Processing math: 100%
Research article

The number of rational points of certain quartic diagonal hypersurfaces over finite fields

  • Received: 28 December 2019 Accepted: 10 March 2020 Published: 17 March 2020
  • MSC : 11T23, 11T24

  • Let p be an odd prime and let Fq be a finite field of characteristic p with order q=ps. For f(x1,,xn)Fq[x1,...,xn], we denote by N(f(x1,,xn)=0) the number of Fq-rational points on the affine hypersurface f(x1,,xn)=0. In 1981, Myerson gave a formula for N(x41++x4n=0). Recently, Zhao and Zhao obtained an explicit formula for N(x41+x42=c) with cFq:=Fq{0}. In this paper, by using the Gauss sum and Jacobi sum, we arrive at explicit formulas for N(x41+x42+x43=c) and N(x41+x42+x43+x44=c) with cFq.

    Citation: Junyong Zhao, Shaofang Hong, Chaoxi Zhu. The number of rational points of certain quartic diagonal hypersurfaces over finite fields[J]. AIMS Mathematics, 2020, 5(3): 2710-2731. doi: 10.3934/math.2020175

    Related Papers:

    [1] Shuangnian Hu, Yanyan Li, Rongquan Feng . Counting rational points of quartic diagonal hypersurfaces over finite fields. AIMS Mathematics, 2024, 9(1): 2167-2180. doi: 10.3934/math.2024108
    [2] Junyong Zhao, Yang Zhao, Yujun Niu . On the number of solutions of two-variable diagonal quartic equations over finite fields. AIMS Mathematics, 2020, 5(4): 2979-2991. doi: 10.3934/math.2020192
    [3] Shuangnian Hu, Rongquan Feng . On the number of solutions of two-variable diagonal sextic equations over finite fields. AIMS Mathematics, 2022, 7(6): 10554-10563. doi: 10.3934/math.2022588
    [4] Lin Han, Guangyan Zhu, Zongbing Lin . On the rationality of generating functions of certain hypersurfaces over finite fields. AIMS Mathematics, 2023, 8(6): 13898-13906. doi: 10.3934/math.2023711
    [5] Shuangnian Hu, Rongquan Feng . The number of solutions of cubic diagonal equations over finite fields. AIMS Mathematics, 2023, 8(3): 6375-6388. doi: 10.3934/math.2023322
    [6] Guangyan Zhu, Shiyuan Qiang, Mao Li . Counting rational points of two classes of algebraic varieties over finite fields. AIMS Mathematics, 2023, 8(12): 30511-30526. doi: 10.3934/math.20231559
    [7] Kareem T. Elgindy, Hareth M. Refat . A direct integral pseudospectral method for solving a class of infinite-horizon optimal control problems using Gegenbauer polynomials and certain parametric maps. AIMS Mathematics, 2023, 8(2): 3561-3605. doi: 10.3934/math.2023181
    [8] Yanbo Song . The recurrence formula for the number of solutions of a equation in finite field. AIMS Mathematics, 2021, 6(2): 1954-1964. doi: 10.3934/math.2021119
    [9] Wenxu Ge, Weiping Li, Tianze Wang . A remark for Gauss sums of order 3 and some applications for cubic congruence equations. AIMS Mathematics, 2022, 7(6): 10671-10680. doi: 10.3934/math.2022595
    [10] Zhichao Tang, Xiang Fan . Ternary cyclotomic numbers and ternary Jacobi sums. AIMS Mathematics, 2024, 9(10): 26557-26578. doi: 10.3934/math.20241292
  • Let p be an odd prime and let Fq be a finite field of characteristic p with order q=ps. For f(x1,,xn)Fq[x1,...,xn], we denote by N(f(x1,,xn)=0) the number of Fq-rational points on the affine hypersurface f(x1,,xn)=0. In 1981, Myerson gave a formula for N(x41++x4n=0). Recently, Zhao and Zhao obtained an explicit formula for N(x41+x42=c) with cFq:=Fq{0}. In this paper, by using the Gauss sum and Jacobi sum, we arrive at explicit formulas for N(x41+x42+x43=c) and N(x41+x42+x43+x44=c) with cFq.


    Let Z and Z+ stand for the set of all integers and the set of all positive integers. In this paper, we always let p be an odd prime and Fq be a finite field of q=ps elements with sZ+. Let f(x1,,xn) be a polynomial with n variables in Fq. We set N(f=0) to be the number of Fq-rational points of the affine hypersurface f(x1,,xn)=0. That is, one has

    N(f=0)=N(f(x1,,xn)=0)={(x1,,xn)Fnq|f(x1,,xn)=0}.

    Calculating the exact value of N(f=0) is a main topic in finite fields. Generally speaking, it is difficult to give an exact formula for N(f=0). Studying the explicit formula for N(f=0) under certain conditions has attracted a lot of authors for many years. See, for instance, [1,2,4,6,7,8,9,10,11,12,16,17,18,19,20,21,22,23,24].

    In 1977, Chowla, Cowles and Cowles [8] got a formula for the rational points of the hypersurface

    x31+x32++x3n=0

    in Fp. Recently, Zhang and Hu [23] presented an explicit formula for the rational points of the hypersurface

    x31+x32+x33+x34=c, cFp.

    In fact, let ˜N(c) be the rational points of x31+x32+x33+x34=c, cFp with p1(mod3), and Fp=g with g being a generator of Fp. Then they showed that

    ˜N(c)={p36p12p(5d27b), if c=g3m+1 with mZ,p36p12p(5d±27b), if c=g3m+2 with mZ,p36p+5dp, if c=g3m with mZ.

    On the other hand, Myerson [17] extended the result in [8] to the field Fq and first studied the rational points of the hypersurface

    x41++x4n=0

    over Fq. Now let q3(mod4). Then p3(mod4) and gcd(4,q1)=2. Noticing the fact

    N(x41++x4n=c)=N(xgcd(4,q1)1++xgcd(4,q1)n=c)=N(x21++x2n=c),

    it follows from Theorems 6.26 and 6.27 in [15] that the following result is true.

    Theorem 1.1. Let q3(mod4) and f(x1,,xn)=x41++x4ncFq[x] with cFq. If n is even, then

    N(f=c)=qn1qn22η((1)n2),

    and if n is odd, then

    N(f=c)=qn1+qn12η((1)n12c),

    where η is the quadratic character of Fq.

    By Theorem 1.1, it remains to consider the case q1(mod4). When q1(mod4), it is difficult to give an explicit formula for N(x41++x4n=c) with cFq in general. Recently, Zhao and Zhao [24] presented an explicit formula for the number of rational points of the hypersurface x41+x42=c with cFq.

