ(3λ+2σ)2)16((−2(3λ+2σ)3μ2γ)13ξ−ξ0)]−1}ei(−kx+ϖtαα+θ). | (2.55) |
If p1<0, the solutions are given as follows
ϕ22(x,t)=±[3(ν+2ak+δ−3k2γ)3λ+2σ]12{tan2[(−18(ν+2ak+δ−3k2γ)μ2γ(3λ+2σ)2)16((−2(3λ+2σ)3μ2γ)13ξ−ξ0)]−1}ei(−kx+ϖtαα+θ). | (2.56) |
Case 3.3. Δ>0, p0≠0.
Suppose that λ1<λ2<λ3, λ1, λ2 and λ3 are two roots of G(ψ)=0. Here we make the transformation ψ=λ1+(λ2−λ1)sin2φ, it is clear that
±(ξ1−ξ0)=2√λ3−λ1∫dψ√1−m21sin2φ, | (2.57) |
where m21=λ2−λ1λ3−λ1. We get the corresponding solutions
ϕ23(x,t)=±[−3μ2γ2(3λ+2σ)]16{λ1+(λ2−λ1)sn2[√λ3−λ12((−2(3λ+2σ)3μ2γ)13ξ−ξ0),m1]}12ei(−kx+ϖtαα+θ). | (2.58) |
If ψ>λ3, we take the following transformation ψ=−λ2sin2φ+λ3cos2φ, the corresponding solutions are
ϕ24(x,t)=±[−3μ2γ2(3λ+2σ)]16{−λ2sn2(√λ3−λ1((−2(3λ+2σ)3μ2γ)13ξ−ξ0)/2,m1)−γcn2(√λ3−λ1((−2(3λ+2σ)3μ2γ)13ξ−ξ0)/2,m1)}12ei(−kx+ϖtαα+θ). | (2.59) |
Case 3.4. Δ<0, taking the transformation ψ=√p0tan2φ2 it is clear that
±2(ξ1−ξ0)=p−140∫dψ√1−m22sin2φ, | (2.60) |
where m22=12(1−p12√p0). we get the corresponding solutions
ϕ25(x,t)=±(−6μ2γa03λ+2σ)14{21+cn[(−192a30μ2γ3λ+2σ)112((−2(3λ+2σ)3μ2γ)13ξ−ξ0),m2]−1}12ei(−kx+ϖtαα+θ). | (2.61) |
In this section, the numerical simulations of some remarkable solutions for the FPRKL equation are presented. By the (G′/G)-expansion method, we obtained the solution ϕ11(x,t) and ϕ12(x,t) shown in Figure 1. The graphical solutions ϕ10(x,t) and ϕ11(x,t) are shown in Figure 2. Moreover, the graphical solutions ϕ16(x,t) and ϕ17(x,t) are shown in Figure 3.
In this article, we have investigated the exact solutions to the FPRKL equation by three different methods. Many exact solutions have been obtained. In the paper, we get all the traveling wave solutions, which have not been seen in other literature. These solutions might be further useful and effective to study more about the various forms of solitary waves in physics. We have noticed that the proposed complete discrimination system for the polynomial method gives much more new and general exact solutions than the other two suggested methods. In future work, we will consider the bifurcation, phase diagrams and exact solutions of the FPRKL equation.
This work was supported by Science Research Fund of Education Department of Sichuan Province of China under grant No.18ZB0537 and Scientific Research Funds of Sichuan Vocational and Technical College under grant No.2022YZB009.
The author declare no conflict of interest.
[1] |
T. Han, Z. Li, X. Zhang, Bifurcation and new exact traveling wave solutions to time-space coupled fractional nonlinear Schrödinger equation, Phys. Lett. A, 395 (2021), 127217. http://dx.doi.org/10.1016/j.physleta.2021.127217 doi: 10.1016/j.physleta.2021.127217
![]() |
[2] |
M. Ekicia, M. Mirzazadehb, A. Sonmezoglua, M. Ullah, M. Asma, Q. Zhou, et al., Dispersive optical solitons with Schrödinger-Hirota equation by extended trial equation method, Optik, 136 (2017), 451–461. http://dx.doi.org/10.1016/j.ijleo.2017.02.042 doi: 10.1016/j.ijleo.2017.02.042
![]() |
[3] |
S. Ray, Dispersive optical solitons of time-fractional Schrödinger-Hirota equation in nonlinear optical fibers, Physica A, 537 (2020), 122619. http://dx.doi.org/10.1016/j.physa.2019.122619 doi: 10.1016/j.physa.2019.122619
![]() |
[4] |
B. Kilic, M. Inc, Optical solitons for the Schrödinger-Hirota equation with power law nonlinearity by the Bäcklund transformation, Optik, 138 (2017), 64–67. http://dx.doi.org/10.1016/j.ijleo.2017.03.017 doi: 10.1016/j.ijleo.2017.03.017
![]() |
[5] |
H. Zhang, R. Hu, M. Zhang, Darboux transformation and dark soliton solution for the defocusing Sasa-Satsuma equation, Appl. Math. Lett., 69 (2017), 101–105. http://dx.doi.org/10.1016/j.aml.2017.02.012 doi: 10.1016/j.aml.2017.02.012
![]() |
[6] |
M. Shehata, H. Rezazadeh, E. Zahran, E. Tala-Tebue, A. Bekir, New optical soliton solutions of the perturbed Fokas-Lenells equation, Commun. Theor. Phys., 71 (2019), 1275–1280. http://dx.doi.org/10.1088/0253-6102/71/11/1275 doi: 10.1088/0253-6102/71/11/1275
![]() |
[7] |
M. Eslami, M. Mirzazadeh, B. Fathi Vajargah, A. Biswas, Optical solitons for the resonant nonlinear Schrödinger's equation with time-dependent coefficients by the first integral method, Optik, 125 (2014), 3107–3116. http://dx.doi.org/10.1016/j.ijleo.2014.01.013 doi: 10.1016/j.ijleo.2014.01.013
![]() |
[8] |
S. Rizvi, A. Seadawy, U. Akram, M. Youni, A. Althobaiti, Solitary wave solutions along with Painleve analysis for the Ablowitz-Kaup-Newell-Segur water waves equation, Mod. Phys. Lett. B, 36 (2022), 2150548. http://dx.doi.org/10.1142/S0217984921505485 doi: 10.1142/S0217984921505485
![]() |
[9] |
S. Rizvi, A. Seadawy, K. Ali, M. Ashraf, S. Althubiti, Multiple lump and interaction solutions for fifth-order variable coefficient nonlinear-Schrödinger dynamical equation, Opt. Quant. Electron., 54 (2022), 154. http://dx.doi.org/10.1007/s11082-022-03532-y doi: 10.1007/s11082-022-03532-y
![]() |
[10] |
S. Rizvi, A. Seadawy, K. Ali, M. Younis, M. Ashraf, Multiple lump and rogue wave for time fractional resonant nonlinear Schrödinger equation under parabolic law with weak nonlocal nonlinearity, Opt. Quant. Electron., 54 (2022), 212. http://dx.doi.org/10.1007/s11082-022-03606-x doi: 10.1007/s11082-022-03606-x
![]() |
[11] |
U. Akram, A. Seadawy, S. Rizvi, B. Mustafa, Applications of the resonanat nonlinear Schrödinger equation with self steeping phenomena for chirped periodic waves, Opt. Quant. Electron., 54 (2022), 256. http://dx.doi.org/10.1007/s11082-022-03525-x doi: 10.1007/s11082-022-03525-x
![]() |
[12] |
A. Bashira, A. Seadawyb, S. Rizvia, I. Alia, S. Althubitic, Dispersive dromions, conserved densities and fluxes with integrability via P-test for couple of nonlinear dynamical system, Results Phys., 33 (2022), 105151. http://dx.doi.org/10.1016/j.rinp.2021.105151 doi: 10.1016/j.rinp.2021.105151
![]() |
[13] |
A. Seadawya, M. Younisb, M. Baberc, M. Iqbald, S. Rizvie, Nonlinear acoustic wave structures to the Zabolotskaya-Khokholov dynamical model, J. Geom. Phys., 175 (2022), 104474. http://dx.doi.org/10.1016/j.geomphys.2022.104474 doi: 10.1016/j.geomphys.2022.104474
![]() |
[14] |
A. Seadawya, S. Ahmedb, S. Rizvib, K. Ali, Various forms of lumps and interaction solutions to generalized Vakhnenko Parkes equation arising from high-frequency wave propagation in electromagnetic physics, J. Geom. Phys., 176 (2022), 104507. http://dx.doi.org/10.1016/j.geomphys.2022.104507 doi: 10.1016/j.geomphys.2022.104507
![]() |
[15] |
A. Seadawya, U. Akramb, S. Rizvib, Dispersive optical solitons along with integrability test and one soliton transformation for saturable cubic-quintic nonlinear media with nonlinear dispersion, J. Geom. Phys., 177 (2022), 104521. http://dx.doi.org/10.1016/j.geomphys.2022.104521 doi: 10.1016/j.geomphys.2022.104521
![]() |
[16] |
S. Rizvi, A. Seadawy, U. Akram, New dispersive optical soliton for an nonlinear Schrödinger equation with Kudryashov law of refractive index along with P-test, Opt. Quant. Electron., 54 (2022), 310. http://dx.doi.org/10.1007/s11082-022-03711-x doi: 10.1007/s11082-022-03711-x
![]() |
[17] |
A. Seadawya, A. Alib, W. Albarakati, Analytical wave solutions of the (2+1)-dimensional first integro-differential Kadomtsev-Petviashivili hierarchy equation by using modified mathematical methods, Results Phys., 15 (2019), 102775. http://dx.doi.org/10.1016/j.rinp.2019.102775 doi: 10.1016/j.rinp.2019.102775
![]() |
[18] |
A. Seadawy, D. Kumar, A. Chakrabarty, Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method, Eur. Phys. J. Plus, 133 (2018), 182. http://dx.doi.org/10.1140/epjp/i2018-12027-9 doi: 10.1140/epjp/i2018-12027-9
![]() |
[19] |
N. Çelik, A. Seadawy, Y. Sağlam Özkan, E. Yaşar, A model of solitary waves in a nonlinear elastic circular rod: abundant different type exact solutions and conservation laws, Chaos Soliton. Fract., 143 (2021), 110486. http://dx.doi.org/10.1016/j.chaos.2020.110486 doi: 10.1016/j.chaos.2020.110486
![]() |
[20] |
H. Rehman, N. Ullah, M. Imran, Optical solitons of Biswas-Arshed equation in birefringent fibers using extended direct algebraic method, Optik, 226 (2021), 165378. http://dx.doi.org/10.1016/j.ijleo.2020.165378 doi: 10.1016/j.ijleo.2020.165378
![]() |
[21] |
H. Rehman, N. Ullah, M. Imran, Highly dispersive optical solitons using Kudryashov's method, Optik, 199 (2029), 163349. http://dx.doi.org/10.1016/j.ijleo.2019.163349 doi: 10.1016/j.ijleo.2019.163349
![]() |
[22] |
S. Singh, Solutions of Kudryashov-Sinelshchikov equation and generalized Radhakrishnan-Kundu-Lakshmanan equation by the first integral method, Int. J. Phys. Res., 4 (2016), 37–42. http://dx.doi.org/10.14419/IJPR.V4I2.6202 doi: 10.14419/IJPR.V4I2.6202
![]() |
[23] |
B. Ghanbari, M. Inc, A. Yusuf, M. Bayram, Exact optical solitons of Radhakrishnan-Kundu-Lakshmanan equation with Kerr law nonlinearity, Mod. Phys. Lett. B, 33 (2019), 1950061. http://dx.doi.org/10.1142/S0217984919500611 doi: 10.1142/S0217984919500611
![]() |
[24] |
O. Gonzˊalez-Gaxiola, A. Biswas, Optical solitons with Radhakrishnan-Kundu-Lakshmanan equation by Laplace-Adomian decomposition method, Optik, 179 (2019), 434–442. http://dx.doi.org/10.1016/j.ijleo.2018.10.173 doi: 10.1016/j.ijleo.2018.10.173
![]() |
[25] |
J. Zhang, S. Li, H. Geng, Bifurcations of exact travelling wave solutions foe the generalized R-K-L equation, J. Appl. Anal. Comput., 6 (2016), 1205–1210. http://dx.doi.org/ 10.11948/2016080 doi: 10.11948/2016080
![]() |
[26] |
N. Kudryashov, D. Safonova, A. Biswas, Painlevé analysis and a solution to the traveling wave reduction of the Radhakrishnan-Kundu-Lakshmanan equation, Regul. Chaot. Dyn., 24 (2019), 607–614. http://dx.doi.org/10.1134/S1560354719060029 doi: 10.1134/S1560354719060029
![]() |
[27] |
D. Lu, A. Seadawy, M. Khater, Dispersive optical soliton solutions of the generalized Radhakrishnan-Kundu-Lakshmanan dynamical equation with power law nonlinearity and its applications, Optik, 164 (2018), 54–64. http://dx.doi.org/10.1016/j.ijleo.2018.02.082 doi: 10.1016/j.ijleo.2018.02.082
![]() |
[28] |
N. Raza, A. Javid, Dynamics of optical solitons with Radhakrishnan-Kundu-Lakshmanan model via two reliable integration schemes, Optik, 178 (2019), 557–566. http://dx.doi.org/10.1016/j.ijleo.2018.09.133 doi: 10.1016/j.ijleo.2018.09.133
![]() |
[29] |
A. Biswas, Y. Yildirim, E. Yasar, M. Mahmood, A. Alshomrani, Q. Zhou, et al., Optical soliton perturbation for Radhakrishnan-Kundu-Lakshmanan equation with a couple of integration schemes, Optik, 163 (2018), 126–136. http://dx.doi.org/10.1016/j.ijleo.2018.02.109 doi: 10.1016/j.ijleo.2018.02.109
![]() |
[30] |
T. Sulaiman, H. Bulut, G. Yel, S. Atas, Optical solitons to the fractional perturbed Radhakrishnan-Kundu-Lakshmanan model, Opt. Quant. Electron., 50 (2018), 372. http://dx.doi.org/10.1007/s11082-018-1641-7 doi: 10.1007/s11082-018-1641-7
![]() |
[31] |
T. Sulaiman, H. Bulut, The solitary wave solutions to the fractional Radhakrishnan-Kundu-Lakshmanan model, Int. J. Mod. Phys. B, 33 (2019), 1950370. http://dx.doi.org/10.1142/S0217979219503703 doi: 10.1142/S0217979219503703
![]() |
[32] |
B. Ghanbari, J. Gómez-Aguilar, The generalized exponential rational function method for Radhakrishnan-Kundu-Lakshmanan equation with β-conformable time derivative, Rev. Mex. Fis., 65 (2019), 503–518. http://dx.doi.org/10.31349/revmexfis.65.503 doi: 10.31349/revmexfis.65.503
![]() |
1. | Ahmed H. Arnous, Anjan Biswas, Abdul H. Kara, Yakup Yıldırım, Luminita Moraru, Simona Moldovanu, Puiu Lucian Georgescu, Abdulah A. Alghamdi, Dispersive optical solitons and conservation laws of Radhakrishnan–Kundu–Lakshmanan equation with dual–power law nonlinearity, 2023, 9, 24058440, e14036, 10.1016/j.heliyon.2023.e14036 | |
2. | M. Ali Akbar, Farah Aini Abdullah, Mst. Munny Khatun, Diverse geometric shape solutions of the time-fractional nonlinear model used in communication engineering, 2023, 68, 11100168, 281, 10.1016/j.aej.2023.01.019 | |
3. | Ahmed M. Elsherbeny, Ahmet Bekir, Ahmed H. Arnous, Maasoomah Sadaf, Ghazala Akram, Solitons to the time-fractional Radhakrishnan–Kundu–Lakshmanan equation with $$\beta$$ and M-truncated fractional derivatives: a comparative analysis, 2023, 55, 0306-8919, 10.1007/s11082-023-05414-3 | |
4. | Mustafa Bayram, Optical soliton solutions of the stochastic perturbed Radhakrishnan-Kundu-Lakshmanan equation via Itô Calculus, 2023, 98, 0031-8949, 115201, 10.1088/1402-4896/acfbff | |
5. | Chen Peng, Zhao Li, Soliton solutions and dynamics analysis of fractional Radhakrishnan–Kundu–Lakshmanan equation with multiplicative noise in the Stratonovich sense, 2023, 53, 22113797, 106985, 10.1016/j.rinp.2023.106985 | |
6. | Pinar Albayrak, Muslum Ozisik, Aydin Secer, Mustafa Bayram, Sebahat Ebru Das, Optical solitons of stochastic perturbed Radhakrishnan–Kundu–Lakshmanan model with Kerr law of self-phase-modulation, 2024, 38, 0217-9849, 10.1142/S0217984924501227 |