Citation: Fei Wang, Bai-Ni Guo, Feng Qi. Monotonicity and inequalities related to complete elliptic integrals of the second kind[J]. AIMS Mathematics, 2020, 5(3): 2732-2742. doi: 10.3934/math.2020176
| [1] |
H. Alzer and S.-L. Qiu, Monotonicity theorems and inequalities for the complete elliptic integrals, J. Comput. Appl. Math., 172 (2004), 289-312. doi: 10.1016/j.cam.2004.02.009
|
| [2] |
G. D. Anderson, S.-L. Qiu, M. K. Vamanamurthy, Elliptic integral inequalities, with applications, Constr. Approx., 14 (1998), 195-207. doi: 10.1007/s003659900070
|
| [3] |
G.-D. Anderson, S.-L. Qiu, M.-K. Vamanamurthy, et al. Generalized elliptic integrals and modular equations, Pacific J. Math., 192 (2000), 1-37. doi: 10.2140/pjm.2000.192.1
|
| [4] | G.-D. Anderson, M.-K. Vamanamurthy, M. Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, New York, 1997. |
| [5] |
S. András and Á. Baricz, Bounds for complete elliptic integrals of the first kind, Expo. Math., 28 (2010), 357-364. doi: 10.1016/j.exmath.2009.12.005
|
| [6] |
Á. Baricz, Turán type inequalities for generalized complete elliptic integrals, Math. Z., 256 (2007), 895-911. doi: 10.1007/s00209-007-0111-x
|
| [7] | P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer-Verlag, New York, 1971. |
| [8] |
C.-P. Chen and F. Qi, The best bounds in Wallis' inequality, Proc. Amer. Math. Soc., 133 (2005), 397-401. doi: 10.1090/S0002-9939-04-07499-4
|
| [9] |
Y.-M. Chu, M.-K. Wang, Y.-P. Jiang, et al. Concavity of the complete elliptic integrals of the second kind with respect to Hölder means, J. Math. Anal. Appl., 395 (2012), 637-642. doi: 10.1016/j.jmaa.2012.05.083
|
| [10] | B.-N. Guo and F. Qi, On the Wallis formula, Int. J. Anal. Appl., 8 (2015), 30-38. |
| [11] | B.-N. Guo and F. Qi, Some bounds for the complete elliptic integrals of the first and second kinds, Math. Inequal. Appl., 14 (2011), 323-334. |
| [12] |
Y. Hua and F. Qi, A double inequality for bounding Toader mean by the centroidal mean, Proc. Indian Acad. Sci. Math. Sci., 124 (2014), 527-531. doi: 10.1007/s12044-014-0183-6
|
| [13] |
Y. Hua and F. Qi, The best bounds for Toader mean in terms of the centroidal and arithmetic means, Filomat, 28 (2014), 775-780. doi: 10.2298/FIL1404775H
|
| [14] |
W.-D. Jiang and F. Qi, A double inequality for the combination of Toader mean and the arithmetic mean in terms of the contraharmonic mean, Publ. Inst. Math. (Beograd) (N.S.), 99 (2016), 237-242. doi: 10.2298/PIM141026009J
|
| [15] |
V. Lampret, The perimeter of a flattened ellipse can be estimated accurately even from Maclaurin's series, Cubo, 21 (2019), 51-64. doi: 10.4067/S0719-06462019000200051
|
| [16] |
X.-Y. Ma, Y.-M. Chu, F. Wang, Monotonicity and inequalities for the generalized distortion function, Acta Math. Sci., 33 (2013), 1759-1766. doi: 10.1016/S0252-9602(13)60121-6
|
| [17] |
F. Qi, Limit formulas for ratios between derivatives of the gamma and digamma functions at their singularities, Filomat, 27 (2013), 601-604. doi: 10.2298/FIL1304601Q
|
| [18] |
F. Qi and R. P. Agarwal, On complete monotonicity for several classes of functions related to ratios of gamma functions, J. Inequal. Appl., 2019 (2019), 1-42. doi: 10.1186/s13660-019-1955-4
|
| [19] | F. Qi, L.-H. Cui, S.-L. Xu, Some inequalities constructed by Tchebysheff's integral inequality, Math. Inequal. Appl., 2 (1999), 517-528. |