    In this paper, we investigate the number of rational points of the following quartic diagonal hypersurface: f1(x1,x2,x3)=c and f2(x1,x2,x3)=c, where cFq and

    f1(x1,x2,x3):=x41+x42+x43

    and

    f2(x1,x2,x3,x4):=x41+x42+x43+x44.

    For any primitive element g of Fq, we define the index of c with respect to g, denoted by indg(c), to be the unique integer r[1,q1] such that c=gr (see, for instance, [3]). The first main result of this paper can be stated as follows.

    Theorem 1.2. Let F=Fq be a finite field with q=ps and cFq. Let g be a primitive element of Fq.

    (i). If either p1(mod8) or p5(mod8) and s is even, then

    N(f1=c)={q2+17q+6a(1)s+4a2,if   indg(c)0(mod4),q27q+6a(1)s+4ab,if   indg(c)1(mod4),q23q+6a(1)s4a2,if   indg(c)2(mod4),q27q+6a(1)s4ab,if   indg(c)3(mod4);

    If p5(mod8) and s is odd, then

    N(f1=c)={q23q6a4a2,if   indg(c)0(mod4),q2+5q6a4ab,if   indg(c)1(mod4),q27q6a+4a2,if   indg(c)2(mod4),q2+5q6a+4ab,if   indg(c)3(mod4),

    where a+bi=(a+bi)s with i2=1 and a and b being integers such that

    a2+b2=p,a1(mod4), bagq14(modp).

    (ii). Let p3(mod4) and q1(mod4). If q1(mod8), then

    N(f1=c)={q2+17q+36r2+18r,if   indg(c)0(mod4),q27q+18r±12rq9r2,if   indg(c)1(mod4),q23q36r2+18r,if   indg(c)2(mod4),q27q+18r12rq9r2,if   indg(c)3(mod4),

    If q5(mod8), then

    N(f1=c)={q2+17q+36r230r+4,if   indg(c)0(mod4),q27q+18r12±4(3r2)q(3r2)2,if   indg(c)1(mod4),q23q36r2+66r28,if   indg(c)2(mod4),q27q+18r124(3r2)q(3r2)2,if   indg(c)3(mod4),

    where r is uniquely determined by q=r2+4t2 with r1(mod4).

    From Theorem 1.1, the following result follows immediately.

    Corollary 1.1. Let F=Fq be a finite field with q=ps such that q1(mod4) and cFq. Then N(f1=c)=q2+O(q).

    Consequently, the second main result of this paper can be stated as follows.

    Theorem 1.3. Let F=Fq be a finite field with q=ps and cFq. Let g be a primitive element of Fq.

    (i). Let p1(mod4). If s is even, then

    N(f2=c)={q3(60a+17)q4a2,if   indg(c)0(mod4),q3+(20a24b17)q4a2,if   indg(c)1(mod4),q3+(20a17)q4a2,if   indg(c)2(mod4),q3+(20a+24b17)q4a2,if   indg(c)3(mod4);

    If p1(mod8) and s is odd, then

    N(f2=c)={q3+(60a17)q4a2,if   indg(c)0(mod4),q3(20a24b+17)q4a2,if   indg(c)1(mod4),q3(20a+17)q4a2,if   indg(c)2(mod4),q3(20a+24b+17)q4a2,if   indg(c)3(mod4);

    If p5(mod8) and s is odd, then

    N(f2=c)={q3+(4a+1)7q4a2,if   indg(c)0(mod4),q3(4a8b7)q4a2,if   indg(c)1(mod4),q3(20a7)q4a2,if   indg(c)2(mod4),q3(4a+8b7)q4a2,if   indg(c)3(mod4)

    with a+bi=(a+bi)s, where a and b are integers such that

    a2+b2=p, a1(mod4), bagq14(modp).

    (ii). Let p3(mod4) and q1(mod4). If q1(mod8), then

    N(f2=c)={q317q36r2180rq,if   indg(c)0(mod4),q27q+18r±12rq9r2,if   indg(c)1(mod4),q317q36r2+60rq,if   indg(c)2(mod4),q317q36r2+60rq±24qq9r2,if   indg(c)3(mod4),

    If q5(mod8), then

    N(f2=c)={q3+103q(6r4)2180rq,if   indg(c)0(mod4),q357q(6r4)2+60rq24qq(3r2)2,if   indg(c)1(mod4),q357q(6r4)2+60rq,if   indg(c)2(mod4),q357q(6r4)2+60rq±24qq(3r2)2,if   indg(c)3(mod4),

    where r is uniquely determined by q=r2+4t2 with r1(mod4).

    From Theorem 1.2, one can easily deduce the following result.

    Corollary 1.2. Let F=Fq be a finite field with q=ps such that q1(mod4) and cFq. Then N(f2=c)=q3+O(q32).

    This paper is organized as follows. First of all, in Section 2, we present several basic concepts including the Gauss sums and Jacobi sums, and give some preliminary lemmas. Then in Section 3, we give the proofs of Theorems 1.1 and 1.2. Finally, in Section 4, we supply some examples to illustrate the validity of our main results.

    In this section, we present several auxiliary lemmas that are needed in the proofs of Theorems 1.1 and 1.2.

    Let α be an element of Fq. Then the trace and norm of α relative to Fp are defined by (see, for example, [13,14,15])

    TrFq/Fp(α):=α+αp++αps1

    and

    NFq/Fp(α):=ααpαps1=αq1p1,

    respectively. For the simplicity, we write Tr(α) and N(α) for TrFq/Fp(α) and NFq/Fp(α), respectively. Let χ be a multiplicative character of Fq and ψ an additive character of Fq. Then we define the Gauss sum G(χ,ψ) by

    G(χ,ψ):=xFqχ(x)ψ(x).

    Let χ1 and χ2 be multiplicative characters of Fq. Then the sum

    J(χ1,χ2):=xFqχ1(x)χ2(1x)

    is called a Jacobi sum in Fq. The readers are referred to [5] for the basic facts on Jacobi sum.

    The character ψ0 represents the trivial additive character such that ψ0(x)=1 for all xFq and χ0 represents the trivial multiplicative character such that χ0(x)=1 for all xFq. For any xFq, let

    ψ1(x):=exp(2πi Tr(x)p).

    Then we call ψ1 the canonical additive character of Fq. Let aFq. Then we define

    ψa(x):=exp(2πi Tr(ax)p)

    for all xFq. For each character ψ of Fq there is associated the conjugate character ¯ψ defined by ¯ψ(x)=¯ψ(x) for all xFq.

    We give several basic identities about Gauss sums as follows.

    Lemma 2.1. [13,15] Each of the following is true:

    (i). G(χ,ψab)=¯χ(a)G(χ,ψb) for aFq, bFq.

    (ii). G(¯χ,ψ)=χ(1)¯G(χ,ψ).

    (iii). |G(χ,ψ)|=q for χχ0 and ψψ0.

    Lemma 2.2. [13,15] Let Fq be a finite field with q=ps and η be the quadratic character of Fq. Then

    G(η,ψ1)={(1)s1q, if   p1(mod4),(1)s1isq, if   p3(mod4).

    If χ1 and χ2 are nontrivial, there exists an important connection between Jacobi sums and Gauss sums that will allow us to determine the value of Jacobi sums.

    Lemma 2.3. [13,15] If χ1 and χ2 are multiplicative characters of Fq and ψ is a nontrivial additive character of Fq, then

    J(χ1,χ2)=G(χ1,ψ)G(χ2,ψ)G(χ1χ2,ψ)

    if χ1χ2 is nontrivial.

    Lemma 2.4. Let χ be a multiplicative character of Fq of order n. Then χ(1)=1 if and only if n is even and q1n is odd.

    Proof. Let g be a generator of Fq. Then gq1=1 and gq12=1.

    First, we prove the necessity. Let χ(1)=1. For any xFq, we have χq1(x)=χ(xq1)=χ(1)=1. Thus χq1=χ0. Since ord(χ)=n and χq1=χ0, we obtain that n|(q1). From (χ(1))n=χn(1)=χ0(1)=1 and χ(1)=1, one can deduce that (1)n=1. Hence n must be even.

    On the other hand, since gq12=1, we have χn2(g)=±1. But ord(χn2)=2 together with the assumption that g is a generator of Fq implies that χn2(g)1. Thus

    1=χ(1)=χ(gq12)=χ(gn2q1n)=(χn2(g))q1n=(1)q1n.

    Therefore q1n is odd as required. The necessity is proved.

    Now we prove the sufficiency. Let n be even and q1n be odd. Then ξ:=χ(g) is an nth primitive root of unity. Since n is even and ord(ξ)=n, we have ξn2=1. Since q1n is odd, i.e., q1n1(mod2), one derives that q12n2(modn). Thus

    χ(1)=χ(gq12)=ξq12=ξn2=1

    as desired. Hence the sufficiency part is proved.

    This finishes the proof of Lemma 2.4.

    If p3(mod4), then we easily have the following facts.

    q=ps{1(mod4),if and only if s is even,3(mod4),if and only if s is odd.

    If p3(mod4) and q=ps3(mod4), then there does not exist a multiplicative character φ of Fq with ord(φ)=4. Otherwise, if φ^Fq with ord(φ)=4, where ^Fq is the dual group consisting of all multiplicative characters of Fq. Since ^FqFq, one has 4(q1) which is a contradiction.

    From the above statement, we deduce the following consequence.

    Corollary 2.1. Let φ be a multiplicative character of Fq of order 4 with q=ps. Then the following is true.

    (i). If p1(mod4), then

    φ(1)={1,if   p1(mod8) or p5(mod8) and s is even,1,if   p5(mod8) and s is odd.

    (ii). If p3(mod4), then s is even and φ(1)=1.

    Proof. (ⅰ). Since p1(mod4), we have either p1(mod8) or p5(mod8).

    If p1(mod8), then ps1(mod8). Hence q140(mod2). By Lemma 2.4, we have φ(1)=1.

    If p5(mod8) and s is even, then ps1(mod8). Therefore

    q14=ps140(mod2).

    Then Lemma 2.4 tells us that φ(1)=1.

    If p5(mod8) and s is odd, then ps5(mod8). It follows that

    q14=ps141(mod2).

    So by Lemma 2.4, one can deduce that φ(1)=1. This finishes the proof of (ⅰ).

    (ⅱ). From the above discussion, we can easily deduce that s is even.

    Let p3(mod4). It implies p3(mod8) or p5(mod8). Since s is even, one has q=ps1(mod8). It follows that

    q14=ps140(mod2).

    By Lemma 2.4, one has φ(1)=1. The proof of (ⅱ) is finished.

    Let φ be a generator of ^Fq. Then ord(φ)=q1 and the multiplicative character λ with order d with d|(q1) has the expression λ=φq1dt, where 0t<d and gcd(t,d)=1. Actually, we have λ=φt with 0t<q1. Hence ord(λ)=q1gcd(t,q1). Since ord(λ)=d, one has d=q1gcd(t,q1). This infers that gcd(t,q1)=q1d, and so q1dt. Thus one can write t=q1dt with 1td and gcd(t,d)=1. That is, one has λ=φq1dt with 1td and gcd(t,d)=1. Moreover, the number of multiplicative character λ with order d is ϕ(d), where ϕ is Euler's totient function. In the following, we express the number of solutions of f(x)=b as certain character sums.

    Lemma 2.5. We have

    N(xn=b)=gcd(n,q1)1j=0λj(b),

    where λ is a multiplicative character of Fq with order gcd(n,q1).

    Proof. We divide this into the following three cases. Let λ be any multiplicative character of Fq with order d:=gcd(n,q1).

    CASE 1. b=0. Then xn=0 has only zero solution x=0 in Fq. That is, one has N(xn=0)=1. Since λ0(0)=1 and λj(0)=0 for 1jd1, it follows that

    d1j=0λj(0)=1=N(xn=0)

    as desired. So part (ⅰ) is proved in this case.

    CASE 2. b0 and xn=b has a solution in Fq. Let b=gk and x=gy. Then xn=b is equivalent to the congruence

    nyk(modq1). (2.1)

    Then the congruence (2.1) has exactly d=gcd(n,q1) solutions y. Hence xn=b has exactly d solutions in Fq. Namely, N(xn=b)=d.

    Let x0 be an element of Fq with xn0=b. For any integer j with 0jd1, since d|n implying that λn=χ0, the trivial multiplicative character, we have

    λj(b)=λj(xn0)=(λn(x0))j=1.

    Therefore one derives that

    d1j=0λj(b)=d1j=01=d=N(xn=b)

    as desired. Hence part (ⅰ) holds in this case.

    CASE 3. b0 and xn=b has no solution in Fq. Then N(xn=b)=0 and (2.1) has no solution in Fq. Let b=gk. Then dk and λ(b)=λk(g)1 since λ(g) is a d-th primitive root of unity. Then

    λ(b)d1j=0λj(b)=d1j=0λj+1(b)=d1j=0λj(b),

    which implies that

    (λ(b)1)d1j=0λj(b)=0.

    Since λ(b)1, we have

    d1j=0λj(b)=0=N(xn=b)

    as required.

    The proof of Lemma 2.5 is complete.

    Let χ be a multiplicative character of Fp and ψ be an additive character of Fp. From the multiplicativity of the norm and the additivity of the trace, it follows that χN is a multiplicative and ψTr an additive character of Fq. We say that the multiplicative character χ of Fq is lifted from the multiplicative character χ of Fp if χ=χN. We also say that the multiplicative character χ of Fp is lifting to the multiplicative character χ of Fq. Similarly, we say that the additive character ψ of Fq is lifted from the additive character ψ of Fp if ψ=ψTr. We also say that the additive character ψ of Fp is lifting to the additive character ψ of Fq. The following lemma is due to Hasse and Davenport establishes an important relationship between the Gauss sum G(χ,ψ) of Fp and the Gauss sum G(χ,ψ) of Fq.

    Lemma 2.6. [13,15] Let ψ be an additive and χ a multiplicative character of Fp, not both of them trivial. Suppose that ψ and χ are lifting to characters ψ and χ, respectively, of the finite extension field Fq of Fp with [Fq:Fp]=s. Then

    G(χ,ψ)=(1)s1Gs(χ,ψ).

    The characters of Fp can be lifted to the characters of Fq, but not all the characters of Fq can be obtained by lifting a character of Fp. The following result characterizes all the characters of Fq that can be obtained by lifting a character of Fp.

    Lemma 2.7. Let χ be a multiplicative character of Fq with q=ps. Then χ can be lifted from a multiplicative character χ of Fp if and only if χp1 is trivial.

    Proof. Let g be a generator of Fq. Since

    Np1(g)=(gq1p1)p1=gq1=1

    and

    Nl(g)=(gq1p1)l1 for 1l<p1,

    one knows that N(g) is a generator of Fp.

    First of all, we prove the necessity. Suppose that χ can be obtained by lifting a multiplicative character χ of Fp. It then follows that χ(g)=χ(N(g)). Since χ is a character of Fp, we get that the values of χ are (p1)-th roots of unity. Hence

    χp1(g)=χp1(N(g))=(χ(N(g)))p1=1.

    Thus χp1 is trivial. The necessity is proved.

    Now we prove the sufficiency. Let χp1 be trivial. Since χ is a multiplicative character of Fq, χ(g) must be a (q1)-th roots of unity, say

    χ(g):=exp(2πijq1) (2.2)

    for some integer j with 0jq2, where throughout this paper, i stands for the 4-th primitive root of unity, i.e. i4=1 and i21. Since χp1 is trivial, we have

    χp1(g)=exp(2πij(p1)q1)=1.

    This implies that (q1)j(p1). It follows that q1p1j. Therefore we derive that

    j=kq1p1

    for some kZ.

    By substituting j=kq1p1 in (2.2), we obtain that

    χ(g)=exp(2πikp1). (2.3)

    Since N(g) is a generator of Fp, one can define a multiplicative character χ of Fp by

    χ(N(g)):=exp(2πikp1). (2.4)

    From (2.3) and (2.4), we get χ(g)=χ(N(g)). This completes the sufficiency.

    This finishes the proof of Lemma 2.7.

    For a certain special multiplicative character of Fp, the following result gives an explicit formula about the associated Jacobi sums.

    Lemma 2.8. [5] Let p1(mod4) be an odd prime number and let φ be a multiplicative character of Fp with ord(φ)=4. If θ is a generator of Fp with φ(θ)=i, then

    J(φ,φ)=a+bi,

    where a and b are integers such that a2+b2=p, a1(mod4) and baθp14(modp).

    For a certain special multiplicative character of Fq, we establish an explicit formula of the associated Gauss sums.

    Lemma 2.9. Let Fq be a finite field with q=ps, where p1(mod4) is an odd prime and sZ+. Let φ be a multiplicative character of Fq with ord(φ)=4 and g be a primitive element of Fq with φ(g)=i. Then

    G2(φ,ψ1)=(a+bi)sq,

    where a and b are integers such that

    a2+b2=p,a1(mod4),bagq14(modp).

    Proof. First we claim that if χ=χN, then ord(χ)=ord(χ). To prove it, we let ord(χ)=m and ord(χ)=l. Since N(x)Fp for all xFq, we have

    χm(x)=(χ(N(x)))m=χm(N(x))=χ0(N(x))=1.

    It follows that l|m. Conversely, let g be a generator of Fp. Then χ(g) is a primitive m-th root of unity. Since the norm map N is surjective, there exist an element gFq such that N(g)=g. Then we have

    1=χl(g)=(χ(N(g)))l=χl(N(g))=χl(g)

    Hence one can deduce that m|l. So the desired result l=m follows immediately. Namely, we have ord(χ)=ord(χ). The claim is proved.

    Since ord(φ)=4 and p1(mod4), we derive that φp1 is trivial. By Lemma 2.7, φ can be obtained by lifting a character φ of Fp. Morever, the additive character ψ1(x)=exp(2πixp) of Fp can be lifted to the additive character ψ1(x)=exp(2πi Tr(x)p) of Fq. By the famous Hasse-Davenport relation (see Lemma 2.6), we get that

    G(φ,ψ1)=(1)s1Gs(φ,ψ1).

    Hence

    G2(φ,ψ1)=(G2(φ,ψ1))s. (2.5)

    By Lemma 2.3, the following identity is true:

    G2(φ,ψ1)=J(φ,φ)G((φ)2,ψ1). (2.6)

    Since ord(φ)=4, one has ord((φ)2)=2. Then by Lemma 2.2, we have

    G((φ)2,ψ1)=p. (2.7)

    Now we evaluate J(φ,φ). Since the order of lifting character is invariant, we have ord(φ)=ord(φ)=4. Note that ord(N(g))=p1. It means that N(g) is a primitive element of Fp. Noticing that i=φ(g)=φ(N(g))) and ord(φ)=4, Lemma 2.8 tells that

    J(φ,φ)=a+bi,

    where a and b are integers such that

    a2+b2=p,a1(mod4),baN(g)p14(modp). (2.8)

    But N(g)=gq1p1. It then follows from (2.8) that

    bagq14(modp). (2.9)

    From (2.6) to (2.9), we deduce that

    G2(φ,ψ1)=(a+bi)p. (2.10)

    It follows from (2.7), (2.10) and q=ps that

    G2(φ,ψ1)=(a+bi)sq,

    where a and b are integers satisfying (2.8).

    This concludes the proof of Lemma 2.9.

    Lemma 2.10. Let Fq be a finite field with q=ps elements and q1(mod4). Let φ be a multiplicative character of Fq with ord(φ)=4 and cFq. Then we have

    N(x41+...+x4n=c)=qn1+1qxFq(¯φ(x)G(φ,ψ1)+(N(x)p)(1)s1q+φ(x)¯G(φ,ψ1))nψ1(xc).

    Proof. For xFq, from the trigonometric identity

    yFqexp(2πi Tr(xy)p)={q,if  x=0,0,if  x0,

    we can deduce that

    N(x41+...+x4n=c)=1qxFq(x1,...,xn)Fnqexp(2πi Tr(x(x41+...+x4nc))p)=1qxFq(yFqexp(2πi Tr(xy4)p))nexp(2πi Tr(xc)p)=qn1+1qxFq(yFqexp(2πi Tr(xy4)p))nψ1(xc). (2.11)

    Denote

    Rx:=yFqexp(2πi Tr(xy4)p).

    By Lemma 2.5, we get that

    Rx=1+zFqN(y4=z)exp(2πi Tr(xz)p)=1+zFq(1+φ(z)+φ2(z)+φ3(z))exp(2πi Tr(xz)p)=1+zFq(1+φ(z)+φ2(z)+φ3(z))ψ1(xz),

    where φ is a multiplicative character of Fq with ord(φ)=4. Then φ(g)=±i. WLOG, in what follows, we set φ(g)=i.

    Note that φ2=η and φ3=¯φ, we know that

    Rx=zFqψ1(xz)+zFqφ(z)ψ1(xz)+zFqη(z)ψ1(xz)+zFq¯φ(z)ψ1(xz).

    Since

    zFqψ1(xz)=0,

    it follows from the definition of Gauss sum and Lemma 2.1 that

    Rx=zFqφ(z)ψ1(xz)+zFqη(z)ψ1(xz)+zFq¯φ(z)ψ1(xz)=G(φ,ψx)+G(η,ψx)+G(¯φ,ψx)=¯φ(x)G(φ,ψ1)+¯η(x)G(η,ψ1)+φ(x)G(¯φ,ψ1).

    Note that the value of η is real and η(x)=(N(x)p), from the Lemmas 2.1 and 2.2 we deduce that

    Rx=¯φ(x)G(φ,ψ1)+(N(x)p)(1)s1q+φ(x)¯G(φ,ψ1). (2.12)

    So the desired result follows immediately.

    Lemma 2.11. Let Fq be a finite field of q=ps with p3(mod4) and q1(mod4). Let φ be a multiplicative character of Fq with ord(φ)=4. Then

    G2(φ,ψ1)+¯G2(φ,ψ1)={6rq,if q1(mod8),(6r4)q,if q5(mod8),

    where r is uniquely determined by

    q=r2+4t2, r1(mod4).

    Proof. By p3(mod4) and q1(mod4), we can deduce s is even immediately.

    First of all, we calculate N(x41+x42=1) using Lemma 2.10. Setting n=2 in Lemma 2.10 gives us that

    N(x41+x42=c)=q+1qxFq(¯φ(x)G(φ,ψ1)+(N(x)p)(1)s1q+φ(x)¯G(φ,ψ1))2ψ1(xc):=q+1qxFqTx. (2.13)

    Since φ3=¯φ, ¯φ2=φ2=η, φ2(x)=(N(x)p) and Lemma 2.1 implying that

    G(φ,ψ1)¯G(φ,ψ1)=q,

    it follows that

    Tx=(η(x)(G2(φ,ψ1)+¯G2(φ,ψ1))+2(1)s1q(φ(x)G(φ,ψ1)+φ(1)¯φ(x)¯G(φ,ψ1))+(1+2φ(1))q)ψ1(xc).

    By using the following simple facts

    η(x)=η(xc)η(c),φ(x)=φ(1)φ(c)φ(xc),¯φ(x)=φ(1)¯φ(c)¯φ(xc),

    we deduce that

    Tx=(η(xc)η(c)(G2(φ,ψ1)+¯G2(φ,ψ1))+(1+2φ(1))q+2(1)s1q(φ(1)φ(c)φ(xc)G(φ,ψ1)+1¯φ(c)¯φ(xc)¯G(φ,ψ1)))ψ1(xc). (2.14)

    Since xc runs over Fq as x runs through Fq, it follows from (2.13), (2.14) and the fact of xFqψ1(xc)=1 that

    N(x41+x42=c)=q+1q(G2(φ,ψ1)+¯G2(φ,ψ1)η(c)G(η,ψ1)(1+2φ(1))q+2(1)s1qφ(1)φ(c)G2(φ,ψ1)+(1)s1q2¯φ(c)¯G(φ,ψ1)G(¯φ,ψ1)). (2.15)

    Since s is even. From Lemma 2.1, 2.2, Corollary 2.1 and (2.15), one has

    N(x41+x42=1)=q3G2(φ,ψ1)+¯G2(φ,ψ1)q. (2.16)

    Consequently, we calculate N(x41+x42=1) by using another method. Let Nn be the number of solutions of

    x41+x42++x4n=0

    over Fq. From Lemma 6 to Lemma 8 in [17], we can easily derive that

    N2={4q3,if q1(mod8),1,if q5(mod8)

    and

    N3=q26rq+6r,

    where r is uniquely determined by

    q=r2+4t2, r1(mod4).

    Since

    N3=(x1,x2,x3)F3qx41+x42+x43=01=(x1,x2)F2qx41+x42=01+x3Fqx41+x42=x431
    =N2+(q1)N(x41+x42=1),

    one has

    N(x41+x42=1)=N3N2q1={q2(6r+4)q+(6r+3)q1,if q1(mod8),q26rq+(6r1)q1,if q5(mod8). (2.17)

    From (2.16) and (2.17), one deduces that

    G2(φ,ψ1)+¯G2(φ,ψ1)={6rq,if q1(mod8),(6r4)q,if q5(mod8)

    as desired. This completes the proof of Lemma 2.11.

    Remark 2.1. From Lemma 2.11, we can write

    G2(φ,ψ1)={3rq+Ai,if q1(mod8),(3r2)q+Bi,if q5(mod8).

    But it is known that G2(φ,ψ1)¯G2(φ,ψ1)=q2. So one has A=±q29r2q and B=±q2(3r2)2q.

    In this section, we present the proofs of the main results of this paper. We begin with the proof of Theorem 1.2.

    Proof of Theorem 1.2. (ⅰ). Let p1(mod4). Then Lemma 2.10 applied to n=3 gives us that

    N(f1=c)=q2+1qxFq(¯φ(x)G(φ,ψ1)+(N(x)p)(1)s1q12+φ(x)¯G(φ,ψ1))3ψ1(xc):=q2+1qxFqTx. (3.1)

    Since φ3=¯φ, φ2(x)=(N(x)p) and Lemma 2.1 implying that G(φ,ψ1)¯G(φ,ψ1)=q, it follows that

    Tx=(φ(x)G3(φ,ψ1)+φ2(x)(1)s1q32+φ(1)¯φ(x)¯G3(φ,ψ1)+3(1)s1G2(φ,ψ1)q12+3φ(1)¯φ(x)G(φ,ψ1)q+3¯φ(x)G(φ,ψ1)q+3φ(x)¯G(φ,ψ1)q+3φ(1)φ(x)¯G(φ,ψ1)q+3(1)s1¯G2(φ,ψ1)q12+6φ(1)(1)s1φ2(x)q32)ψ1(xc).

    By using the following simple facts

    φ(x)=φ(1)φ(c)φ(xc),¯φ(x)=φ(1)¯φ(c)¯φ(xc),

    we deduce that

    Tx=(φ(1)φ(c)φ(xc)G3(φ,ψ1)+1φ2(c)φ2(xc)(1)s1q32+1¯φ(c)¯φ(xc)¯G3(φ,ψ1)+3(1)s1G2(φ,ψ1)q12+3¯φ(c)¯φ(xc)G(φ,ψ1)q+3φ(1)¯φ(c)¯φ(xc)G(φ,ψ1)q+3φ(1)φ(c)φ(xc)¯G(φ,ψ1)q+3φ(c)φ(xc)¯G(φ,ψ1)q+3(1)s1¯G2(φ,ψ1)q12+6φ(1)φ2(c)(1)s1φ2(xc)q32)ψ1(xc). (3.2)

    Since xc runs over Fq as x runs through Fq, it follows from (3.1), (3.2) and the definition of Gauss sum that

    N(f1=c)=q2+1q(φ(1)φ(c)G4(φ,ψ1)+(1)s1q321φ2(c)G(φ2,ψ1)+1¯φ(c)¯G3(φ,ψ1)G(¯φ,ψ1)+3(1)s1q12G2(φ,ψ1)xFqψ1(xc)+3q¯φ(c)G(φ,ψ1)G(¯φ,ψ1)+3qφ(1)¯φ(c)G(φ,ψ1)G(¯φ,ψ1)+3qφ(1)φ(c)¯G(φ,ψ1)G(φ,ψ1)+3qφ(c)¯G(φ,ψ1)G(φ,ψ1)+3(1)s1q12¯G2(φ,ψ1)xFqψ1(xc)+6(1)s1q32φ(1)φ2(c)G(φ2,ψ1)).

    Note that 1φ(c)=¯φ(c),¯φ2(c)=φ2(c). Then from Lemmas 2.1 and 2.2, we derive that

    N(f1=c)=q2+(6φ(1)+1)φ2(c)q+(1+φ(1))3q(φ(c)+¯φ(c))3(1)s1q12(G2(φ,ψ1)+¯G2(φ,ψ1))+φ(1)q(¯φ(c)G4(φ,ψ1)+φ(c)¯G4(φ,ψ1)). (3.3)

    Since φ(1)=¯φ(1)=1, it follows from (3.3) that

    N(f1=1)=q2+(10φ(1)+7)q3(1)s1q12(G2((φ,ψ1)+¯G2(φ,ψ1)))+1qφ(1)(G2((φ,ψ1)+¯G2(φ,ψ1)))2.

    From Lemma 2.9 and letting a+bi:=(a+bi)s, we know that

    G2(φ,ψ1)+¯G2(φ,ψ1)=2aq,G2(φ,ψ1)¯G2(φ,ψ1)=2biq. (3.4)

    Thus

    N(f1=1)=q2+(10φ(1)+7)q+6a(1)s+4a2φ(1).

    Then by Corollary 2.1 we get

    N(f1=1)={q2+17q+6a(1)s+4a2,if either p1(mod8), or p5(mod8) and s is even,q23q6a4a2,if  p5(mod8) and s is odd. (3.5)

    From (3.3), (3.4) and noticing that φ(g)=i, we obtain that

    N(f1=g)=q2(6φ(1)+1)q+6a(1)s+4abφ(1).

    So applying Corollary 2.1 gives that

    N(f1=g)={q27q+6a(1)s+4ab,if either p1(mod8),or p5(mod8) and s is even,q2+5q6a4ab,if  p5(mod8)and s is odd. (3.6)

    Similarly, from φ(g2)=1 and φ(g3)=i, one can deduce that

    N(f1=g2)={q23q+6a(1)s4a2,if either p1(mod8),or p5(mod8) and s is even,q27q6a+4a2,if  p5(mod8) and s is odd (3.7)

    and

    N(f1=g3)={q27q+6a(1)s4ab,if either p1(mod8),or p5(mod8) and s is even,q2+5q6a+4ab,if  p5(mod8) and s is odd. (3.8)

    Hence part (i) of Theorem 1.2 is proved.

    (ⅱ). Let p3(mod4) and q1(mod4). Then s is even. From Corollary 2.1 and (3.3), one has

    N(f1=c)=q2+7qφ2(c)+6q(φ(c)+¯φ(c))+3G2(φ,ψ1)+¯G2(φ,ψ1)q+¯φ(c)G4(φ,ψ1)+φ(c)¯G4(φ,ψ1)q. (3.9)

    Then from Lemma 2.11, Remark 2.1 and (3.9), it follows that

    N(f1=1)={q2+17q+36r2+18r,if q1(mod8),q2+17q+36r230r+4,if q5(mod8), (3.10)
    N(f1=g)={q27q+18r±12rq9r2,if q1(mod8),q27q+18r12±4(3r2)q(3r2)2,if q5(mod8), (3.11)
    N(f1=g2)={q23q36r2+18r,if q1(mod8),q23q36r2+66r28,if q5(mod8) (3.12)

    and

    N(f1=g3)={q27q+18r12rq9r2,if q1(mod8),q27q+18r124(3r2)q(3r2)2,if q5(mod8). (3.13)

    as required. So part (ⅱ) of Theorem 1.2 is proved.

    This concludes the proof of Theorem 1.2.

    Now we turn our attention to the proof of Theorem 1.3.

    Proof of Theorem 1.3. (ⅰ). Let p1(mod4). Then applying Lemma 2.10 to n=4 gives us that

    N(f2=c)=q3+1qxFq(¯φ(x)G(φ,ψ1)+(N(x)p)(1)s1q12+φ(x)¯G(φ,ψ1))4ψ1(xc). (3.14)

    Let

    Tx:=(¯φ(x)G(φ,ψ1)+(N(x)p)(1)s1q12+φ(x)¯G(φ,ψ1))4ψ1(xc).

    Since

    φ2(x)=¯φ2(x)=(N(x)p),φ3=¯φ,φ4(x)=¯φ4(x)=1,

    it follows from Lemma 2.1 that

    Tx=ψ1(xc)(G4(φ,ψ1)+q2+¯G4(φ,ψ1)+4(1)s1q12¯φ(x)G3(φ,ψ1)+4φ(1)φ2(x)qG2(φ,ψ1)+4(1)s1q32φ(x)G(φ,ψ1)+4(1)s1q32¯φ(x)¯G(φ,ψ1)+4qφ(1)φ2(x)¯G2(φ,ψ1)+4(1)s1q12φ(x)¯G3(φ,ψ1)+6qφ2(x)G2(φ,ψ1)+6q2+6qφ2(x)¯G2(φ,ψ1)+12(1)s1q32φ(x)G(φ,ψ1)+12q2φ(1)+12(1)s1q32¯φ(x)¯G(φ,ψ1)).

    Then from the following identities

    φ(x)=φ(1)φ(c)φ(xc),¯φ(x)=φ(1)¯φ(c)¯φ(xc),

    we deduce that

    Tx=ψ1(xc)(G4(φ,ψ1)+q2+¯G4(φ,ψ1)+4(1)s1φ(1)¯φ(c)¯φ(xc)G3(φ,ψ1)q12+φ(1)4φ2(c)φ2(xc)G2(φ,ψ1)q+4(1)s1φ(1)φ(c)φ(xc)G(φ,ψ1)q32+4(1)s1φ(1)¯φ(c)¯φ(xc)¯G(φ,ψ1)q32+φ(1)4φ2(c)φ2(xc)¯G2(φ,ψ1)q+(1)s14φ(c)φ(xc)¯G3(φ,ψ1)q12+6φ2(c)φ2(xc)G2(φ,ψ1)q+6q2+6φ2(c)φ2(xc)¯G2(φ,ψ1)q+(1)s112φ(c)φ(xc)G(φ,ψ1)q32+12q2φ(1)+12(1)s1φ(1)¯φ(c)¯φ(xc)¯G(φ,ψ1)q32). (3.15)

    Since xc run through Fq whenever x run through Fq and

    1φ(c)=¯φ(c),¯φ2(c)=φ2(c),

    if follows from (3.14), (3.15), Lemmas 2.1 and Lemma 2.2 that

    N(f2=c)=q3+1qxFqTx=(q35q12φ(1)q)1q(G2(φ,ψ1)+¯G2(φ,ψ1))2+(4φ(c)+4φ(1)φ2(c)+4φ(1)¯φ(c)+6φ2(c)+12¯φ(c))(1)s1q12G2(φ,ψ1)+(4¯φ(c)+4φ(1)φ2(c)+4φ(1)φ(c)+6φ2(c)+12φ(c))(1)s1q12¯G2(φ,ψ1). (3.16)

    But φ(1)=¯φ(1)=1. By (3.16) we have

    N(f2=1)=(q35q12φ(1)q)1q(G2(φ,ψ1)+¯G2(φ,ψ1))2+(1)s1q12(22+8φ(1))(G2(φ,ψ1)+¯G2(φ,ψ1)),

    and by (3.4), one has

    N(f2=1)=(q35q12φ(1)q)4a2+(1)s12aq(22+8φ(1)).

    Thus using Corollary 2.1 gives us that

    N(f2=1)={q3(60a+17)q4a2,if  s is even,q3+(60a17)q4a2,if  p1(mod8) and s is odd,q3+(4a+1)7q4a2,if  p5(mod8) and s is odd. (3.17)

    From (3.16) and φ(g)=i we know that

    N(f2=g)=(q35q12φ(1)q)4a2+(1)s1q12(4φ(1)68i4φ(1)i)G2(φ,ψ1)+(1)s1q12(4φ(1)6+8i+4φ(1)i)¯G2(φ,ψ1)=(q35q12φ(1)q)4a2+(1)s1q12(4φ(1)6)(G2(φ,ψ1)+¯G2(φ,ψ1))+(1)s1q12(4φ(1)+8)i(G2(φ,ψ1)¯G2(φ,ψ1)).

    Also (3.4) gives that

    N(f2=g)=(q35q12φ(1)q)4a2(1)s12aq(4φ(1)+6)+(1)s12bq(4φ(1)+8).

    Thus using Corollary 2.1 tells us that

    N(f2=g)={q3+(20a24b17)q4a2,if  s is even,q3(20a24b+17)q4a2if  p1(mod8) and s is odd,q3(4a8b7)q4a2,if  p5(mod8) and s is odd. (3.18)

    In the similar way, noting that φ(g2)=1 and φ(g3)=i, one can easily deduce that

    N(f2=g2)={q3+(20a17)q4a2,if  s is even,q3(20a+17)q4a2,if  p1(mod8) and s is odd,q3(20a7)q4a2,if  p5(mod8) and s is odd. (3.19)
    N(f2=g3)={q3+(20a+24b17)q4a2,if  s is even,q3(20a+24b+17)q4a2,if  p1(mod8) and s is odd,q3(4a+8b7)q4a2,if  p5(mod8) and s is odd. (3.20)

    Combining (3.17) to (3.20) concludes the proof of part (i) of Theorem 1.3.

    (ii). Let p3(mod4) and q1(mod4). Then s is even. From Corollary 2.1, Lemma 2.11 and (3.16), one derives that

    N(f2=c)={q317q(4φ(c)+10φ2(c)+16¯φ(c))qG2(φ,ψ1)(4¯φ(c)+10φ2(c)+16φ(c))q¯G2(φ,ψ1)36r2,if q1(mod8),q317q(4φ(c)+10φ2(c)+16¯φ(c))qG2(φ,ψ1)(4¯φ(c)+10φ2(c)+16φ(c))q¯G2(φ,ψ1)(6r4)2,if q5(mod8). (3.21)

    From Lemma 2.11 and Remark 2.1, we have

    N(f2=1)={q317q36r2180rq,if q1(mod8),q3+103q(6r4)2180rq,if q5(mod8), (3.22)
    N(f2=g)={q317q36r2+60rq24qq9r2,if q1(mod8),q357q(6r4)2+60rq24qq(3r2)2,if q5(mod8), (3.23)
    N(f2=g2)={q317q36r2+60rq,if q1(mod8),q357q(6r4)2+60rq,if q5(mod8) (3.24)

    and

    N(f2=g3)={q317q36r2+60rq±24qq9r2,if q1(mod8),q357q(6r4)2+60rq±24qq(3r2)2,if q5(mod8). (3.25)

    Finally, combining (3.22) to (3.25), we arrive at the results given in part (ii) of Theorem 1.3. This finishes the proof of Theorem 1.3.

    In this section, we give two examples to demonstrate the validity of our main results.

    Example 4.1. Let N(c) be the number of F5-rational points of the affine hypersurface x41+x42+x43+x44=c with cF5. It is easy to see that 2 is a generator of F5, ind2(1)0(mod4), ind2(2)1(mod4) and s=1. From Theorem 1.3, we can deduce that a=1, b=2, N(1)=16 and N(2)=96.

    On the other hand, by Matlab, one can calculate that

    N(1)={(k,0,0,0),(0,k,0,0),(0,0,k,0),(0,0,0,k),kF5}=16

    and

    N(2)={(k1,k2,0,0),(k1,0,k2,0),(k1,0,0,k2),(0,k1,k2,0),(0,k1,0,k2),(0,0,k1,k2),kjF5,j=1,2}=96

    which coincide with the results in Theorem 1.3.

    Example 4.2. Let N(c) be the number of F25-rational points of the affine hypersurface x41+x42+x43+x44=c with cF25. Observe that x22 is irreducible over F5. Let α be a root of x22 over its split field. Then F5(α) is a extensive field of F5 with 25 elements and denoted by F25. One can write

    F25={x+yαxF5,yF5}.

    The additivity and multiplicity of F25 are defined as follows: xi+yiF25 with i=1,2, define

    (x1+y1α)+(x2+y2α):=((x1+x2)(mod5)+((y1+y2)(mod5))α

    and

    (x1+y1α)(x2+y2α):=(x1x2+2y1y2)(mod5)+((x1y2+x2y1)(mod5))α.

    By Matlab, we get that 2+4α is a generator of F25, ind2+4α(1)0(mod4), ind2+4α(α)3(mod4), and (2+4α)6=2.

    Now letting s=2, a=1 and b=2 in Theorem 1.3, one obtains that a=3, b=4, N(1)=19664 and N(α)=16064. This coincide with the results for N(1) and N(2) gotten by Matlab.

    The authors thank the anonymous referees for helpful comments and suggestions. S. F. Hong was supported partially by National Science Foundation of China Grant #11771304.

    We declare that we have no conflict of interest.



    [1] A. Adolphson and S. Sperber, p-Adic estimates for exponential sums and the theorem of ChevalleyWarning, Ann. Sci.'Ecole Norm. Sup., 20 (1987), 545-556. doi: 10.24033/asens.1543
    [2] S. Akiyama, On the pure Jacobi sums, Acta Arith., 75 (1996), 97-104. doi: 10.4064/aa-75-2-97-104
    [3] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
    [4] J. Ax, Zeros of polynomials over finite fields, Amer. J. Math., 86 (1964), 255-261. doi: 10.2307/2373163
    [5] B. Berndt, R. Evans, K. Williams, Gauss and Jacobi Sums, Wiley-Interscience, New York, 1998.
    [6] W. Cao, A special degree reduction of polynomials over finite fields with applications, Int. J. Number Theory, 7 (2011), 1093-1102. doi: 10.1142/S1793042111004277
    [7] W. Cao and Q. Sun, On a class of equations with special degrees over finite fields, Acta Arith., 130 (2007), 195-202. doi: 10.4064/aa130-2-8
    [8] S. Chowla, J. Cowles and M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502-506. doi: 10.1016/0022-314X(77)90010-5
    [9] L. Carlitz, The numbers of solutions of a particular equation in a finite field, Publ. Math. Debrecen, 4 (1956), 379-383.
    [10] S. N. Hu, S. F. Hong and W. Zhao, The number of rational points of a family of hypersurfaces over finite fields, J. Number Theory, 156 (2015), 135-153. doi: 10.1016/j.jnt.2015.04.006
    [11] S. N. Hu and J. Y. Zhao, The number of rational points of a family of algebraic varieties over finite fields, Algebra Colloq., 24 (2017), 705-720. doi: 10.1142/S1005386717000475
    [12] H. Huang, W. Gao and W. Cao, Remarks on the number of rational points on a class of hypersurfaces over finite fields, Algebra Colloq., 25 (2018), 533-540. doi: 10.1142/S1005386718000366
    [13] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Second Edition, Springer-Verlag, New York, 1990.
    [14] N. Jacobson, Basic Algebra I, Freeman, New York, 1985.
    [15] R. Lidl, H. Niederreiter, Finite Fields, second ed., Encyclopedia Math. Appl., Cambridge University Press, Cambridge, 1997.
    [16] O. Moreno and C. J. Moreno, Improvement of Chevalley-Warningandthe Ax-Katz theorem, Amer. J. Math., 117 (1995), 241-244. doi: 10.2307/2375042
    [17] G. Myerson, On the number of zeros of diagonal cubic forms, J. Number Theory, 11 (1979), 95-99. doi: 10.1016/0022-314X(79)90023-4
    [18] G. Myerson, Period polynomials and Gauss sums for finite fields, Acta Arith., 39 (1981), 251-264. doi: 10.4064/aa-39-3-251-264
    [19] W. M. Schmidt, Equatuions over Finite Fields, An Elementary Approach, Springer Verlag, BerlinHeidelberg-New York, 1976.
    [20] T. Storer, Cyclotomy and Difference Sets, Chicago, IL: Marham, 1967.
    [21] A. Weil, On some exponential sums, Proc. Natu. Acad. Sci., 34 (1948), 204-207. doi: 10.1073/pnas.34.5.204
    [22] J. Wolfmann, The number of solutions of certain diagonal equations over finite fields, J. Number Theory, 42 (1992), 247-257. doi: 10.1016/0022-314X(92)90091-3
    [23] W. P. Zhang and J. Y. Hu, The number of solutions of the diagonal cubic congruence equation mod p, Math. Rep. (Bucur.), 20 (2018), 73-80.
    [24] J. Y. Zhao and Y. Zhao, On the number of solutions of two-variable diagonal quartic equations over finite fields, AIMS Math., in press.
  • This article has been cited by:

    1. Junyong Zhao, Yang Zhao, Yujun Niu, On the number of solutions of two-variable diagonal quartic equations over finite fields, 2020, 5, 2473-6988, 2979, 10.3934/math.2020192
    2. Shuangnian Hu, Rongquan Feng, On the number of solutions of two-variable diagonal sextic equations over finite fields, 2022, 7, 2473-6988, 10554, 10.3934/math.2022588
    3. Shuangnian Hu, Rongquan Feng, The number of solutions of cubic diagonal equations over finite fields, 2023, 8, 2473-6988, 6375, 10.3934/math.2023322
    4. Shuangnian Hu, Yanyan Li, Rongquan Feng, Counting rational points of quartic diagonal hypersurfaces over finite fields, 2023, 9, 2473-6988, 2167, 10.3934/math.2024108
    5. Shuangnian HU, Shihan WANG, Yanyan LI, Yujun NIU, Note on the Number of Solutions of Cubic Diagonal Equations over Finite Fields, 2023, 28, 1007-1202, 369, 10.1051/wujns/2023285369
    6. Wenxu Ge, Weiping Li, Tianze Wang, A note on some diagonal cubic equations over finite fields, 2024, 9, 2473-6988, 21656, 10.3934/math.20241053
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4157) PDF downloads(413) Cited by(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog