Research article Special Issues

Impact of estrogen population pharmacokinetics on a QSP model of mammary stem cell differentiation into myoepithelial cells

  • Received: 17 January 2021 Accepted: 16 July 2021 Published: 28 July 2021
  • MSC : 92B05, 92C32

  • Stem cell differentiation cascades are critical components of healthy tissue maintenance. Dysregulation in these systems can lead to serious diseases, including cancer. Myoepithelial mammary cells are produced from differentiated mammary stem cells in processes regulated, in part, by estrogen signalling and concentrations. To quantify and predict the production of mammary myoepithelial cell production by estrogen, we developed a mechanistic, quantitative systems pharmacology (QSP) model that includes the explicit characterization of free and unbound estrogen concentrations in circulation. Linking this model to a previously developed population pharmacokinetics model for ethinyl estradiol, a synthetic form of estrogen included in oral contraceptives, we predicted the effects of estrogen on myoepithelial cell development. Interestingly, pharmacokinetic intraindividual variability alone did not significantly impact on our modelos predictions, suggesting that combinations of physiological and pharmacokinetic variability drive heterogeneity in mechanistic QSP models. Our model is one component of an improved understanding of mammary myoepithelial cell production and development, and our results support the call for mechanistically constructed systems models for disease and pharmaceutical modelling.

    Citation: Justin Le Sauteur-Robitaille, Zhe Si Yu, Morgan Craig. Impact of estrogen population pharmacokinetics on a QSP model of mammary stem cell differentiation into myoepithelial cells[J]. AIMS Mathematics, 2021, 6(10): 10861-10880. doi: 10.3934/math.2021631

    Related Papers:

  • Stem cell differentiation cascades are critical components of healthy tissue maintenance. Dysregulation in these systems can lead to serious diseases, including cancer. Myoepithelial mammary cells are produced from differentiated mammary stem cells in processes regulated, in part, by estrogen signalling and concentrations. To quantify and predict the production of mammary myoepithelial cell production by estrogen, we developed a mechanistic, quantitative systems pharmacology (QSP) model that includes the explicit characterization of free and unbound estrogen concentrations in circulation. Linking this model to a previously developed population pharmacokinetics model for ethinyl estradiol, a synthetic form of estrogen included in oral contraceptives, we predicted the effects of estrogen on myoepithelial cell development. Interestingly, pharmacokinetic intraindividual variability alone did not significantly impact on our modelos predictions, suggesting that combinations of physiological and pharmacokinetic variability drive heterogeneity in mechanistic QSP models. Our model is one component of an improved understanding of mammary myoepithelial cell production and development, and our results support the call for mechanistically constructed systems models for disease and pharmaceutical modelling.