| [20] | F. Qi and B.-N. Guo, Lévy-Khintchine representation of Toader-Qi mean, Math. Inequal. Appl., 21 (2018), 421-431. |
| [21] | F. Qi and Z. Huang, Inequalities for complete elliptic integrals, Tamkang J. Math., 29 (1998), 165-169. |
| [22] |
F. Qi and A.-Q. Liu, Completely monotonic degrees for a difference between the logarithmic and psi functions, J. Comput. Appl. Math., 361 (2019), 366-371. doi: 10.1016/j.cam.2019.05.001
|
| [23] | F. Qi, D.-W. Niu, B.-N. Guo, Refinements, generalizations, and applications of Jordan's inequality and related problems, J. Inequal. Appl., 2009 (2019), 271923. |
| [24] |
F. Qi, X.-T. Shi, F.-F. Liu, et al. A double inequality for an integral mean in terms of the exponential and logarithmic means, Period. Math. Hungar., 75 (2017), 180-189. doi: 10.1007/s10998-016-0181-9
|
| [25] | F. Qi and A. Sofo, An alternative and united proof of a double inequality for bounding the arithmetic-geometric mean, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 71 (2009), 69-76. |
| [26] | F. Qi, S.-W. Yao, B.-N. Guo, Arithmetic means for a class of functions and the modified Bessel functions of the first kind, Mathematics, 7 (2019), 60. |
| [27] |
S.-L. Qiu, X.-Y. Ma, T. R. Huang, Some properties of the difference between the Ramanujan constant and beta function, J. Math. Anal. Appl., 446 (2017), 114-129. doi: 10.1016/j.jmaa.2016.08.043
|
| [28] | S.-L. Qiu, M. K. Vamanamurthy, M. Vuorinen, Some inequalities for the Hersch-Pfluger distortion function, J. Inequal. Appl., 4 (1999), 115-139. |
| [29] |
S.-L. Qiu and M. Vuorinen, Some properties of the gamma and psi functions with applications, Math. Comp., 74 (2004), 723-742. doi: 10.1090/S0025-5718-04-01675-8
|
| [30] |
S.-L. Qiu and M. Vuorinen, Special functions in geometric function theory, Handbook of Complex Analysis: Geometric Function Theory, 2 (2005), 621-659. doi: 10.1016/S1874-5709(05)80018-6
|
| [31] |
M. Vuorinen, Singular values, Ramanujan modular equations, and Landen transformations, Studia Math., 121 (1996), 221-230. doi: 10.4064/sm-121-3-221-230
|
| [32] |
F. Wang, J.-H. He, L. Yin, et al. Monotonicity properties and inequalities related to generalized Grötzsch ring functions, Open Math., 17 (2019), 802-812. doi: 10.1515/math-2019-0064
|
| [33] |
M.-K. Wang, Y.-M. Chu, Y.-F. Qiu, et al. An optimal power mean inequality for the complete elliptic integrals, Appl. Math. Lett., 24 (2011), 887-890. doi: 10.1016/j.aml.2010.12.044
|
| [34] |
M.-K. Wang, S.-L. Qiu, Y.-M. Chu, et al. Generalized Hersch-Pfluger distortion function and complete elliptic integrals, J. Math. Anal. Appl., 385 (2012), 221-229. doi: 10.1016/j.jmaa.2011.06.039
|
| [35] |
G.-D. Wang, X.-H. Zhang, Y.-M. Chu, Inequalities for the generalized elliptic integrals and modular functions, J. Math. Anal. Appl., 331 (2007), 1275-1283. doi: 10.1016/j.jmaa.2006.09.070
|
| [36] | L. Yin, X.-L. Lin, and F. Qi, Monotonicity, convexity, and inequalities related to complete (p, q, r)- elliptic integrals and generalized trigonometric functions, Publ. Math. Debrecen, 97 (2020), in press. |
| [37] | L. Yin and F. Qi, Some inequalities for complete elliptic integrals, Appl. Math. E-Notes, 14 (2014), 192-199. |
| [38] |
X.-H. Zhang, G.-D. Wang, Y.-M. Chu, Remark on generalized elliptic integrals, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 417-426. doi: 10.1017/S0308210507000327
|