    加载中


    [1] G. C. Sieck, Physiology in perspective: stem cells and regenerative physiology, Physiology, 33 (2018), 14-15.
    [2] M. C. Mackey, Cell kinetic status of hematopoietic stem cells, Cell Prolif., 34 (2001), 71-83.
    [3] J. Till, E. McCullogh, A direct measurement of the radiation sensitivity of normal mouse bone marrow cells, Radiat. Res., 14 (1961), 213-222.
    [4] H. Lee-Six, N. F. Øbro, M. S. Shepherd, S. Grossmann, K. Dawson, M. Belmonte, Population dynamics of normal human blood inferred from somatic mutations, Nature, 561 (2018), 473-478.
    [5] M. S. Krieger, J. M. Moreau, H. Zhang, M. Chien, J. L. Zehnder, M. Craig, A blueprint for identifying phenotypes and drug targets in complex disorders with empirical dynamics, Patterns, 1 (2020), 100138.
    [6] M. Craig, A. R. Humphries, F. Nekka, J. Belair, J. Li, M. C. Mackey, Neutrophil dynamics during concurrent chemotherapy and G-CSF administration: mathematical modelling guides dose optimisation to minimise neutropenia, J. Theor. Biol., 385 (2015), 77-89.
    [7] M. Craig, A. R. Humphries, M. C. Mackey, A mathematical model of granulopoiesis incorporating the negative feedback dynamics and kinetics of G-CSF/neutrophil binding and internalisation, Bull. Math. Biol., 78 (2016), 2304-2357.
    [8] L. E. Friberg, M. O. Karlsson, Mechanistic models for myelosuppression, Invest. New Drugs, 21 (2003), 183-194.
    [9] M. Scholz, C. Engel, M. Loeffler, Modelling human granulopoiesis under polychemotherapy with G-CSF support, J. Math. Biol., 50 (2005), 397-439.
    [10] V. Vainstein, Y. Ginosar, M. Shoham, D. O. Ranmar, A. Ianovski, Z. Agur, The complex effect of granulocyte colony-stimulating factor on human granulopoiesis analyzed by a new physiologically-based mathematical model, J. Theor. Biol., 235 (2005), 311-327.
    [11] S. Alfonso, A. L. Jenner, M. Craig, Translational approaches to treating dynamical diseases through in silico clinical trials, Chaos An Interdiscip. J. Nonlinear Sci., 30 (2020), 123128.
    [12] M. Craig, Towards quantitative systems pharmacology models of chemotherapy-induced neutropenia, CPT Pharmacometrics Syst. Pharmacol., 6 (2017), 293-304.
    [13] P. Sorger, S. R. B. Allerheiligen, D. Abernethy, R. B. Altman, K. L. Brouwer, A. Califano, et al. Quantitative and systems pharmacology in the post-genomic era: new approaches to discovering drugs and understanding therapeutic mechanisms, An NIH white paper by the QSP workshop group, 48 (2011), 1-47.
    [14] A. L. Jenner, T. Cassidy, K. Belaid, M. C. Bourgeois-Daigneault, M. Craig, In silico trials predict that combination strategies for enhancing vesicular stomatitis oncolytic virus are determined by tumor aggressivity, J. Immunother. Cancer, 9 (2021), e001387.
    [15] T. Cassidy, M. Craig, Determinants of combination GM-CSF immunotherapy and oncolytic virotherapy success identified through in silico treatment personalization, PLOS Comput. Biol., 15 (2019), e1007495.
    [16] H. Wang, O. Milberg, I. H. Bartelink, P. Vicini, B. Wang, R. Narwal, et al. In silico simulation of a clinical trial with anti-CTLA-4 and anti-PD-L1 immunotherapies in metastatic breast cancer using a systems pharmacology model, R. Soc. Open Sci., 6 (2020), 190366.
    [17] H. Ma, H. Wang, R. J. Sové, J. Wang, C. Giragossian, A. S. Popel, Combination therapy with T cell engager and PD-L1 blockade enhances the antitumor potency of T cells as predicted by a QSP model, J. Immunother. Cancer, 8 (2020), e001141.
    [18] O. Milberg, C. Gong, M. Jafarnejad, I. H. Bartelink, B. Wang, P. Vicini, et al. A QSP Model for Predicting Clinical Responses to Monotherapy, Combination and Sequential Therapy Following CTLA-4, PD-1, and PD-L1 Checkpoint Blockade, Sci. Rep., 9 (2019), 1-17.
    [19] S. Soufsaf, P. Robaey, G. Bonnefois, F. Nekka, J. Li, A quantitative comparison approach for methylphenidate drug regimens in attention-deficit/hyperactivity disorder treatment, J. Child Adolesc. Psychopharmacol., 29 (2019), 220-234.
    [20] J. E. Visvader, J. Stingl, Mammary stem cells and the differentiation hierarchy: current status and perspectives, Genes Dev., 28 (2014), 1143-1158.
    [21] R. G. Mehta, M. Hawthorne, R. R. Mehta, K. E. Torres, X. Peng, D. L. McCormick, et al. Differential Roles of ERα and ERβ in Normal and Neoplastic Development in the Mouse Mammary Gland, PLoS One, 9 (2014), e113175.
    [22] M. Romagnoli, S. Cagnet, A. Chiche, L. Bresson, S. Baulande, P. de la Grange, et al. Deciphering the Mammary Stem Cell Niche: A Role for Laminin-Binding Integrins, Stem Cell Reports, 12 (2019), 831-844.
    [23] Canadian Cancer Statistics Advisory Committee, Canadian Cancer Statistics, Toronto, 2018.
    [24] M. Fedele, L. Cerchia, G. Chiappetta, The epithelial-to-mesenchymal transition in breast cancer: Focus on basal-like carcinomas, Cancers (Basel), 9 (2017), 134.
    [25] V. M. López-Ozuna, I. Y. Hachim, M. Y. Hachim, J. J. Lebrun, S. Ali, Prolactin modulates TNBC aggressive phenotype limiting tumorigenesis, Endocr. Relat. Cancer, 26 (2019), 321-337.
    [26] G. Dontu, D. El-Ashry, M. S. Wicha, Breast cancer, stem/progenitor cells and the estrogen receptor, Trends Endocrinol. Metab., 15 (2004), 193-197.
    [27] F. Liu, A. Pawliwec, Z. Feng, Z. Yasruel, J. J. Lebrun, S. Ali, Prolactin/Jak2 directs apical/basal polarization and luminal linage maturation of mammary epithelial cells through regulation of the Erk1/2 pathway, Stem Cell Res., 15 (2015), 376-383.
    [28] A. Shams, J. Boudreault, N. Wang, et al. Prolactin receptor-driven combined luminal and epithelial differentiation in breast cancer restricts plasticity, stemness, tumorigenesis and metastasis, Oncogenesis, 10 (2021), 1-16.
    [29] V. M. Lopez-Ozuna, I. Y. Hachim, M. Y. Hachim, J. J. Lebrun, S. Ali, Prolactin Pro-Differentiation Pathway in Triple Negative Breast Cancer: Impact on Prognosis and Potential Therapy, Sci. Rep., 6 (2016), 1-13.
    [30] M. C. Mackey, Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis, Blood, 51 (1978), 941-956.
    [31] S. Mallepell, A. Krust, P. Chambon, C. Brisken, Paracrine signaling through the epithelial estrogen receptor α is required for proliferation and morphogenesis in the mammary gland, Proc. Natl. Acad. Sci., 103 (2006), 2196-2201.
    [32] S. Cristea, K. Polyak, Dissecting the mammary gland one cell at a time, Nat. Commun., 9 (2018), 2473.
    [33] M. Brunetti, M. C. Mackey, M. Craig, Understanding Normal and Pathological Hematopoietic Stem Cell Biology Using Mathematical Modelling, Curr. Stem Cell Reports, (2021), 1-12.
    [34] S. Reif, N. Snelder, H. Blode, Characterisation of the pharmacokinetics of ethinylestradiol and drospirenone in extended-cycle regimens: population pharmacokinetic analysis from a randomised Phase Ⅲ study, J. Fam. Plan. Reprod. Heal. Care, 39 (2013), e1-e13.
    [35] S. Huang, Gene expression profiling, genetic networks, and cellular states: An integrating concept for tumorigenesis and drug discovery, J. Mol. Med., 77 (1999), 469-480.
    [36] J. B. Becker, K. J. Berkley, N. Geary, E. Hampson, J. P. Herman, E. Young, Sex Differences in the Brain: From Genes to Behavior, Oxford University Press, 2007.
    [37] S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178-196.
    [38] R. L. Sutherland, R. E. Hall, G. Y. N. Pang, E. A. Musgrove, C. L. Clarke, Effect of Medroxyprogesterone Acetate on Proliferation and Cell Cycle Kinetics of Human Mammary Carcinoma Cells, Cancer Res., 48 (1988), 5084-5091.
    [39] R. B. Clarke, K. Spence, E. Anderson, A. Howell, H. Okano, C. S. Potten, A putative human breast stem cell population is enriched for steroid receptor-positive cells, Dev. Biol., 277 (2005), 443-456.
    [40] C. H. Chang, M. Zhang, K. Rajapakshe, C. Coarfa, D. Edwards, S. Huang, et al. Mammary Stem Cells and Tumor-Initiating Cells Are More Resistant to Apoptosis and Exhibit Increased DNA Repair Activity in Response to DNA Damage, Stem Cell Reports, 5 (2015), 378-391.
    [41] J. Huang, P. Woods, D. Normolle, J. P. Goff, P. V. Benos, C. J. Stehle, et al. Downregulation of estrogen receptor and modulation of growth of breast cancer cell lines mediated by paracrine stromal cell signals, Breast Cancer Res. Treat., 161 (2017), 229-243.
    [42] R. C. Humphreys, M. Krajewska, S. Krnacik, R. Jæger, H. Weiher, S. Krajewski, et al. Apoptosis in the terminal endbud of the murine mammary gland: A mechanism of ductal morphogenesis, Development, 122 (1996), 4013-4022.
    [43] R. Joseph, Y. L. Orlov, M. Huss, W. Sun, S. Li Kong, L. Ukil, et al. Integrative model of genomic factors for determining binding site selection by estrogen receptor-α, Mol. Syst. Biol., 6 (2010), 1-13.
    [44] P. Eirew, J. Stingl, A. Raouf, G. Turashvill, S. Aparicio, J. T. Emerman, et al. A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability, Nat. Med., 14 (2008), 1384-1389.
    [45] J. J. Tyson, W. T. Baumann, C. Chen, A. Verdugo, I. Tavassoly, Y. Wang, et al. Dynamic modelling of oestrogen signalling and cell fate in breast cancer cells, Nat. Rev. Cancer, 11 (2011), 523-532.
    [46] M. Craig, M. González-Sales, J. Li, F. Nekka, Impact of pharmacokinetic variability on a mechanistic physiological pharmacokinetic/pharmacodynamic model: a case study of neutrophil development, PM00104, and filgrastim, In: Toni B (Ed.), Mathematical Sciences with Multidisciplinary Applications, Springer, (2016), 91-112.
    [47] NCD Risk Factor Collaboration, Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants, Lancet, 387 (2016), 1377-1396.
    [48] NCD Risk Factor Collaboration, A century of trends in adult human height, Elife, 5 (2016), 1-29.
    [49] A. BenSaïda, Shapiro-Wilk and Shapiro-Francia normality tests, MATLAB Central File Exchange, (2009).
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1378) PDF downloads(31) Cited by(1)

Article outline

Figures and Tables

Figures(7)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog