
Citation: Thomas P. Witelski. Nonlinear dynamics of dewetting thin films[J]. AIMS Mathematics, 2020, 5(5): 4229-4259. doi: 10.3934/math.2020270
[1] | Hisham Mahran, Mahmoud M. Mansour, Enayat M. Abd Elrazik, Ahmed Z. Afify . A new one-parameter flexible family with variable failure rate shapes: Properties, inference, and real-life applications. AIMS Mathematics, 2024, 9(5): 11910-11940. doi: 10.3934/math.2024582 |
[2] | Ayed. R. A. Alanzi, M. Qaisar Rafique, M. H. Tahir, Farrukh Jamal, M. Adnan Hussain, Waqas Sami . A novel Muth generalized family of distributions: Properties and applications to quality control. AIMS Mathematics, 2023, 8(3): 6559-6580. doi: 10.3934/math.2023331 |
[3] | Jumanah Ahmed Darwish, Saman Hanif Shahbaz, Lutfiah Ismail Al-Turk, Muhammad Qaiser Shahbaz . Some bivariate and multivariate families of distributions: Theory, inference and application. AIMS Mathematics, 2022, 7(8): 15584-15611. doi: 10.3934/math.2022854 |
[4] | Areej M. AL-Zaydi . On concomitants of generalized order statistics arising from bivariate generalized Weibull distribution and its application in estimation. AIMS Mathematics, 2024, 9(8): 22002-22021. doi: 10.3934/math.20241069 |
[5] | A. M. Abd El-Raheem, Ehab M. Almetwally, M. S. Mohamed, E. H. Hafez . Accelerated life tests for modified Kies exponential lifetime distribution: binomial removal, transformers turn insulation application and numerical results. AIMS Mathematics, 2021, 6(5): 5222-5255. doi: 10.3934/math.2021310 |
[6] | Nora Nader, Dina A. Ramadan, Hanan Haj Ahmad, M. A. El-Damcese, B. S. El-Desouky . Optimizing analgesic pain relief time analysis through Bayesian and non-Bayesian approaches to new right truncated Fréchet-inverted Weibull distribution. AIMS Mathematics, 2023, 8(12): 31217-31245. doi: 10.3934/math.20231598 |
[7] | Dawlah Alsulami . A new extension of the Rayleigh distribution: Properties, different methods of estimation, and an application to medical data. AIMS Mathematics, 2025, 10(4): 7636-7663. doi: 10.3934/math.2025350 |
[8] | M. Nagy, H. M. Barakat, M. A. Alawady, I. A. Husseiny, A. F. Alrasheedi, T. S. Taher, A. H. Mansi, M. O. Mohamed . Inference and other aspects for q−Weibull distribution via generalized order statistics with applications to medical datasets. AIMS Mathematics, 2024, 9(4): 8311-8338. doi: 10.3934/math.2024404 |
[9] | Mohieddine Rahmouni, Dalia Ziedan . The Weibull-generalized shifted geometric distribution: properties, estimation, and applications. AIMS Mathematics, 2025, 10(4): 9773-9804. doi: 10.3934/math.2025448 |
[10] | H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. Nagy, A. H. Mansi, M. O. Mohamed . Bivariate Epanechnikov-exponential distribution: statistical properties, reliability measures, and applications to computer science data. AIMS Mathematics, 2024, 9(11): 32299-32327. doi: 10.3934/math.20241550 |
The Weibull distribution is extensively utilized for analyzing lifetime data and is particularly effective for modeling monotonic hazard rates (HRs). Its density functions are typically right or left-skewed, making it ideal for reliability and survival analysis. However, it falls short when dealing with non-monotonic HRs, such as those exhibiting bathtub-shaped or upside-down bathtub-shaped patterns. While the Weibull distribution is highly effective in modeling monotonic HRs, it lacks the flexibility necessary to capture more complex failure rate behaviors, which are commonly observed in real-world data across domains, such as medicine, engineering, and industrial reliability. Although numerous extensions of the Weibull distribution have been proposed to address this limitation, many of these alternatives require more than four parameters to accurately represent intricate HR patterns. Additionally, existing models often struggle to effectively capture non-monotonic HR behaviors, including J-shaped or modified bathtub curves.
Some recent extensions of the Weibull distribution, introduced to expand its modeling capabilities across a wider range of lifetime data, include the beta Weibull [1], Kumaraswamy–Weibull [2], truncated Weibull [3], transmuted Weibull [4], exponentiated generalized Weibull [5], new extended Weibull [6], modified beta Weibull [7], Kumaraswamy complementary Weibull geometric [8], Weibull–Weibull [9], alpha power Weibull [10], odd log-logistic exponentiated Weibull [11], Lindley Weibull [12], exponentiated Weibull [13], alpha logarithmic transformed Weibull [14], alpha power exponentiated Weibull [15], odd Lomax–Weibull [16], Maxwell–Weibull [17], exponentiated additive Weibull [18], new generalized modified Weibull [19] new flexible Weibull [20], odd Burr exponentiated Weibull [21], odd log-logistic Lindley–Weibull [22], alpha power Kumaraswamy–Weibull [23], new exponentiated inverse Weibull [24], entropy-transformed Weibull [25], extended Weibull [26], and odd beta prime Weibull [27] distributions. These enhanced distributions offer increased flexibility, enabling more effective modeling of diverse datasets for practical applications.
We aim to bridge this gap by introducing a new variant of the Weibull distribution, known as the generalized Kavya–Manoharan Weibull (GKMW) distribution, which is specifically designed to model a broader range of non-monotonic HRs with just three parameters. The GKMW distribution provides an improved and more flexible approach for modeling diverse lifetime data, making it a valuable tool for researchers and practitioners in survival analysis, and reliability theory. The GKMW distribution is derived from the generalized Kavya–Manoharan (GKM-G) family introduced by Mahran et al. [28]. One key characteristic of the GKMW distribution is its interpretation as a proportional reversed hazard (PRH) model. The PRH models play a crucial role in survival analysis and reliability theory, particularly when analyzing left-censored lifetime data and studying parallel systems [29]. Further details on PRH models can be found in references [30,31,32].
The GKMW distribution boasts several key advantages:
• It accurately captures J-shaped, decreasing, bathtub, increasing, upside-down bathtubs, modified bathtub, and reversed-J HR shapes. With its three parameters, the GKMW effectively models failure rates for both standard and modified bathtubs, a significant improvement over many distributions that require more than four parameters for precise representation.
• The GKMW distribution is particularly well-suited for non-monotonic modeling, making it applicable in diverse fields such as medicine, engineering, survival analysis, and industrial reliability.
• Our analysis demonstrates the GKMW model's superiority over seven competing lifetime distributions through real data from three distinct fields, underscoring its practical applicability.
Our final motivation of this paper is to evaluate the performance of various frequentist estimators for the GKMW distribution across sample sizes and parameter values. Additionally, we aim to provide guidelines for selecting the most effective estimation method for the GKMW distribution, which we believe will be of interest to applied statisticians.
The remainder of this article is organized as follows: In Section 2, we introduce the GKMW distribution. The properties of the GKMW distribution are derived in Section 3. In Section 4, we detail eight estimation methods for estimating the GKMW parameters are discussed. Numerical simulations are presented in Section 5. In Section 6, we illustrate the practical application of the GKMW distribution using three real data examples. Finally, concluding remarks and some perspectives for future research are given in Section 7.
In this section, we introduce the GKMW distribution, using the Weibull model as the baseline within the GKM-G family proposed by Mahran et al. [28]. The GKM-G family can be regarded as a PRH family because it is derived from the exponentiated-H (exp-H) family [33], which is one of the most commonly used generalization techniques. The cumulative distribution function (CDF) and probability density function (PDF) of the GKM-G family are defined as follows:
F(x;δ,ϑ)=ξδ[1−e−G(x;ϑ)]δ,x∈R+,δ>0 | (1) |
and
f(x;δ,ϑ)=ξδδg(x;ϑ)e−G(x;ϑ)[1−e−G(x;ϑ)]δ−1,x∈R+, |
where ξ=e/(e−1), δ is a shape parameter and ϑ refers to the baseline parameters vector.
The HR function (HRF) of the GKM-G family reduces to
h(x;δ,ϑ)=δg(x;ϑ)e1−G(x;ϑ)[e−e1−G(x;ϑ)]δ−1(e−1)δ−[e−e1−G(x;ϑ)]δ,x∈R+. |
The PDF and CDF of the Weibull distribution are g(x;β,λ)=βλxβ−1e−λxβ and G(x;β,λ)=1−e−λxβ,λ,β>0. By substituting the CDF of the Weibull model in Eq (1), we derive the CDF of the GKMW distribution as follows:
F(x;ω)=ξδ[1−e−(1−e−λxβ)]δ,x>0,δ,λ,β>0, |
where ω=(δ,β,λ)T.
The PDF of the GKMW model takes the form
f(x;ω)=ξδδβλxβ−1e−(1−e−λxβ)−λxβ[1−e−(1−e−λxβ)]δ−1,x>0, | (2) |
where λ>0 is the scale parameter and δ and β are positive shape parameters. The scale parameter (λ) affects the spread of the GKMW distribution but does not directly influence its skewness or tail behavior. In contrast, the two shape parameters (δ and β) refine the shape of the GKMW distribution, particularly in terms of tail behavior, kurtosis and skewness. Thus, these two parameters significantly influence the asymmetry and overall shape of the distribution. Figures 1–3 illustrate the roles of the three parameters. The plots and numerical values, obtained for λ=1 with varying δ and β, confirm the influence of all three parameters.
Therefore, a random variable with PDF (2) is denoted by X GKMW (δ,β,λ).
The HRF and reversed HRF (RHRF) of the GKMW model are defined by
h(x;ω)=δβλxβ−1ee−λxβ−λxβ(e−ee−λxβ)δ−1(e−1)δ−(e−ee−λxβ)δ,x>0 |
and
H(x;ω)=δβλxβ−1e−(1−e−λxβ)−λxβ[1−e−(1−e−λxβ)]−1,x>0. |
The quantile function (QF) of the GKMW model reduces to
ϑ(u)=λ−1β(−ln{1+log[1−(ξ−δu)1δ]})1β,0<u<1, |
where ξ=e/(e−1).
Figures 1 and 2 display the PDF and HRF curves of the GKMW distribution for λ=1 and various values of δ and β. Figure 2 illustrates the HRF, which can exhibit decreasing, J-shape, increasing, reversed-J shape, bathtub, modified bathtub, and unimodal forms. A key advantage of the GKMW distribution over the W distribution is its ability to model data with bathtub, modified bathtub, or unimodal failure rates, which the W cannot.
Furthermore, the QF can be employed to explore the relationships among the parameters. For the GKMW distribution, this function is useful for calculating Galton's skewness and Moors' kurtosis. Figure 3 presents Galton's skewness and Moors' kurtosis for the GKMW distribution at λ=1 with varying δ and β values. Overall, it is evident that parameters β and λ have a significant impact on the skewness and kurtosis of the distribution.
In this section, we explore several properties of the GKMW distribution.
Here, we present a mixture form for the GKMW density based on the linear representation of the GKM-G density introduced by Mahran et al. [28]. The GKM-G density can be expressed as follows:
f(x)=∞∑k=0dkhk(x), | (3) |
where dk=∑∞j=0ξδ(−1)j+kjkk!(δj) and hk(x)=kg(x)G(x)k−1 is the exp-G density with power parameter k. Equation (3) can be expressed using the W distribution as follows:
f(x)=∞∑l=0vlgl+1(x), | (4) |
where vl=∑∞k=0dk(−1)l(l+1)k(k−1l) and gl+1(x)=β(l+1)λxβ−1e−(l+1)λxβ denotes the W density with scale parameter (l+1)λ and shape parameter β. Then, the GKMW PDF can be expressed as a single linear combination of Weibull densities.
Let Y be a random variable having the W distribution with PDF g(y;β,λ)=βλyβ−1e−λyβ,y>0,β,λ>0, then, the rth ordinary moments of Y is
μ'r,Y=Γ(1+rβ)λ−rβ. |
Therefore, we can derive the rth moment of GKMW distribution from Eq (4) as follows:
μ'r=Γ(1+rβ)∞∑i=0vl[(l+1)λ]−rβ. | (5) |
The mean of X, denoted by μX, follows from Eq (5) by setting r=1.
Table 1 demonstrates that the summation in Eq (5) converges to the numerical integral (NI) of μX for various values of λ and γ as the truncated terms in this summation, say M, increase significantly. Table 2 shows that the skewness (ψ1) and kurtosis (ψ2) of the GKMW distribution range from -0.0874 to 11.1133 and from 2.5560 to 242.1702, respectively. Additionally, the GKMW distribution can exhibit left-skewed, right-skewed, or symmetric properties, and can be classified as leptokurtic (ψ2 > 3) or platykurtic (ψ2 < 3). This versatility makes the GKMW distribution well-suited for modeling skewed data effectively.
λ | δ | β | M | Summation | NI |
0.5 | 2 | 0.5 | 10 | 9.56790 | |
20 | 9.56325 | 9.56325 | |||
50 | 9.56325 | ||||
1.5 | 10 | 1.65060 | |||
20 | 1.65025 | 1.65025 | |||
50 | 1.65025 | ||||
4 | 0.5 | 10 | 33.26973 | ||
20 | 16.24027 | 16.24025 | |||
50 | 16.24025 | ||||
1.5 | 10 | 3.46152 | |||
20 | 2.15191 | 2.15191 | |||
50 | 2.15191 | ||||
0.9 | 2 | 0.5 | 10 | 2.95306 | |
20 | 2.95162 | 2.95162 | |||
50 | 2.95162 | ||||
1.5 | 10 | 1.11548 | |||
20 | 1.11524 | 1.11524 | |||
50 | 1.11524 | ||||
4 | 0.5 | 10 | 10.26843 | ||
20 | 5.01243 | 5.01242 | |||
50 | 5.01242 | ||||
1.5 | 10 | 2.33929 | |||
20 | 1.45426 | 1.45426 | |||
50 | 1.45426 | ||||
1.5 | 2 | 0.5 | 10 | 1.06310 | |
20 | 1.06258 | 1.06258 | |||
50 | 1.06258 | ||||
1.5 | 10 | 0.79353 | |||
20 | 0.79336 | 0.79336 | |||
50 | 0.79336 | ||||
4 | 0.5 | 10 | 3.69664 | ||
20 | 1.80447 | 1.80447 | |||
50 | 1.80447 | ||||
1.5 | 10 | 1.66412 | |||
20 | 1.03453 | 1.03453 | |||
50 | 1.03453 |
δ | β | μx | σ2x | ψ1 | ψ2 |
0.5 | 0.5 | 0.7139 | 6.7945 | 11.1133 | 242.1702 |
1.5 | 0.4887 | 0.2526 | 1.7860 | 7.1495 | |
2.8 | 0.5958 | 0.1257 | 0.6322 | 3.0474 | |
3.5 | 0.6409 | 0.0996 | 0.3478 | 2.6707 | |
5 | 0.7117 | 0.0670 | -0.0309 | 2.5560 | |
0.75 | 0.5 | 1.0338 | 9.8213 | 9.2802 | 169.9559 |
1.5 | 0.6313 | 0.2893 | 1.5059 | 5.9591 | |
2.8 | 0.7128 | 0.1182 | 0.4924 | 2.9654 | |
3.5 | 0.7478 | 0.0874 | 0.2419 | 2.7303 | |
5 | 0.8014 | 0.0530 | -0.0874 | 2.7295 | |
1.5 | 0.5 | 1.8882 | 17.8440 | 6.9544 | 97.0234 |
1.5 | 0.9131 | 0.3298 | 1.1791 | 4.8586 | |
2.8 | 0.9067 | 0.0981 | 0.3788 | 2.9892 | |
3.5 | 0.9156 | 0.0655 | 0.1865 | 2.8588 | |
5 | 0.9321 | 0.0345 | -0.0571 | 2.8753 | |
2 | 0.5 | 2.3908 | 22.5235 | 6.2248 | 78.4523 |
1.5 | 1.0396 | 0.3379 | 1.0866 | 4.6063 | |
2.8 | 0.9823 | 0.0893 | 0.3625 | 3.0139 | |
3.5 | 0.9784 | 0.0577 | 0.1912 | 2.8969 | |
5 | 0.9785 | 0.0290 | -0.0225 | 2.8929 | |
5 | 0.5 | 4.7553 | 44.1219 | 4.5572 | 43.7214 |
1.5 | 1.4588 | 0.3369 | 0.9032 | 4.2015 | |
2.8 | 1.2009 | 0.0652 | 0.3653 | 3.1052 | |
3.5 | 1.1536 | 0.0386 | 0.2431 | 2.9961 | |
5 | 1.1018 | 0.0174 | 0.0954 | 2.9332 |
The sth incomplete moment of the GKMW model is given by
φs(t)=t∫−∞xsf(x)dx=∞∑l=0vl[(l+1)λ]−sβγ(1+sβ,(l+1)λtβ), | (6) |
where γ(a,ω) denote the lower incomplete gamma function (IGF), which is defined by γ(a,ω)=∫ω0ωa−1eωdω. The first incomplete moment, say φ1(t), is derived for s=1 and can be utilized to construct Bonferroni and Lorenz curves, which are defined, for a given probability π, as follows: B(π)=φ1(q)/(πμ'1) and L(π)=φ1(q)/μ'1, where μ'1 given by (5) with r=1 and q=Q(π) is the QF of X at π.
The conditional moments of the GKMW model can be written as
E(Xn|X>t)=1S(t)∞∑l=0vl(l+1)λΓ(1+nβ,(l+1)λtβ), |
where Γ(a,ξ) denotes the upper IGF defined by Γ(a,ξ)=∫∞ξξa−1e−ξdξ and S(t) is the survival function (SF) of the GKMW distribution.
The moment-generating function (MGF) of the W distribution has the form
M(t)=∞∑j=0tjj!λ−jβΓ(1+jβ). | (7) |
By combining Eqs (4) and (7), the MGF of the GKMW model is expressed as follows
MX(t)=∞∑l,j=0vltjj![(l+1)λ]−jβΓ(1+jβ). |
The function φ1(t) of X can be used to derive the mean residual life (MRL) and mean inactivity time (MIT). This function follows from Eq (6) as
ϑ1(t)=∞∑l=0vl[(l+1)λ]−1βγ(1+1β,(l+1)λtβ). | (8) |
The MRL represents the expected additional lifespan for a unit, which is operational at age t and is defined by mX(t)=E(X−x|X>x), for t>0. The MRL of X is
MRLX(t)=[1−φ1(t)]S(t)−t. | (9) |
By substituting Eq (8) into Eq (9), we obtain the MRL of the GKMW distribution as follows
MRLX(t)=1S(t){1−∞∑l=0vl[(l+1)λ]−1βγ(1+1β,(l+1)λtβ)}−t. |
The MIT represents the waiting time that has elapsed since the failure of an item, given that this failure occurred within the interval (0,t). The MIT is defined by MITX(t)=E(t−X|X≤t), for t>0. The MIT of X reduces to
MITX(t)=t−φ1(t)F(t). | (10) |
Using Eqs (8) and (10), we derive the MIT of the GKMW distribution as follows
MITX(t)=t−1F(t)∞∑l=0vl[(l+1)λ]−1βγ(1+1β,(l+1)λtβ). |
Order statistics are essential in quality control testing and reliability assessments, as they help predict the failure of future items by analyzing early failures. According to Mahran et al. [28], the PDF of ith order statistic of the GKM-G class, say X(i) (for i=1,…n), can be expressed as follows
fi:n(x)=∞∑k=0bkhk+1(x). |
Here, hk+1(x)=(k+1)g(x)G(x)k is the exp-G density with power parameter k+1 and
bk=αn−i∑j=0∞∑m=0(1+m)k(−1)j+m+k(k+1)!B(i,n−i+1)ϕα(j+i)(n−1j)(α(j+i)−1m). |
Then, the PDF of X(i) for the GKMW distribution reduces to
fX(i)(x)=∞∑r=0crβ(r+1)λxβ−1e−(r+1)λxβ, | (11) |
where cr=∑∞k=0bk(−1)r(k+1)!(r+1)!(k−r)!. Equation (11) indicates that the PDF of the GKMW order statistics is a mixture of W densities, with a scale parameter of (r+1)λ and a shape parameter β. Consequently, some of their mathematical properties can be derived from those of the W distribution. For instance, the qth moment of X(i) is given by
E(Xq(i))=Γ(1+qβ)∞∑r=0cr[(r+1)λ]−qβ. |
Greenwood et al. [34] introduced probability weighted moments (PWMs) as a particular type of moment. PWMs are used to estimate the parameters and quantiles of distributions that can be represented in inverse form. These estimators exhibit moderate bias and low variance, making them comparable to maximum likelihood (ML) estimators.
The (j,i)th PWM of X, say ρj,i, is defined by
ρj,i=E{XjF(X)i}=∫∞−∞xjf(x)F(x)idx, |
where j and i be non-negative integers. According to Mahran et al. [28], the PWM of the GKM-G class can be expressed as
ρj,i=∞∑s=0dsE(Tjs+1), |
where
ds=δ∞∑l=0(1+l)s(−1)l+s(s+1)!ξδ(1+i)(α(1+i)−1l). |
Using Eq (5), the PWM of GKMW model can be defined as
ρj,i=∞∑s=0dsΓ(1+jβ)[(s+1)λ]−jβ. |
Entropy measures the randomness of systems and is widely used in fields such as molecular tumor imaging, physics, and sparse kernel density estimation. The Rényi entropy of the GKM-G family [28] is
Iθ=11−θlog[∞∑k=0ηk∫∞−∞g(x)θG(x)kdx], | (12) |
where
ηk=∞∑j=0(δξγ)θ(θ+j)kk!(−1)k+j(θ(γ−1)j). |
Inserting the PDF and CDF of W distribution in Eq (12) and using binomial series, we obtain
g(x)θG(x)k=(βλ)θxθ(β−1)∞∑i=0(−1)i(ki)e−(i+θ)λxβ. |
Therefore, the Rényi entropy of the GKMW distribution follows as
Iθ=11−θlog[∞∑k,i=0ηk(−1)i(ki)(βλ)θA], | (13) |
where
A=∫∞0xθ(β−1)e−(i+θ)λxβdx=1β[(i+θ)λ]θ(1−β)−1Γ(θ(β−1)+1β). |
By substituting the quantity A from Eq (13), the Rényi entropy of the GKMW distribution simplifies to
Iθ=11−θlog[∞∑k,i=0ηk(−1)i(ki)λθβθ−1[(i+θ)λ]θ(1−β)−1Γ(θ(β−1)+1β)], |
where θ>0 and θ≠1.
The Shannon entropy can be seen as a special case of the Rényi entropy when θ approaches 1.
In this section, we present eight methods for estimating the parameters of the GKMW distribution. These methods include maximum likelihood (ML), least squares (LS), weighted least squares (WLS), Cramér–von Mises (CVM), maximum product of spacings (MPS), Anderson–Darling (AD), right-tail Anderson–Darling (RTAD), and percentile (PC) estimators.
Let x1,…,xn be a random sample from the GKMW distribution with parameters δ,β, and λ. Denote the ordered statistics as x1:n<x2:n<⋯<xn:n.
The log-likelihood function of the GKMW model can be expressed as follows
ℓ=nδlogξ+nlogδ+nlogβ+nlogλ+(β−1)n∑i=1log(xi)−n∑i=1(1−e−λxβi)−λn∑i=1xβi+(δ−1)n∑i=1log(ki), |
where ki=1−e−(1−e−λxβi).
The MLEs for δ,β, and λ can be obtained by maximizing the previous equation with respect to these parameters or by solving the provided nonlinear equations:
∂ℓ∂δ=nδ+nlogξ+n∑i=1log(ki)=0, |
∂ℓ∂β=nβ+n∑i=1log(xi)−λn∑i=1xβilog(xi)−λn∑i=1xβilog(xi)e−λxβi+λ(δ−1)n∑i=1xβilog(xi)(1−ki)e−λxβiki=0 |
and
∂ℓ∂λ=nλ−n∑i=1xβi−n∑i=1xβie−λxβi+(δ−1)n∑i=1xβi(1−ki)e−λxβiki=0. |
The LS and WLS methods are employed to estimate the parameters of the beta distribution [35]. The LS estimators (LSEs) and WLS estimators (WLSEs) for the GKMW parameters can be obtained by minimizing the following:
V(δ,β,λ)=n∑i=1υi[ξδkδi:n−in+1]2, |
where υi=1 for the LS method, υi=(n+1)2(n+2)/[i(n−i+1)] for the WLS approach, and ki:n=1−e−(1−e−λxβi:n).
Additionally, the LSEs and WLSEs can be derived by solving the nonlinear equations (for s=1,2,3):
n∑i=1υi[ξδkδi:n−in+1]Δs(xi:n|δ,β,λ)=0, |
where
Δ1(xi:n|δ,β,λ)=∂ℓ∂δF(xi:n|δ,β,λ)=kδi:nξδ[log(ξ)+log(ki:n)], | (14) |
Δ2(xi:n|δ,β,λ)=∂ℓ∂βF(xi:n|δ,β,λ)=δλξδxβi:ne−λxβi:n(1−ki:n)kδ−1i:nlog(xi:n) | (15) |
and
Δ3(xi:n|δ,β,λ)=∂ℓ∂λF(xi:n|δ,β,λ)=δξδxβi:ne−λxβi:n(1−ki:n)kδ−1i:n. | (16) |
The CVM estimators (CVMEs) [36,37] can be derived from the difference between the estimated CDF and the empirical CDF. The CVMEs for the GKMW parameters are found by minimizing the following function:
C(δ,β,λ)=112n+n∑i=1[ξδkδi:n−2i−12n]2. |
Further, the CVMEs follow by solving the nonlinear equations,
n∑i=1[ξδkδi:n−2i−12n]Δs(xi:n|δ,β,λ)=0, |
where Δs(xi:n|δ,β,λ)=0 are defined in (14)-(16) for s=1,2,3.
The MPS method is used for parameter estimation in continuous univariate models as an alternative to the ML method [38,39]. The uniform spacings of a random sample of size n from the GKMW distribution can be characterized by:
Di=F(xi:n|δ,β,λ)−F(xi−1:n|δ,β,λ), |
where Di denotes the uniform spacings, where F(x0:n|δ,β,λ)=0,F(xn+1:n|δ,β,λ)=1 and n+1∑i=1Di(δ,β,λ)=1. The MPS estimators (MPSEs) of the GKMW parameters can be obtained by maximizing
G(δ,β,λ)=1n+1n+1∑i=1logDi(δ,β,λ). |
Additionally, the MPSEs of the GKMW parameters can also be obtained by solving:
1n+1n+1∑i=11Di(δ,β,λ)[Δs(xi:n|δ,β,λ)−Δs(xi−1:n|δ,β,λ)]=0,s=1,2,3. |
The AD estimators (ADEs) are another form of minimum distance estimator. The ADEs for the GKMW parameters are obtained by minimizing:
A(δ,β,λ)=−n−1nn∑i=1(2i−1)[logF(xi:n|δ,β,λ)+log−F(xn+1−i:n|δ,β,λ)]. |
The ADEs can also be determined by solving the corresponding nonlinear equations:
n∑i=1(2i−1)[Δs(xi:n|δ,β,λ)F(xi:n|δ,β,λ)−Δj(xn+1−i:n|δ,β,λ)S(xn+1−i:n|δ,β,λ)]=0. |
The RTAD estimators (RTADEs) for the GKMW parameters δ,β, and λ are obtained by minimizing the following function with respect to these parameters:
R(δ,β,λ)=n2−2n∑i=1F(xi:n|δ,β,λ)−1nn∑i=1(2i−1)log−F(xn+1−i:n|δ,β,λ). |
The unknown parameters of the GKMW distribution can be estimated using the PC method [40], which involves matching the sample PC points with the corresponding population PCs. An unbiased estimator of F(xi:n|δ,β,λ) is given by ui=i/(n+1). The PC estimators (PCEs) for the GKMW parameters are subsequently derived by minimizing the specified function:
P(δ,β,λ)=n∑i=1(xi:n−−1λlog{1+log[1−(uiξ−δ)1δ]})2β. |
In this section, a Monte Carlo simulation analysis was conducted to assess the performance of various estimators for the unknown parameters of the GKMW distribution. The assessment centered on their average absolute biases (BIAS), average mean square errors (MSE), and average mean relative errors (MRE) of the estimates, defined as follows:
BIAS=1n∑ni=1|ˆη−η|,MSE=1n∑ni=1(ˆη−η)2andMRE=1n∑ni=1|ˆη−η|/η. |
We generated 5,000 samples from the GKMW distribution for different sample sizes n={20,50,100,300,500}, selecting δ=(0.5,1.5), β=(0.25,2), and λ=(1.5,3.5). The GKMW parameters (δ,β,λ) were estimated for each combination of parameters and sample size using eight estimators, including WLSEs, LSEs, MLEs, MPSEs, CRVMEs, ADEs, RTADEs, and PCEs. Subsequently, the MSE, BIAS, and MRE of the parameters were calculated. All computations in this section were carried out using R software Version 4.2.2.
Tables 3–10 present the results of all simulated outcomes. Additionally, these tables display the ranking of each estimator in every row, with curly braces indicating the ranks and ∑Ranks representing the cumulative sum of ranks for each column within a specific sample size. The findings in Tables 3–10 indicate that all estimation methods exhibit the property of consistency, as BIAS, MSE, and MRE decrease with increasing sample size across all parameter combinations.
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 0.44805{4} | 0.46606{5} | 0.40387{3} | 0.47616{6} | 0.39067{2} | 2.44726{8} | 0.37975{1} | 0.48266{7} | ||
BIAS | ˆβ | 0.14364{5} | 0.15331{7} | 0.13623{4} | 0.14834{6} | 0.13404{3} | 0.65763{8} | 0.13143{1} | 0.13160{2} | |
ˆλ | 0.66572{4} | 0.66928{8} | 0.66508{3} | 0.66627{6} | 0.66622{5} | 0.64430{1} | 0.64661{2} | 0.66871{7} | ||
ˆδ | 0.20075{4} | 0.21722{5} | 0.16311{3} | 0.22673{6} | 0.15262{2} | 5.98910{8} | 0.14421{1} | 0.23296{7} | ||
20 | MSE | ˆβ | 0.02063{5} | 0.02350{7} | 0.01856{4} | 0.02200{6} | 0.01797{3} | 0.43248{8} | 0.01727{1} | 0.01732{2} |
ˆλ | 0.44319{4} | 0.44793{8} | 0.44233{3} | 0.44392{6} | 0.44384{5} | 0.41513{1} | 0.41811{2} | 0.44717{7} | ||
ˆδ | 0.59740{4} | 0.62142{5} | 0.53849{3} | 0.63489{6} | 0.52089{2} | 0.88991{8} | 0.50633{1} | 0.64355{7} | ||
MRE | ˆβ | 0.28728{5} | 0.30662{7} | 0.27246{4} | 0.29667{6} | 0.26808{3} | 0.32881{8} | 0.26286{1} | 0.26320{2} | |
ˆλ | 0.99362{4} | 0.99892{8} | 0.99265{3} | 0.99444{6} | 0.99435{5} | 0.96165{1} | 0.96509{2} | 0.99807{7} | ||
∑RANKS | 39.0{4} | 60.0{8} | 30.0{2.5} | 54.0{7} | 30.0{2.5} | 51.0{6} | 12.0{1} | 48.0{5} | ||
ˆδ | 0.25007{3} | 0.29937{5} | 0.24733{2} | 0.31057{6} | 0.22757{1} | 2.37250{8} | 0.25066{4} | 0.31836{7} | ||
BIAS | ˆβ | 0.08437{3} | 0.09749{7} | 0.08281{2} | 0.09732{6} | 0.07884{1} | 0.49530{8} | 0.08464{4} | 0.08707{5} | |
ˆλ | 0.51229{1} | 0.59472{6} | 0.52254{3} | 0.57940{5} | 0.51959{2} | 0.63231{8} | 0.53069{4} | 0.60133{7} | ||
ˆδ | 0.06254{3} | 0.08962{5} | 0.06117{2} | 0.09645{6} | 0.05179{1} | 5.62873{8} | 0.06283{4} | 0.10135{7} | ||
50 | MSE | ˆβ | 0.00712{3} | 0.00951{7} | 0.00686{2} | 0.00947{6} | 0.00622{1} | 0.24532{8} | 0.00716{4} | 0.00758{5} |
ˆλ | 0.26244{1} | 0.35369{6} | 0.27305{3} | 0.33571{5} | 0.26998{2} | 0.39982{8} | 0.28164{4} | 0.36160{7} | ||
ˆδ | 0.33343{3} | 0.39916{5} | 0.32978{2} | 0.41409{6} | 0.30342{1} | 0.86273{8} | 0.33422{4} | 0.42447{7} | ||
MRE | ˆβ | 0.16874{3} | 0.19499{7} | 0.16562{2} | 0.19465{6} | 0.15768{1} | 0.24765{8} | 0.16927{4} | 0.17413{5} | |
ˆλ | 0.76461{1} | 0.88764{6} | 0.77991{3} | 0.86478{5} | 0.77551{2} | 0.94375{8} | 0.79208{4} | 0.89751{7} | ||
∑RANKS | 21.0{2.5} | 54.0{6} | 21.0{2.5} | 51.0{5} | 12.0{1} | 72.0{8} | 36.0{4} | 57.0{7} | ||
ˆδ | 0.17337{3} | 0.21780{6} | 0.17020{2} | 0.22097{7} | 0.15701{1} | 2.39904{8} | 0.17686{4} | 0.21457{5} | ||
BIAS | ˆβ | 0.05580{3} | 0.06830{6} | 0.05577{2} | 0.06885{7} | 0.05374{1} | 0.41721{8} | 0.05725{4} | 0.06044{5} | |
ˆλ | 0.39296{2} | 0.46927{7} | 0.39857{3} | 0.45336{5} | 0.38016{1} | 0.62525{8} | 0.40082{4} | 0.46343{6} | ||
ˆδ | 0.03006{3} | 0.04744{6} | 0.02897{2} | 0.04883{7} | 0.02465{1} | 5.75540{8} | 0.03128{4} | 0.04604{5} | ||
100 | MSE | ˆβ | 0.00311{2.5} | 0.00466{6} | 0.00311{2.5} | 0.00474{7} | 0.00289{1} | 0.17406{8} | 0.00328{4} | 0.00365{5} |
ˆλ | 0.15441{2} | 0.22022{7} | 0.15886{3} | 0.20554{5} | 0.14452{1} | 0.39094{8} | 0.16066{4} | 0.21477{6} | ||
ˆδ | 0.23116{3} | 0.29040{6} | 0.22693{2} | 0.29462{7} | 0.20935{1} | 0.87238{8} | 0.23582{4} | 0.28610{5} | ||
MRE | ˆβ | 0.11161{3} | 0.13660{6} | 0.11155{2} | 0.13770{7} | 0.10749{1} | 0.20860{8} | 0.11449{4} | 0.12089{5} | |
ˆλ | 0.58650{2} | 0.70041{7} | 0.59488{3} | 0.67666{5} | 0.56741{1} | 0.93322{8} | 0.59824{4} | 0.69169{6} | ||
∑RANKS | 23.5{3} | 57.0{6.5} | 21.5{2} | 57.0{6.5} | 9.0{1} | 72.0{8} | 36.0{4} | 48.0{5} | ||
ˆδ | 0.11921{2} | 0.15274{6} | 0.12118{3} | 0.15801{7} | 0.11128{1} | 2.36301{8} | 0.12134{4} | 0.15004{5} | ||
BIAS | ˆβ | 0.03944{2} | 0.04894{6} | 0.03986{4} | 0.04966{7} | 0.03780{1} | 0.35089{8} | 0.03953{3} | 0.04230{5} | |
ˆλ | 0.28268{2} | 0.35098{6} | 0.28501{3} | 0.35253{7} | 0.27401{1} | 0.61586{8} | 0.29546{4} | 0.35009{5} | ||
ˆδ | 0.01421{2} | 0.02333{6} | 0.01469{3} | 0.02497{7} | 0.01238{1} | 5.58381{8} | 0.01472{4} | 0.02251{5} | ||
300 | MSE | ˆβ | 0.00156{2.5} | 0.00239{6} | 0.00159{4} | 0.00247{7} | 0.00143{1} | 0.12312{8} | 0.00156{2.5} | 0.00179{5} |
ˆλ | 0.07991{2} | 0.12319{6} | 0.08123{3} | 0.12428{7} | 0.07508{1} | 0.37928{8} | 0.08730{4} | 0.12256{5} | ||
ˆδ | 0.15895{2} | 0.20365{6} | 0.16158{3} | 0.21068{7} | 0.14838{1} | 0.85928{8} | 0.16179{4} | 0.20005{5} | ||
MRE | ˆβ | 0.07887{2} | 0.09787{6} | 0.07972{4} | 0.09932{7} | 0.07560{1} | 0.17545{8} | 0.07905{3} | 0.08460{5} | |
ˆλ | 0.42191{2} | 0.52386{6} | 0.42539{3} | 0.52616{7} | 0.40896{1} | 0.91919{8} | 0.44099{4} | 0.52252{5} | ||
∑RANKS | 18.5{2} | 54.0{6} | 30.0{3} | 63.0{7} | 9.0{1} | 72.0{8} | 32.5{4} | 45.0{5} | ||
ˆδ | 0.08419{2} | 0.10545{5} | 0.08572{3} | 0.10981{7} | 0.07707{1} | 2.51646{8} | 0.08962{4} | 0.10567{6} | ||
BIAS | ˆβ | 0.02771{2} | 0.03356{6} | 0.02858{3} | 0.03361{7} | 0.02586{1} | 0.30410{8} | 0.02884{4} | 0.03016{5} | |
ˆλ | 0.20338{1} | 0.25009{5} | 0.20668{3} | 0.25785{7} | 0.20635{2} | 0.60619{8} | 0.21717{4} | 0.25239{6} | ||
ˆδ | 0.00709{2} | 0.01112{5} | 0.00735{3} | 0.01206{7} | 0.00594{1} | 6.33269{8} | 0.00803{4} | 0.01117{6} | ||
500 | MSE | ˆβ | 0.00077{2} | 0.00113{6.5} | 0.00082{3} | 0.00113{6.5} | 0.00067{1} | 0.09247{8} | 0.00083{4} | 0.00091{5} |
ˆλ | 0.04136{1} | 0.06255{5} | 0.04272{3} | 0.06649{7} | 0.04258{2} | 0.36747{8} | 0.04716{4} | 0.06370{6} | ||
ˆδ | 0.11225{2} | 0.14061{5} | 0.11429{3} | 0.14641{7} | 0.10276{1} | 0.91508{8} | 0.11950{4} | 0.14089{6} | ||
MRE | ˆβ | 0.05542{2} | 0.06711{6} | 0.05716{3} | 0.06723{7} | 0.05173{1} | 0.15205{8} | 0.05768{4} | 0.06033{5} | |
ˆλ | 0.30355{1} | 0.37327{5} | 0.30848{3} | 0.38486{7} | 0.30798{2} | 0.90477{8} | 0.32413{4} | 0.37671{6} | ||
∑RANKS | 15.0{2} | 48.5{5} | 27.0{3} | 62.5{7} | 12.0{1} | 72.0{8} | 36.0{4} | 51.0{6} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 0.32426{3} | 0.36749{5} | 0.32579{4} | 0.37178{6} | 0.32305{2} | 0.48308{8} | 0.31426{1} | 0.38908{7} | ||
BIAS | ˆβ | 0.16279{6} | 0.16255{5} | 0.13270{3} | 0.16800{7} | 0.12181{1} | 0.17744{8} | 0.12182{2} | 0.14583{4} | |
ˆλ | 1.02635{2} | 1.49446{6} | 1.25347{4} | 1.89848{8} | 1.11158{3} | 0.98297{1} | 1.27708{5} | 1.62940{7} | ||
ˆδ | 0.10515{3} | 0.13505{5} | 0.10614{4} | 0.13822{6} | 0.10436{2} | 0.23336{8} | 0.09876{1} | 0.15138{7} | ||
20 | MSE | ˆβ | 0.02650{6} | 0.02642{5} | 0.01761{3} | 0.02822{7} | 0.01484{1.5} | 0.03148{8} | 0.01484{1.5} | 0.02127{4} |
ˆλ | 1.05340{2} | 2.23340{6} | 1.57119{4} | 3.60423{8} | 1.23560{3} | 0.96623{1} | 1.63094{5} | 2.65496{7} | ||
ˆδ | 0.64853{3} | 0.73498{5} | 0.65157{4} | 0.74356{6} | 0.64610{2} | 0.96616{8} | 0.62852{1} | 0.77815{7} | ||
MRE | ˆβ | 0.65115{6} | 0.65020{5} | 0.53081{3} | 0.67201{7} | 0.48723{1} | 0.70975{8} | 0.48728{2} | 0.58331{4} | |
ˆλ | 0.29324{2} | 0.42699{6} | 0.35813{4} | 0.54242{8} | 0.31759{3} | 0.28085{1} | 0.36488{5} | 0.46554{7} | ||
∑RANKS | 33.0{3.5} | 48.0{5} | 33.0{3.5} | 63.0{8} | 18.5{1} | 51.0{6} | 23.5{2} | 54.0{7} | ||
ˆδ | 0.26539{6} | 0.25563{5} | 0.20593{3} | 0.26669{7} | 0.18851{1} | 0.49483{8} | 0.20458{2} | 0.23977{4} | ||
BIAS | ˆβ | 0.12742{7} | 0.09473{5} | 0.07337{3} | 0.09606{6} | 0.06554{1} | 0.25000{8} | 0.07268{2} | 0.07792{4} | |
ˆλ | 0.31068{1} | 0.87506{6} | 0.65401{3} | 0.93368{7} | 0.63524{2} | 1.70896{8} | 0.70057{4} | 0.77199{5} | ||
ˆδ | 0.07043{6} | 0.06534{5} | 0.04241{3} | 0.07112{7} | 0.03554{1} | 0.24486{8} | 0.04185{2} | 0.05749{4} | ||
50 | MSE | ˆβ | 0.01624{7} | 0.00897{5} | 0.00538{3} | 0.00923{6} | 0.00429{1} | 0.06250{8} | 0.00528{2} | 0.00607{4} |
ˆλ | 0.09652{1} | 0.76574{6} | 0.42773{3} | 0.87176{7} | 0.40352{2} | 2.92055{8} | 0.49080{4} | 0.59596{5} | ||
ˆδ | 0.53078{6} | 0.51125{5} | 0.41186{3} | 0.53337{7} | 0.37702{1} | 0.98966{8} | 0.40915{2} | 0.47955{4} | ||
MRE | ˆβ | 0.50967{7} | 0.37893{5} | 0.29349{3} | 0.38424{6} | 0.26214{1} | 1.00000{8} | 0.29071{2} | 0.31167{4} | |
ˆλ | 0.08876{1} | 0.25002{6} | 0.18686{3} | 0.26677{7} | 0.18150{2} | 0.48827{8} | 0.20016{4} | 0.22057{5} | ||
∑RANKS | 42.0{5} | 48.0{6} | 27.0{3} | 60.0{7} | 12.0{1} | 72.0{8} | 24.0{2} | 39.0{4} | ||
ˆδ | 0.23814{7} | 0.19152{5} | 0.14325{2} | 0.19335{6} | 0.13433{1} | 0.50000{8} | 0.14782{3} | 0.17393{4} | ||
BIAS | ˆβ | 0.12253{7} | 0.06875{6} | 0.04895{2} | 0.06860{5} | 0.04607{1} | 0.25000{8} | 0.05166{3} | 0.05613{4} | |
ˆλ | 0.13396{1} | 0.59512{7} | 0.43461{2} | 0.59336{6} | 0.45566{3} | 2.33232{8} | 0.48957{4} | 0.49276{5} | ||
ˆδ | 0.05671{7} | 0.03668{5} | 0.02052{2} | 0.03739{6} | 0.01805{1} | 0.25000{8} | 0.02185{3} | 0.03025{4} | ||
100 | MSE | ˆβ | 0.01501{7} | 0.00473{6} | 0.00240{2} | 0.00471{5} | 0.00212{1} | 0.06250{8} | 0.00267{3} | 0.00315{4} |
ˆλ | 0.01795{1} | 0.35416{7} | 0.18889{2} | 0.35207{6} | 0.20762{3} | 5.43973{8} | 0.23968{4} | 0.24281{5} | ||
ˆδ | 0.47627{7} | 0.38303{5} | 0.28650{2} | 0.38671{6} | 0.26866{1} | 1.00000{8} | 0.29563{3} | 0.34787{4} | ||
MRE | ˆβ | 0.49013{7} | 0.27502{6} | 0.19579{2} | 0.27439{5} | 0.18427{1} | 1.00000{8} | 0.20663{3} | 0.22454{4} | |
ˆλ | 0.03827{1} | 0.17003{7} | 0.12417{2} | 0.16953{6} | 0.13019{3} | 0.66638{8} | 0.13988{4} | 0.14079{5} | ||
∑RANKS | 45.0{5} | 54.0{7} | 18.0{2} | 51.0{6} | 15.0{1} | 72.0{8} | 30.0{3} | 39.0{4} | ||
ˆδ | 0.16105{7} | 0.11059{5} | 0.08394{2} | 0.11359{6} | 0.07800{1} | 0.49787{8} | 0.08757{3} | 0.10016{4} | ||
BIAS | ˆβ | 0.06283{7} | 0.03817{5} | 0.02859{2} | 0.03946{6} | 0.02634{1} | 0.26436{8} | 0.03008{3} | 0.03194{4} | |
ˆλ | 0.09811{1} | 0.32542{6} | 0.26408{3} | 0.33776{7} | 0.26030{2} | 3.29688{8} | 0.27467{4} | 0.27699{5} | ||
ˆδ | 0.02594{7} | 0.01223{5} | 0.00705{2} | 0.0129{6} | 0.00608{1} | 0.24788{8} | 0.00767{3} | 0.01003{4} | ||
300 | MSE | ˆβ | 0.00395{7} | 0.00146{5} | 0.00082{2} | 0.00156{6} | 0.00069{1} | 0.06989{8} | 0.0009{3} | 0.00102{4} |
ˆλ | 0.00963{1} | 0.10590{6} | 0.06974{3} | 0.11408{7} | 0.06775{2} | 10.86939{8} | 0.07544{4} | 0.07673{5} | ||
ˆδ | 0.32211{7} | 0.22118{5} | 0.16788{2} | 0.22718{6} | 0.15600{1} | 0.99575{8} | 0.17513{3} | 0.20033{4} | ||
MRE | ˆβ | 0.25131{7} | 0.15269{5} | 0.11437{2} | 0.15786{6} | 0.10537{1} | 1.05746{8} | 0.12030{3} | 0.12777{4} | |
ˆλ | 0.02803{1} | 0.09298{6} | 0.07545{3} | 0.09650{7} | 0.07437{2} | 0.94196{8} | 0.07848{4} | 0.07914{5} | ||
∑RANKS | 45.0{5} | 48.0{6} | 21.0{2} | 57.0{7} | 12.0{1} | 72.0{8} | 30.0{3} | 39.0{4} | ||
ˆδ | 0.13682{7} | 0.08518{5} | 0.06806{2} | 0.08903{6} | 0.06143{1} | 0.49767{8} | 0.06854{3} | 0.07835{4} | ||
BIAS | ˆβ | 0.04912{7} | 0.02897{5} | 0.02309{2} | 0.03037{6} | 0.02041{1} | 0.19514{8} | 0.02314{3} | 0.02444{4} | |
ˆλ | 0.07977{1} | 0.25952{6} | 0.19725{2} | 0.26898{7} | 0.20086{3} | 3.31272{8} | 0.22096{5} | 0.21419{4} | ||
ˆδ | 0.01872{7} | 0.00726{5} | 0.00463{2} | 0.00793{6} | 0.00377{1} | 0.24768{8} | 0.00470{3} | 0.00614{4} | ||
500 | MSE | ˆβ | 0.00241{7} | 0.00084{5} | 0.00053{2} | 0.00092{6} | 0.00042{1} | 0.03808{8} | 0.00054{3} | 0.00060{4} |
ˆλ | 0.00636{1} | 0.06735{6} | 0.03891{2} | 0.07235{7} | 0.04034{3} | 10.97413{8} | 0.04883{5} | 0.04588{4} | ||
ˆδ | 0.27364{7} | 0.17036{5} | 0.13611{2} | 0.17807{6} | 0.12285{1} | 0.99535{8} | 0.13709{3} | 0.15669{4} | ||
MRE | ˆβ | 0.19649{7} | 0.11589{5} | 0.09236{2} | 0.12148{6} | 0.08166{1} | 0.78054{8} | 0.09258{3} | 0.09775{4} | |
ˆλ | 0.02279{1} | 0.07415{6} | 0.05636{2} | 0.07685{7} | 0.05739{3} | 0.94649{8} | 0.06313{5} | 0.06120{4} | ||
∑RANKS | 45.0{5} | 48.0{6} | 18.0{2} | 57.0{7} | 15.0{1} | 72.0{8} | 33.0{3} | 36.0{4} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 0.33176{3} | 0.36562{5} | 0.33913{4} | 0.37397{6} | 0.32582{2} | 0.38712{7} | 0.32087{1} | 0.38878{8} | ||
BIAS | ˆβ | 1.12766{4} | 1.27666{6} | 1.07109{3} | 1.35020{8} | 0.96289{2} | 1.28521{7} | 0.94279{1} | 1.17226{5} | |
ˆλ | 0.86191{4} | 0.88497{5} | 0.76644{3} | 0.99457{8} | 0.70889{1} | 0.90068{6} | 0.74792{2} | 0.95949{7} | ||
ˆδ | 0.11007{3} | 0.13368{5} | 0.11501{4} | 0.13985{6} | 0.10616{2} | 0.14986{7} | 0.10296{1} | 0.15115{8} | ||
20 | MSE | ˆβ | 1.27161{4} | 1.62986{6} | 1.14723{3} | 1.82303{8} | 0.92715{2} | 1.65176{7} | 0.88885{1} | 1.37420{5} |
ˆλ | 0.74288{4} | 0.78317{5} | 0.58742{3} | 0.98917{8} | 0.50252{1} | 0.81123{6} | 0.55939{2} | 0.92062{7} | ||
ˆδ | 0.66352{3} | 0.73125{5} | 0.67827{4} | 0.74793{6} | 0.65165{2} | 0.77425{7} | 0.64175{1} | 0.77755{8} | ||
MRE | ˆβ | 0.56383{4} | 0.63833{6} | 0.53555{3} | 0.67510{8} | 0.48144{2} | 0.64260{7} | 0.47140{1} | 0.58613{5} | |
ˆλ | 0.57461{4} | 0.58998{5} | 0.51096{3} | 0.66305{8} | 0.47259{1} | 0.60045{6} | 0.49861{2} | 0.63966{7} | ||
∑RANKS | 33.0{4} | 48.0{5} | 30.0{3} | 66.0{8} | 15.0{2} | 60.0{6.5} | 12.0{1} | 60.0{6.5} | ||
ˆδ | 0.21959{4} | 0.24961{6} | 0.21918{3} | 0.26981{7} | 0.19148{1} | 0.27897{8} | 0.20495{2} | 0.24813{5} | ||
BIAS | ˆβ | 0.62370{3} | 0.76053{7} | 0.62516{4} | 0.77811{8} | 0.54002{1} | 0.73260{6} | 0.57135{2} | 0.64916{5} | |
ˆλ | 0.45268{4} | 0.48195{5} | 0.42714{2} | 0.52178{7} | 0.39191{1} | 0.56415{8} | 0.43028{3} | 0.51147{6} | ||
ˆδ | 0.04822{4} | 0.06230{6} | 0.04804{3} | 0.07280{7} | 0.03666{1} | 0.07783{8} | 0.04200{2} | 0.06157{5} | ||
50 | MSE | ˆβ | 0.38900{3} | 0.57840{7} | 0.39083{4} | 0.60546{8} | 0.29162{1} | 0.53670{6} | 0.32644{2} | 0.42141{5} |
ˆλ | 0.20492{4} | 0.23227{5} | 0.18245{2} | 0.27226{7} | 0.15360{1} | 0.31827{8} | 0.18514{3} | 0.26160{6} | ||
ˆδ | 0.43918{4} | 0.49921{6} | 0.43837{3} | 0.53963{7} | 0.38295{1} | 0.55795{8} | 0.40990{2} | 0.49627{5} | ||
MRE | ˆβ | 0.31185{3} | 0.38026{7} | 0.31258{4} | 0.38906{8} | 0.27001{1} | 0.36630{6} | 0.28568{2} | 0.32458{5} | |
ˆλ | 0.30179{4} | 0.32130{5} | 0.28476{2} | 0.34786{7} | 0.26128{1} | 0.37610{8} | 0.28685{3} | 0.34098{6} | ||
∑RANKS | 33.0{4} | 54.0{6} | 27.0{3} | 66.0{7.5} | 9.0{1} | 66.0{7.5} | 21.0{2} | 48.0{5} | ||
ˆδ | 0.14671{2} | 0.18823{6} | 0.15343{4} | 0.19493{7} | 0.13279{1} | 0.21007{8} | 0.15276{3} | 0.17687{5} | ||
BIAS | ˆβ | 0.39391{2} | 0.53496{7} | 0.42885{4} | 0.55301{8} | 0.35810{1} | 0.52138{6} | 0.41247{3} | 0.44862{5} | |
ˆλ | 0.29759{3} | 0.32702{5} | 0.27960{2} | 0.34665{6} | 0.26772{1} | 0.39649{8} | 0.30125{4} | 0.35571{7} | ||
ˆδ | 0.02152{2} | 0.03543{6} | 0.02354{4} | 0.03800{7} | 0.01763{1} | 0.04413{8} | 0.02334{3} | 0.03128{5} | ||
100 | MSE | ˆβ | 0.15516{2} | 0.28618{7} | 0.18391{4} | 0.30582{8} | 0.12824{1} | 0.27184{6} | 0.17013{3} | 0.20126{5} |
ˆλ | 0.08856{3} | 0.10694{5} | 0.07818{2} | 0.12017{6} | 0.07167{1} | 0.15720{8} | 0.09075{4} | 0.12653{7} | ||
ˆδ | 0.29341{2} | 0.37646{6} | 0.30687{4} | 0.38987{7} | 0.26559{1} | 0.42015{8} | 0.30552{3} | 0.35375{5} | ||
MRE | ˆβ | 0.19695{2} | 0.26748{7} | 0.21443{4} | 0.27650{8} | 0.17905{1} | 0.26069{6} | 0.20623{3} | 0.22431{5} | |
ˆλ | 0.19839{3} | 0.21801{5} | 0.18640{2} | 0.23110{6} | 0.17848{1} | 0.26433{8} | 0.20083{4} | 0.23714{7} | ||
∑RANKS | 21.0{2} | 54.0{6} | 30.0{3.5} | 63.0{7} | 9.0{1} | 66.0{8} | 30.0{3.5} | 51.0{5} | ||
ˆδ | 0.08098{2} | 0.10961{6} | 0.08512{3} | 0.11525{7} | 0.07733{1} | 0.12222{8} | 0.08977{4} | 0.10159{5} | ||
BIAS | ˆβ | 0.21831{2} | 0.30112{7} | 0.23615{3} | 0.31930{8} | 0.20764{1} | 0.28937{6} | 0.24578{4} | 0.26022{5} | |
ˆλ | 0.15901{2} | 0.18217{5} | 0.16388{3} | 0.18257{6} | 0.15273{1} | 0.22463{8} | 0.16393{4} | 0.19128{7} | ||
ˆδ | 0.00656{2} | 0.01201{6} | 0.00725{3} | 0.01328{7} | 0.00598{1} | 0.01494{8} | 0.00806{4} | 0.01032{5} | ||
300 | MSE | ˆβ | 0.04766{2} | 0.09067{7} | 0.05576{3} | 0.10195{8} | 0.04312{1} | 0.08374{6} | 0.06041{4} | 0.06771{5} |
ˆλ | 0.02529{2} | 0.03319{5} | 0.02686{3} | 0.03333{6} | 0.02333{1} | 0.05046{8} | 0.02687{4} | 0.03659{7} | ||
ˆδ | 0.16196{2} | 0.21922{6} | 0.17024{3} | 0.23050{7} | 0.15466{1} | 0.24444{8} | 0.17953{4} | 0.20317{5} | ||
MRE | ˆβ | 0.10916{2} | 0.15056{7} | 0.11807{3} | 0.15965{8} | 0.10382{1} | 0.14469{6} | 0.12289{4} | 0.13011{5} | |
ˆλ | 0.10601{2} | 0.12145{5} | 0.10925{3} | 0.12171{6} | 0.10182{1} | 0.14975{8} | 0.10929{4} | 0.12752{7} | ||
∑RANKS | 18.0{2} | 54.0{6} | 27.0{3} | 63.0{7} | 9.0{1} | 66.0{8} | 36.0{4} | 51.0{5} | ||
ˆδ | 0.06133{2} | 0.08655{6} | 0.06579{3} | 0.08942{7} | 0.05873{1} | 0.09305{8} | 0.06982{4} | 0.07986{5} | ||
BIAS | ˆβ | 0.16505{2} | 0.23942{7} | 0.17980{3} | 0.24405{8} | 0.15115{1} | 0.21914{6} | 0.18812{4} | 0.20420{5} | |
ˆλ | 0.12258{3} | 0.14193{5} | 0.12071{2} | 0.14351{6} | 0.11629{1} | 0.17353{8} | 0.12581{4} | 0.14648{7} | ||
ˆδ | 0.00376{2} | 0.00749{6} | 0.00433{3} | 0.00800{7} | 0.00345{1} | 0.00866{8} | 0.00488{4} | 0.00638{5} | ||
500 | MSE | ˆβ | 0.02724{2} | 0.05732{7} | 0.03233{3} | 0.05956{8} | 0.02285{1} | 0.04802{6} | 0.03539{4} | 0.04170{5} |
ˆλ | 0.01503{3} | 0.02014{5} | 0.01457{2} | 0.02059{6} | 0.01352{1} | 0.03011{8} | 0.01583{4} | 0.02146{7} | ||
ˆδ | 0.12266{2} | 0.17311{6} | 0.13157{3} | 0.17883{7} | 0.11745{1} | 0.18610{8} | 0.13965{4} | 0.15972{5} | ||
MRE | ˆβ | 0.08253{2} | 0.11971{7} | 0.08990{3} | 0.12203{8} | 0.07557{1} | 0.10957{6} | 0.09406{4} | 0.10210{5} | |
ˆλ | 0.08172{3} | 0.09462{5} | 0.08047{2} | 0.09567{6} | 0.07753{1} | 0.11568{8} | 0.08387{4} | 0.09765{7} | ||
∑RANKS | 21.0{2} | 54.0{6} | 24.0{3} | 63.0{7} | 9.0{1} | 66.0{8} | 36.0{4} | 51.0{5} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 0.33110{3} | 0.36615{5} | 0.33585{4} | 0.37061{6} | 0.31868{1} | 0.39913{8} | 0.32453{2} | 0.38922{7} | ||
BIAS | ˆβ | 1.11460{4} | 1.27786{6} | 1.06641{3} | 1.32616{8} | 0.95015{2} | 1.28377{7} | 0.94504{1} | 1.17382{5} | |
ˆλ | 1.55737{5} | 1.59665{6} | 1.34503{3} | 1.91607{8} | 1.19054{1} | 1.53949{4} | 1.23604{2} | 1.70187{7} | ||
ˆδ | 0.10963{3} | 0.13407{5} | 0.11279{4} | 0.13735{6} | 0.10155{1} | 0.15930{8} | 0.10532{2} | 0.15149{7} | ||
20 | MSE | ˆβ | 1.24233{4} | 1.63291{6} | 1.13723{3} | 1.75870{8} | 0.90278{2} | 1.64808{7} | 0.89310{1} | 1.37786{5} |
ˆλ | 2.42540{5} | 2.54930{6} | 1.80910{3} | 3.67132{8} | 1.41739{1} | 2.37004{4} | 1.52779{2} | 2.89636{7} | ||
ˆδ | 0.66220{3} | 0.73230{5} | 0.67170{4} | 0.74122{6} | 0.63735{1} | 0.79825{8} | 0.64906{2} | 0.77844{7} | ||
MRE | ˆβ | 0.55730{4} | 0.63893{6} | 0.53320{3} | 0.66308{8} | 0.47507{2} | 0.64189{7} | 0.47252{1} | 0.58691{5} | |
ˆλ | 0.44496{5} | 0.45619{6} | 0.38429{3} | 0.54745{8} | 0.34016{1} | 0.43986{4} | 0.35315{2} | 0.48625{7} | ||
∑RANKS | 36.0{4} | 51.0{5} | 30.0{3} | 66.0{8} | 12.0{1} | 57.0{6.5} | 15.0{2} | 57.0{6.5} | ||
ˆδ | 0.21390{3} | 0.26182{6} | 0.22139{4} | 0.27439{7} | 0.19140{1} | 0.28679{8} | 0.20785{2} | 0.24663{5} | ||
BIAS | ˆβ | 0.61150{3} | 0.78181{7} | 0.64730{4} | 0.78486{8} | 0.53103{1} | 0.76841{6} | 0.59128{2} | 0.64931{5} | |
ˆλ | 0.78611{4} | 0.86510{7} | 0.76550{3} | 0.92676{8} | 0.68749{1} | 0.80892{5} | 0.73796{2} | 0.81282{6} | ||
ˆδ | 0.04575{3} | 0.06855{6} | 0.04901{4} | 0.07529{7} | 0.03664{1} | 0.08225{8} | 0.04320{2} | 0.06082{5} | ||
50 | MSE | ˆβ | 0.37393{3} | 0.61123{7} | 0.41900{4} | 0.61600{8} | 0.28200{1} | 0.59046{6} | 0.34961{2} | 0.42160{5} |
ˆλ | 0.61798{4} | 0.74840{7} | 0.58599{3} | 0.85888{8} | 0.47264{1} | 0.65435{5} | 0.54459{2} | 0.66068{6} | ||
ˆδ | 0.42780{3} | 0.52365{6} | 0.44278{4} | 0.54878{7} | 0.38281{1} | 0.57358{8} | 0.41571{2} | 0.49325{5} | ||
MRE | ˆβ | 0.30575{3} | 0.39091{7} | 0.32365{4} | 0.39243{8} | 0.26552{1} | 0.38421{6} | 0.29564{2} | 0.32465{5} | |
ˆλ | 0.22460{4} | 0.24717{7} | 0.21871{3} | 0.26479{8} | 0.19643{1} | 0.23112{5} | 0.21085{2} | 0.23223{6} | ||
∑RANKS | 30.0{3} | 60.0{7} | 33.0{4} | 69.0{8} | 9.0{1} | 57.0{6} | 18.0{2} | 48.0{5} | ||
ˆδ | 0.14038{2} | 0.19164{6} | 0.15667{4} | 0.19596{7} | 0.13391{1} | 0.20535{8} | 0.15291{3} | 0.17192{5} | ||
BIAS | ˆβ | 0.38434{2} | 0.54048{7} | 0.42196{4} | 0.56208{8} | 0.36139{1} | 0.51354{6} | 0.42009{3} | 0.45263{5} | |
ˆλ | 0.47694{2} | 0.58765{7} | 0.51182{4} | 0.60332{8} | 0.45658{1} | 0.51860{5} | 0.49143{3} | 0.53797{6} | ||
ˆδ | 0.01971{2} | 0.03672{6} | 0.02455{4} | 0.03840{7} | 0.01793{1} | 0.04217{8} | 0.02338{3} | 0.02956{5} | ||
100 | MSE | ˆβ | 0.14772{2} | 0.29211{7} | 0.17805{4} | 0.31594{8} | 0.13060{1} | 0.26372{6} | 0.17648{3} | 0.20488{5} |
ˆλ | 0.22747{2} | 0.34533{7} | 0.26196{4} | 0.36399{8} | 0.20847{1} | 0.26895{5} | 0.24150{3} | 0.28941{6} | ||
ˆδ | 0.28075{2} | 0.38327{6} | 0.31335{4} | 0.39192{7} | 0.26781{1} | 0.41070{8} | 0.30583{3} | 0.34385{5} | ||
MRE | ˆβ | 0.19217{2} | 0.27024{7} | 0.21098{4} | 0.28104{8} | 0.18069{1} | 0.25677{6} | 0.21004{3} | 0.22632{5} | |
ˆλ | 0.13627{2} | 0.16790{7} | 0.14623{4} | 0.17238{8} | 0.13045{1} | 0.14817{5} | 0.14041{3} | 0.15371{6} | ||
∑RANKS | 18.0{2} | 60.0{7} | 36.0{4} | 69.0{8} | 9.0{1} | 57.0{6} | 27.0{3} | 48.0{5} | ||
ˆδ | 0.07851{1} | 0.11388{6} | 0.08746{3} | 0.11416{7} | 0.08299{2} | 0.12225{8} | 0.09006{4} | 0.10489{5} | ||
BIAS | ˆβ | 0.20925{1} | 0.31575{7} | 0.23592{3} | 0.31907{8} | 0.22303{2} | 0.28419{6} | 0.24085{4} | 0.26648{5} | |
ˆλ | 0.26941{2} | 0.33461{8} | 0.27809{4} | 0.33184{7} | 0.24439{1} | 0.27271{3} | 0.28243{5} | 0.29963{6} | ||
ˆδ | 0.00616{1} | 0.01297{6} | 0.00765{3} | 0.01303{7} | 0.00689{2} | 0.01495{8} | 0.00811{4} | 0.01100{5} | ||
300 | MSE | ˆβ | 0.04379{1} | 0.09970{7} | 0.05566{3} | 0.10180{8} | 0.04974{2} | 0.08077{6} | 0.05801{4} | 0.07101{5} |
ˆλ | 0.07258{2} | 0.11196{8} | 0.07733{4} | 0.11012{7} | 0.05973{1} | 0.07437{3} | 0.07977{5} | 0.08978{6} | ||
ˆδ | 0.15702{1} | 0.22776{6} | 0.17492{3} | 0.22833{7} | 0.16597{2} | 0.24450{8} | 0.18013{4} | 0.20979{5} | ||
MRE | ˆβ | 0.10463{1} | 0.15787{7} | 0.11796{3} | 0.15953{8} | 0.11152{2} | 0.14210{6} | 0.12042{4} | 0.13324{5} | |
ˆλ | 0.07697{2} | 0.09560{8} | 0.07945{4} | 0.09481{7} | 0.06983{1} | 0.07792{3} | 0.08069{5} | 0.08561{6} | ||
∑RANKS | 12.0{1} | 63.0{7} | 30.0{3} | 66.0{8} | 15.0{2} | 51.0{6} | 39.0{4} | 48.0{5} | ||
ˆδ | 0.06024{1} | 0.08637{7} | 0.06664{3} | 0.08502{6} | 0.06628{2} | 0.09635{8} | 0.06819{4} | 0.07999{5} | ||
BIAS | ˆβ | 0.16078{1} | 0.24082{7} | 0.18266{3} | 0.24124{8} | 0.17382{2} | 0.22598{6} | 0.18545{4} | 0.20491{5} | |
ˆλ | 0.20606{2} | 0.26665{8} | 0.22231{5} | 0.26483{7} | 0.18095{1} | 0.21196{3} | 0.22040{4} | 0.22496{6} | ||
ˆδ | 0.00363{1} | 0.00746{7} | 0.00444{3} | 0.00723{6} | 0.00439{2} | 0.00928{8} | 0.00465{4} | 0.00640{5} | ||
500 | MSE | ˆβ | 0.02585{1} | 0.05800{7} | 0.03337{3} | 0.05820{8} | 0.03021{2} | 0.05107{6} | 0.03439{4} | 0.04199{5} |
ˆλ | 0.04246{2} | 0.07110{8} | 0.04942{5} | 0.07014{7} | 0.03274{1} | 0.04493{3} | 0.04858{4} | 0.05061{6} | ||
ˆδ | 0.12048{1} | 0.17273{7} | 0.13328{3} | 0.17003{6} | 0.13257{2} | 0.19270{8} | 0.13637{4} | 0.15997{5} | ||
MRE | ˆβ | 0.08039{1} | 0.12041{7} | 0.09133{3} | 0.12062{8} | 0.08691{2} | 0.11299{6} | 0.09272{4} | 0.10245{5} | |
ˆλ | 0.05887{2} | 0.07619{8} | 0.06352{5} | 0.07567{7} | 0.05170{1} | 0.06056{3} | 0.06297{4} | 0.06427{6} | ||
∑RANKS | 12.0{1} | 66.0{8} | 33.0{3} | 63.0{7} | 15.0{2} | 51.0{6} | 36.0{4} | 48.0{5} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 1.22185{4} | 1.30796{5} | 1.18799{3} | 1.33931{6} | 1.11412{1} | 1.45636{8} | 1.13362{2} | 1.36998{7} | ||
BIAS | ˆβ | 0.12675{1} | 0.17951{6} | 0.15149{4} | 0.18035{7} | 0.12973{3} | 0.19587{8} | 0.12793{2} | 0.16035{5} | |
ˆλ | 0.94495{3} | 1.13870{5} | 0.96082{4} | 1.15670{6} | 0.88794{1} | 1.49717{8} | 0.89346{2} | 1.21562{7} | ||
ˆδ | 1.49293{4} | 1.71077{5} | 1.41132{3} | 1.79374{6} | 1.24126{1} | 2.12099{8} | 1.28510{2} | 1.87684{7} | ||
20 | MSE | ˆβ | 0.01607{1} | 0.03223{6} | 0.02295{4} | 0.03253{7} | 0.01683{3} | 0.03837{8} | 0.01637{2} | 0.02571{5} |
ˆλ | 0.89294{3} | 1.29664{5} | 0.92317{4} | 1.33795{6} | 0.78844{1} | 2.24151{8} | 0.79826{2} | 1.47773{7} | ||
ˆδ | 0.81457{4} | 0.87198{5} | 0.79199{3} | 0.89287{6} | 0.74275{1} | 0.97091{8} | 0.75575{2} | 0.91332{7} | ||
MRE | ˆβ | 0.50700{1} | 0.71806{6} | 0.60596{4} | 0.72140{7} | 0.51892{3} | 0.78348{8} | 0.51172{2} | 0.64141{5} | |
ˆλ | 0.62997{3} | 0.75913{5} | 0.64055{4} | 0.77113{6} | 0.59196{1} | 0.99811{8} | 0.59564{2} | 0.81041{7} | ||
∑RANKS | 24.0{3} | 48.0{5} | 33.0{4} | 57.0{6.5} | 15.0{1} | 72.0{8} | 18.0{2} | 57.0{6.5} | ||
ˆδ | 0.79315{2} | 0.99146{5} | 0.84310{4} | 1.01743{7} | 0.72849{1} | 1.46287{8} | 0.80972{3} | 0.99359{6} | ||
BIAS | ˆβ | 0.07620{2} | 0.11078{6} | 0.08734{4} | 0.11296{7} | 0.06930{1} | 0.18453{8} | 0.07794{3} | 0.09839{5} | |
ˆλ | 0.54797{2} | 0.71063{6} | 0.57525{4} | 0.70987{5} | 0.50083{1} | 1.49746{8} | 0.55093{3} | 0.72034{7} | ||
ˆδ | 0.62908{2} | 0.98300{5} | 0.71082{4} | 1.03516{7} | 0.53070{1} | 2.13998{8} | 0.65565{3} | 0.98721{6} | ||
50 | MSE | ˆβ | 0.00581{2} | 0.01227{6} | 0.00763{4} | 0.01276{7} | 0.00480{1} | 0.03405{8} | 0.00607{3} | 0.00968{5} |
ˆλ | 0.30027{2} | 0.50499{6} | 0.33091{4} | 0.50392{5} | 0.25083{1} | 2.24238{8} | 0.30352{3} | 0.51889{7} | ||
ˆδ | 0.52876{2} | 0.66097{5} | 0.56207{4} | 0.67829{7} | 0.48566{1} | 0.97524{8} | 0.53982{3} | 0.66239{6} | ||
MRE | ˆβ | 0.30480{2} | 0.44310{6} | 0.34938{4} | 0.45185{7} | 0.27722{1} | 0.73812{8} | 0.31176{3} | 0.39356{5} | |
ˆλ | 0.36531{2} | 0.47375{6} | 0.38350{4} | 0.47325{5} | 0.33389{1} | 0.99831{8} | 0.36729{3} | 0.48022{7} | ||
∑RANKS | 18.0{2} | 51.0{5} | 36.0{4} | 57.0{7} | 9.0{1} | 72.0{8} | 27.0{3} | 54.0{6} | ||
ˆδ | 0.55352{2} | 0.79898{7} | 0.61847{4} | 0.79686{6} | 0.53296{1} | 1.46195{8} | 0.60399{3} | 0.77763{5} | ||
BIAS | ˆβ | 0.05036{2} | 0.07948{7} | 0.05744{4} | 0.07839{6} | 0.04670{1} | 0.18270{8} | 0.05485{3} | 0.06844{5} | |
ˆλ | 0.35861{2} | 0.51616{6} | 0.39537{4} | 0.52199{7} | 0.33928{1} | 1.49165{8} | 0.38740{3} | 0.51469{5} | ||
ˆδ | 0.30638{2} | 0.63837{7} | 0.38250{4} | 0.63499{6} | 0.28404{1} | 2.13729{8} | 0.36481{3} | 0.60470{5} | ||
100 | MSE | ˆβ | 0.00254{2} | 0.00632{7} | 0.00330{4} | 0.00615{6} | 0.00218{1} | 0.03338{8} | 0.00301{3} | 0.00468{5} |
ˆλ | 0.12860{2} | 0.26642{6} | 0.15632{4} | 0.27248{7} | 0.11511{1} | 2.22502{8} | 0.15008{3} | 0.26490{5} | ||
ˆδ | 0.36901{2} | 0.53266{7} | 0.41231{4} | 0.53124{6} | 0.35530{1} | 0.97463{8} | 0.40266{3} | 0.51842{5} | ||
MRE | ˆβ | 0.20143{2} | 0.31790{7} | 0.22975{4} | 0.31356{6} | 0.18681{1} | 0.73078{8} | 0.21941{3} | 0.27376{5} | |
ˆλ | 0.23907{2} | 0.34411{6} | 0.26358{4} | 0.34800{7} | 0.22619{1} | 0.99443{8} | 0.25827{3} | 0.34313{5} | ||
∑RANKS | 18.0{2} | 60.0{7} | 36.0{4} | 57.0{6} | 9.0{1} | 72.0{8} | 27.0{3} | 45.0{5} | ||
ˆδ | 0.29712{1} | 0.48781{7} | 0.35956{3} | 0.48497{6} | 0.30236{2} | 1.41996{8} | 0.36469{4} | 0.47766{5} | ||
BIAS | ˆβ | 0.02561{2} | 0.04395{7} | 0.03174{4} | 0.04365{6} | 0.02442{1} | 0.16410{8} | 0.03163{3} | 0.03873{5} | |
ˆλ | 0.18604{1} | 0.29854{6} | 0.22010{3} | 0.28985{5} | 0.18861{2} | 1.38022{8} | 0.22173{4} | 0.29943{7} | ||
ˆδ | 0.08828{1} | 0.23796{7} | 0.12929{3} | 0.23520{6} | 0.09142{2} | 2.01629{8} | 0.13300{4} | 0.22816{5} | ||
300 | MSE | ˆβ | 0.00066{2} | 0.00193{7} | 0.00101{4} | 0.00191{6} | 0.00060{1} | 0.02693{8} | 0.00100{3} | 0.00150{5} |
ˆλ | 0.03461{1} | 0.08912{6} | 0.04845{3} | 0.08401{5} | 0.03557{2} | 1.90500{8} | 0.04917{4} | 0.08966{7} | ||
ˆδ | 0.19808{1} | 0.32521{7} | 0.23971{3} | 0.32331{6} | 0.20157{2} | 0.94664{8} | 0.24313{4} | 0.31844{5} | ||
MRE | ˆβ | 0.10244{2} | 0.17578{7} | 0.12698{4} | 0.17461{6} | 0.09767{1} | 0.65638{8} | 0.12653{3} | 0.15491{5} | |
ˆλ | 0.12403{1} | 0.19902{6} | 0.14674{3} | 0.19323{5} | 0.12574{2} | 0.92015{8} | 0.14782{4} | 0.19962{7} | ||
∑RANKS | 12.0{1} | 60.0{7} | 30.0{3} | 51.0{5.5} | 15.0{2} | 72.0{8} | 33.0{4} | 51.0{5.5} | ||
ˆδ | 0.25086{2} | 0.38648{6} | 0.28600{3} | 0.38981{7} | 0.07680{1} | 1.39954{8} | 0.29130{4} | 0.36782{5} | ||
BIAS | ˆβ | 0.02112{2} | 0.03402{7} | 0.02419{3} | 0.03401{6} | 0.01531{1} | 0.15183{8} | 0.02464{4} | 0.02929{5} | |
ˆλ | 0.15715{2} | 0.22582{6} | 0.17344{3} | 0.22961{7} | 0.10142{1} | 1.32012{8} | 0.17784{4} | 0.22455{5} | ||
ˆδ | 0.06293{2} | 0.14937{6} | 0.08180{3} | 0.15195{7} | 0.00590{1} | 1.95872{8} | 0.08486{4} | 0.13529{5} | ||
500 | MSE | ˆβ | 0.00045{2} | 0.00116{6.5} | 0.00059{3} | 0.00116{6.5} | 0.00023{1} | 0.02305{8} | 0.00061{4} | 0.00086{5} |
ˆλ | 0.02470{2} | 0.05100{6} | 0.03008{3} | 0.05272{7} | 0.01029{1} | 1.74272{8} | 0.03163{4} | 0.05042{5} | ||
ˆδ | 0.16724{2} | 0.25766{6} | 0.19067{3} | 0.25987{7} | 0.05120{1} | 0.93303{8} | 0.19420{4} | 0.24521{5} | ||
MRE | ˆβ | 0.08448{2} | 0.13606{7} | 0.09677{3} | 0.13603{6} | 0.06123{1} | 0.60731{8} | 0.09858{4} | 0.11714{5} | |
ˆλ | 0.10477{2} | 0.15055{6} | 0.11562{3} | 0.15307{7} | 0.06761{1} | 0.88008{8} | 0.11856{4} | 0.14970{5} | ||
∑RANKS | 18.0{2} | 56.5{6} | 27.0{3} | 60.5{7} | 9.0{1} | 72.0{8} | 36.0{4} | 45.0{5} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 1.22894{4} | 1.28950{5} | 1.18086{3} | 1.33073{7} | 1.07161{1} | 1.46572{8} | 1.13889{2} | 1.32101{6} | ||
BIAS | ˆβ | 0.12828{2} | 0.17671{7} | 0.15224{4} | 0.17548{6} | 0.12637{1} | 0.25000{8} | 0.13350{3} | 0.15810{5} | |
ˆλ | 1.39638{4} | 1.74017{7} | 1.43119{5} | 1.95764{8} | 1.18946{1} | 1.36218{3} | 1.33183{2} | 1.70681{6} | ||
ˆδ | 1.51029{4} | 1.66282{5} | 1.39442{3} | 1.77085{7} | 1.14834{1} | 2.14833{8} | 1.29707{2} | 1.74507{6} | ||
20 | MSE | ˆβ | 0.01645{2} | 0.03123{7} | 0.02318{4} | 0.03079{6} | 0.01597{1} | 0.06250{8} | 0.01782{3} | 0.02500{5} |
ˆλ | 1.94988{4} | 3.02819{7} | 2.04831{5} | 3.83234{8} | 1.41481{1} | 1.85553{3} | 1.77378{2} | 2.91320{6} | ||
ˆδ | 0.81929{4} | 0.85967{5} | 0.78724{3} | 0.88716{7} | 0.71440{1} | 0.97715{8} | 0.75926{2} | 0.88067{6} | ||
MRE | ˆβ | 0.51311{2} | 0.70683{7} | 0.60895{4} | 0.70191{6} | 0.50547{1} | 1.00000{8} | 0.53399{3} | 0.63242{5} | |
ˆλ | 0.39897{4} | 0.49719{7} | 0.40891{5} | 0.55932{8} | 0.33985{1} | 0.38919{3} | 0.38052{2} | 0.48766{6} | ||
∑RANKS | 30.0{3} | 57.0{6.5} | 36.0{4} | 63.0{8} | 9.0{1} | 57.0{6.5} | 21.0{2} | 51.0{5} | ||
ˆδ | 0.77632{2} | 1.00262{6} | 0.83470{4} | 0.99986{5} | 0.74758{1} | 1.49055{8} | 0.80751{3} | 1.00385{7} | ||
BIAS | ˆβ | 0.07277{2} | 0.11010{6} | 0.08714{4} | 0.11377{7} | 0.06972{1} | 0.25000{8} | 0.07820{3} | 0.09997{5} | |
ˆλ | 0.64433{2} | 0.84802{5} | 0.70844{4} | 0.93484{7} | 0.61040{1} | 3.02012{8} | 0.67029{3} | 0.85822{6} | ||
ˆδ | 0.60268{2} | 1.00524{6} | 0.69673{4} | 0.99972{5} | 0.55887{1} | 2.22174{8} | 0.65208{3} | 1.00772{7} | ||
50 | MSE | ˆβ | 0.00530{2} | 0.01212{6} | 0.00759{4} | 0.01294{7} | 0.00486{1} | 0.06250{8} | 0.00612{3} | 0.00999{5} |
ˆλ | 0.41517{2} | 0.71914{5} | 0.50188{4} | 0.87393{7} | 0.37259{1} | 9.12110{8} | 0.44929{3} | 0.73654{6} | ||
ˆδ | 0.51755{2} | 0.66841{6} | 0.55647{4} | 0.66657{5} | 0.49838{1} | 0.99370{8} | 0.53834{3} | 0.66924{7} | ||
MRE | ˆβ | 0.29110{2} | 0.44040{6} | 0.34855{4} | 0.45506{7} | 0.27886{1} | 1.00000{8} | 0.31281{3} | 0.39987{5} | |
ˆλ | 0.18410{2} | 0.24229{5} | 0.20241{4} | 0.26710{7} | 0.17440{1} | 0.86289{8} | 0.19151{3} | 0.24521{6} | ||
∑RANKS | 18.0{2} | 51.0{5} | 36.0{4} | 57.0{7} | 9.0{1} | 72.0{8} | 27.0{3} | 54.0{6} | ||
ˆδ | 0.52877{2} | 0.75982{5} | 0.61324{4} | 0.79300{7} | 0.50211{1} | 1.49311{8} | 0.59239{3} | 0.76087{6} | ||
BIAS | ˆβ | 0.04745{2} | 0.07544{6} | 0.05512{4} | 0.07800{7} | 0.04411{1} | 0.24115{8} | 0.05318{3} | 0.06564{5} | |
ˆλ | 0.41302{2} | 0.54237{5} | 0.44237{4} | 0.55690{7} | 0.40469{1} | 3.40952{8} | 0.43465{3} | 0.54540{6} | ||
ˆδ | 0.27959{2} | 0.57732{5} | 0.37606{4} | 0.62885{7} | 0.25211{1} | 2.22937{8} | 0.35092{3} | 0.57892{6} | ||
100 | MSE | ˆβ | 0.00225{2} | 0.00569{6} | 0.00304{4} | 0.00608{7} | 0.00195{1} | 0.05816{8} | 0.00283{3} | 0.00431{5} |
ˆλ | 0.17058{2} | 0.29416{5} | 0.19569{4} | 0.31014{7} | 0.16378{1} | 11.62479{8} | 0.18892{3} | 0.29747{6} | ||
ˆδ | 0.35251{2} | 0.50654{5} | 0.40883{4} | 0.52867{7} | 0.33474{1} | 0.99540{8} | 0.39493{3} | 0.50724{6} | ||
MRE | ˆβ | 0.18979{2} | 0.30177{6} | 0.22048{4} | 0.31201{7} | 0.17643{1} | 0.96461{8} | 0.21274{3} | 0.26254{5} | |
ˆλ | 0.11800{2} | 0.15496{5} | 0.12639{4} | 0.15912{7} | 0.11563{1} | 0.97415{8} | 0.12419{3} | 0.15583{6} | ||
∑RANKS | 18.0{2} | 48.0{5} | 36.0{4} | 63.0{7} | 9.0{1} | 72.0{8} | 27.0{3} | 51.0{6} | ||
ˆδ | 0.30459{2} | 0.47883{6} | 0.34599{3} | 0.49318{7} | 0.26509{1} | 1.49412{8} | 0.36119{4} | 0.47006{5} | ||
BIAS | ˆβ | 0.02610{2} | 0.04267{6} | 0.03044{3} | 0.04300{7} | 0.02472{1} | 0.19207{8} | 0.03073{4} | 0.03788{5} | |
ˆλ | 0.22180{2} | 0.28352{5} | 0.23322{3} | 0.29399{6} | 0.21278{1} | 3.31702{8} | 0.24050{4} | 0.29989{7} | ||
ˆδ | 0.09277{2} | 0.22927{6} | 0.11971{3} | 0.24323{7} | 0.07027{1} | 2.23239{8} | 0.13046{4} | 0.22096{5} | ||
300 | MSE | ˆβ | 0.00068{2} | 0.00182{6} | 0.00093{3} | 0.00185{7} | 0.00061{1} | 0.03689{8} | 0.00094{4} | 0.00143{5} |
ˆλ | 0.04919{2} | 0.08038{5} | 0.05439{3} | 0.08643{6} | 0.04528{1} | 11.00263{8} | 0.05784{4} | 0.08994{7} | ||
ˆδ | 0.20306{2} | 0.31922{6} | 0.23066{3} | 0.32879{7} | 0.17673{1} | 0.99608{8} | 0.24079{4} | 0.31337{5} | ||
MRE | ˆβ | 0.10439{2} | 0.17067{6} | 0.12174{3} | 0.17200{7} | 0.09888{1} | 0.76827{8} | 0.12292{4} | 0.15151{5} | |
ˆλ | 0.06337{2} | 0.08101{5} | 0.06663{3} | 0.08400{6} | 0.06080{1} | 0.94772{8} | 0.06872{4} | 0.08568{7} | ||
∑RANKS | 18.0{2} | 51.0{5.5} | 27.0{3} | 60.0{7} | 9.0{1} | 72.0{8} | 36.0{4} | 51.0{5.5} | ||
ˆδ | 0.23897{2} | 0.38214{7} | 0.25570{3} | 0.37845{6} | 0.16914{1} | 1.48632{8} | 0.28414{4} | 0.37467{5} | ||
BIAS | ˆβ | 0.01978{2} | 0.03282{7} | 0.02240{3} | 0.03281{6} | 0.01819{1} | 0.18313{8} | 0.02426{4} | 0.03009{5} | |
ˆλ | 0.16576{2} | 0.21315{6} | 0.17902{3} | 0.20973{5} | 0.16236{1} | 3.09819{8} | 0.18473{4} | 0.23445{7} | ||
ˆδ | 0.05711{2} | 0.14603{7} | 0.06538{3} | 0.14322{6} | 0.02861{1} | 2.20913{8} | 0.08074{4} | 0.14037{5} | ||
500 | MSE | ˆβ | 0.00039{2} | 0.00108{6.5} | 0.00050{3} | 0.00108{6.5} | 0.00033{1} | 0.03354{8} | 0.00059{4} | 0.00091{5} |
ˆλ | 0.02748{2} | 0.04543{6} | 0.03205{3} | 0.04399{5} | 0.02636{1} | 9.59881{8} | 0.03413{4} | 0.05496{7} | ||
ˆδ | 0.15931{2} | 0.25476{7} | 0.17047{3} | 0.25230{6} | 0.11276{1} | 0.99088{8} | 0.18943{4} | 0.24978{5} | ||
MRE | ˆβ | 0.07914{2} | 0.13129{7} | 0.08961{3} | 0.13125{6} | 0.07275{1} | 0.73250{8} | 0.09705{4} | 0.12037{5} | |
ˆλ | 0.04736{2} | 0.06090{6} | 0.05115{3} | 0.05992{5} | 0.04639{1} | 0.88520{8} | 0.05278{4} | 0.06698{7} | ||
∑RANKS | 18.0{2} | 59.5{7} | 27.0{3} | 51.5{6} | 9.0{1} | 72.0{8} | 36.0{4} | 51.0{5} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 1.21790{4} | 1.30887{6} | 1.21865{5} | 1.34306{7} | 1.11438{1} | 1.21283{3} | 1.17647{2} | 1.35914{8} | ||
BIAS | ˆβ | 1.05826{2} | 1.39100{7} | 1.23608{5} | 1.44930{8} | 1.03052{1} | 1.18538{4} | 1.06741{3} | 1.27677{6} | |
ˆλ | 0.93963{2} | 1.12156{6} | 0.98145{4} | 1.15279{7} | 0.87281{1} | 1.02784{5} | 0.94055{3} | 1.17198{8} | ||
ˆδ | 1.48329{4} | 1.71313{6} | 1.48511{5} | 1.80380{7} | 1.24185{1} | 1.47095{3} | 1.38408{2} | 1.84725{8} | ||
20 | MSE | ˆβ | 1.11992{2} | 1.93489{7} | 1.52788{5} | 2.10047{8} | 1.06198{1} | 1.40512{4} | 1.13937{3} | 1.63014{6} |
ˆλ | 0.88290{2} | 1.25789{6} | 0.96325{4} | 1.32892{7} | 0.76181{1} | 1.05646{5} | 0.88463{3} | 1.37353{8} | ||
ˆδ | 0.81194{4} | 0.87258{6} | 0.81243{5} | 0.89537{7} | 0.74292{1} | 0.80855{3} | 0.78431{2} | 0.90609{8} | ||
MRE | ˆβ | 0.52913{2} | 0.69550{7} | 0.61804{5} | 0.72465{8} | 0.51526{1} | 0.59269{4} | 0.53371{3} | 0.63839{6} | |
ˆλ | 0.62642{2} | 0.74771{6} | 0.65430{4} | 0.76853{7} | 0.58188{1} | 0.68523{5} | 0.62703{3} | 0.78132{8} | ||
∑RANKS | 24.0{2.5} | 57.0{6} | 42.0{5} | 66.0{7.5} | 9.0{1} | 36.0{4} | 24.0{2.5} | 66.0{7.5} | ||
ˆδ | 0.79539{3} | 1.00353{6} | 0.85786{4} | 1.01445{7} | 0.75478{1} | 0.91041{5} | 0.79011{2} | 1.01556{8} | ||
BIAS | ˆβ | 0.59966{2} | 0.90678{7} | 0.70921{4} | 0.91942{8} | 0.56750{1} | 0.72809{5} | 0.62593{3} | 0.77242{6} | |
ˆλ | 0.53020{2} | 0.72106{6} | 0.59163{4} | 0.72648{7} | 0.52005{1} | 0.64409{5} | 0.54187{3} | 0.75003{8} | ||
ˆδ | 0.63265{3} | 1.00707{6} | 0.73592{4} | 1.02910{7} | 0.56970{1} | 0.82884{5} | 0.62427{2} | 1.03136{8} | ||
50 | MSE | ˆβ | 0.35960{2} | 0.82226{7} | 0.50298{4} | 0.84533{8} | 0.32206{1} | 0.53012{5} | 0.39178{3} | 0.59663{6} |
ˆλ | 0.28111{2} | 0.51992{6} | 0.35002{4} | 0.52777{7} | 0.27045{1} | 0.41485{5} | 0.29363{3} | 0.56255{8} | ||
ˆδ | 0.53026{3} | 0.66902{6} | 0.57190{4} | 0.67630{7} | 0.50319{1} | 0.60694{5} | 0.52674{2} | 0.67704{8} | ||
MRE | ˆβ | 0.29983{2} | 0.45339{7} | 0.35461{4} | 0.45971{8} | 0.28375{1} | 0.36405{5} | 0.31296{3} | 0.38621{6} | |
ˆλ | 0.35347{2} | 0.48070{6} | 0.39442{4} | 0.48432{7} | 0.34670{1} | 0.42939{5} | 0.36125{3} | 0.50002{8} | ||
∑RANKS | 21.0{2} | 57.0{6} | 36.0{4} | 66.0{7.5} | 9.0{1} | 45.0{5} | 24.0{3} | 66.0{7.5} | ||
ˆδ | 0.56242{2} | 0.77628{6} | 0.61241{4} | 0.80807{8} | 0.54109{1} | 0.68672{5} | 0.59950{3} | 0.77986{7} | ||
BIAS | ˆβ | 0.39983{2} | 0.61330{7} | 0.43840{4} | 0.63189{8} | 0.38098{1} | 0.49069{5} | 0.43820{3} | 0.56198{6} | |
ˆλ | 0.36312{2} | 0.49911{6} | 0.38759{4} | 0.52894{8} | 0.35611{1} | 0.45134{5} | 0.38358{3} | 0.52830{7} | ||
ˆδ | 0.31631{2} | 0.60261{6} | 0.37505{4} | 0.65298{8} | 0.29278{1} | 0.47158{5} | 0.35940{3} | 0.60819{7} | ||
100 | MSE | ˆβ | 0.15986{2} | 0.37613{7} | 0.19220{4} | 0.39929{8} | 0.14515{1} | 0.24078{5} | 0.19202{3} | 0.31582{6} |
ˆλ | 0.13185{2} | 0.24911{6} | 0.15023{4} | 0.27978{8} | 0.12682{1} | 0.20370{5} | 0.14714{3} | 0.27910{7} | ||
ˆδ | 0.37494{2} | 0.51752{6} | 0.40827{4} | 0.53871{8} | 0.36073{1} | 0.45781{5} | 0.39966{3} | 0.51991{7} | ||
MRE | ˆβ | 0.19991{2} | 0.30665{7} | 0.21920{4} | 0.31595{8} | 0.19049{1} | 0.24535{5} | 0.21910{3} | 0.28099{6} | |
ˆλ | 0.24208{2} | 0.33274{6} | 0.25839{4} | 0.35263{8} | 0.23741{1} | 0.30089{5} | 0.25572{3} | 0.35220{7} | ||
∑RANKS | 18.0{2} | 57.0{6} | 36.0{4} | 72.0{8} | 9.0{1} | 45.0{5} | 27.0{3} | 60.0{7} | ||
ˆδ | 0.32323{2} | 0.49569{8} | 0.36255{4} | 0.48956{7} | 0.30782{1} | 0.41508{5} | 0.35994{3} | 0.48713{6} | ||
BIAS | ˆβ | 0.22461{2} | 0.35416{7} | 0.25156{3} | 0.35426{8} | 0.19092{1} | 0.27075{5} | 0.25279{4} | 0.31981{6} | |
ˆλ | 0.20246{2} | 0.30157{7} | 0.21812{3} | 0.29793{6} | 0.17845{1} | 0.25460{5} | 0.22575{4} | 0.30237{8} | ||
ˆδ | 0.10448{2} | 0.24571{8} | 0.13144{4} | 0.23967{7} | 0.09475{1} | 0.17229{5} | 0.12955{3} | 0.23729{6} | ||
300 | MSE | ˆβ | 0.05045{2} | 0.12543{7} | 0.06328{3} | 0.12550{8} | 0.03645{1} | 0.07331{5} | 0.06390{4} | 0.10228{6} |
ˆλ | 0.04099{2} | 0.09095{7} | 0.04757{3} | 0.08876{6} | 0.03184{1} | 0.06482{5} | 0.05096{4} | 0.09143{8} | ||
ˆδ | 0.21549{2} | 0.33046{8} | 0.24170{4} | 0.32637{7} | 0.20521{1} | 0.27672{5} | 0.23996{3} | 0.32475{6} | ||
MRE | ˆβ | 0.11231{2} | 0.17708{7} | 0.12578{3} | 0.17713{8} | 0.09546{1} | 0.13538{5} | 0.12640{4} | 0.15991{6} | |
ˆλ | 0.13497{2} | 0.20105{7} | 0.14541{3} | 0.19862{6} | 0.11897{1} | 0.16974{5} | 0.15050{4} | 0.20158{8} | ||
∑RANKS | 18.0{2} | 66.0{8} | 30.0{3} | 63.0{7} | 9.0{1} | 45.0{5} | 33.0{4} | 60.0{6} | ||
ˆδ | 0.24699{2} | 0.39408{8} | 0.27937{3} | 0.38856{7} | 0.06292{1} | 0.32464{5} | 0.29210{4} | 0.36675{6} | ||
BIAS | ˆβ | 0.16520{2} | 0.27112{8} | 0.18661{3} | 0.26750{7} | 0.10938{1} | 0.20723{5} | 0.20130{4} | 0.23228{6} | |
ˆλ | 0.15305{2} | 0.23378{8} | 0.16744{3} | 0.22923{7} | 0.10184{1} | 0.20077{5} | 0.17960{4} | 0.22513{6} | ||
ˆδ | 0.06100{2} | 0.15530{8} | 0.07805{3} | 0.15098{7} | 0.00396{1} | 0.10539{5} | 0.08532{4} | 0.13450{6} | ||
500 | MSE | ˆβ | 0.02729{2} | 0.07350{8} | 0.03482{3} | 0.07155{7} | 0.01196{1} | 0.04295{5} | 0.04052{4} | 0.05395{6} |
ˆλ | 0.02343{2} | 0.05465{8} | 0.02804{3} | 0.05255{7} | 0.01037{1} | 0.04031{5} | 0.03226{4} | 0.05068{6} | ||
ˆδ | 0.16466{2} | 0.26272{8} | 0.18625{3} | 0.25904{7} | 0.04195{1} | 0.21643{5} | 0.19473{4} | 0.24450{6} | ||
MRE | ˆβ | 0.08260{2} | 0.13556{8} | 0.09331{3} | 0.13375{7} | 0.05469{1} | 0.10362{5} | 0.10065{4} | 0.11614{6} | |
ˆλ | 0.10203{2} | 0.15585{8} | 0.11163{3} | 0.15282{7} | 0.06789{1} | 0.13385{5} | 0.11973{4} | 0.15008{6} | ||
∑RANKS | 18.0{2} | 72.0{8} | 27.0{3} | 63.0{7} | 9.0{1} | 45.0{5} | 36.0{4} | 54.0{6} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 1.23462{5} | 1.31283{7} | 1.20528{3} | 1.31253{6} | 1.10360{1} | 1.22863{4} | 1.14760{2} | 1.36649{8} | ||
BIAS | ˆβ | 1.05009{3} | 1.40142{7} | 1.24705{5} | 1.42459{8} | 1.02087{1} | 1.20712{4} | 1.04620{2} | 1.28075{6} | |
ˆλ | 1.50774{5} | 1.68716{6} | 1.45155{4} | 2.02470{8} | 1.20515{1} | 1.41364{3} | 1.31014{2} | 1.72834{7} | ||
ˆδ | 1.52429{5} | 1.72353{7} | 1.45270{3} | 1.72274{6} | 1.21793{1} | 1.50952{4} | 1.31698{2} | 1.86730{8} | ||
20 | MSE | ˆβ | 1.10269{3} | 1.96399{7} | 1.55514{5} | 2.02944{8} | 1.04218{1} | 1.45713{4} | 1.09454{2} | 1.64033{6} |
ˆλ | 2.27328{5} | 2.84649{6} | 2.10700{4} | 4.09940{8} | 1.45239{1} | 1.99839{3} | 1.71647{2} | 2.98715{7} | ||
ˆδ | 0.82308{5} | 0.87522{7} | 0.80352{3} | 0.87502{6} | 0.73573{1} | 0.81908{4} | 0.76507{2} | 0.91099{8} | ||
MRE | ˆβ | 0.52504{3} | 0.70071{7} | 0.62353{5} | 0.71229{8} | 0.51044{1} | 0.60356{4} | 0.52310{2} | 0.64038{6} | |
ˆλ | 0.43078{5} | 0.48204{6} | 0.41473{4} | 0.57848{8} | 0.34433{1} | 0.40390{3} | 0.37433{2} | 0.49381{7} | ||
∑RANKS | 39.0{5} | 60.0{6} | 36.0{4} | 66.0{8} | 9.0{1} | 33.0{3} | 18.0{2} | 63.0{7} | ||
ˆδ | 0.80023{2} | 0.99949{7} | 0.86165{4} | 1.00938{8} | 0.75322{1} | 0.92477{5} | 0.80210{3} | 0.97979{6} | ||
BIAS | ˆβ | 0.60978{2} | 0.90738{8} | 0.71608{4} | 0.89419{7} | 0.56524{1} | 0.73706{5} | 0.62063{3} | 0.75250{6} | |
ˆλ | 0.68845{3} | 0.85525{7} | 0.71642{4} | 0.92531{8} | 0.62309{1} | 0.72238{5} | 0.66644{2} | 0.85091{6} | ||
ˆδ | 0.64037{2} | 0.99899{7} | 0.74245{4} | 1.01885{8} | 0.56734{1} | 0.85521{5} | 0.64336{3} | 0.95999{6} | ||
50 | MSE | ˆβ | 0.37183{2} | 0.82334{8} | 0.51277{4} | 0.79957{7} | 0.31950{1} | 0.54325{5} | 0.38519{3} | 0.56626{6} |
ˆλ | 0.47397{3} | 0.73146{7} | 0.51326{4} | 0.85620{8} | 0.38824{1} | 0.52183{5} | 0.44414{2} | 0.72404{6} | ||
ˆδ | 0.53349{2} | 0.66633{7} | 0.57444{4} | 0.67292{8} | 0.50215{1} | 0.61652{5} | 0.53473{3} | 0.65319{6} | ||
MRE | ˆβ | 0.30489{2} | 0.45369{8} | 0.35804{4} | 0.44709{7} | 0.28262{1} | 0.36853{5} | 0.31032{3} | 0.37625{6} | |
ˆλ | 0.19670{3} | 0.24436{7} | 0.20469{4} | 0.26437{8} | 0.17803{1} | 0.20639{5} | 0.19041{2} | 0.24312{6} | ||
∑RANKS | 21.0{2} | 66.0{7} | 36.0{4} | 69.0{8} | 9.0{1} | 45.0{5} | 24.0{3} | 54.0{6} | ||
ˆδ | 0.55451{2} | 0.78491{8} | 0.64174{4} | 0.77990{6} | 0.53134{1} | 0.70296{5} | 0.62483{3} | 0.78258{7} | ||
BIAS | ˆβ | 0.39869{2} | 0.61053{7} | 0.46633{4} | 0.61217{8} | 0.37452{1} | 0.50410{5} | 0.46542{3} | 0.55297{6} | |
ˆλ | 0.42451{2} | 0.53326{6} | 0.45485{3} | 0.57349{8} | 0.40630{1} | 0.49665{5} | 0.45643{4} | 0.56196{7} | ||
ˆδ | 0.30748{2} | 0.61608{8} | 0.41183{4} | 0.60824{6} | 0.28232{1} | 0.49416{5} | 0.39041{3} | 0.61243{7} | ||
100 | MSE | ˆβ | 0.15895{2} | 0.37274{7} | 0.21747{4} | 0.37475{8} | 0.14027{1} | 0.25412{5} | 0.21662{3} | 0.30578{6} |
ˆλ | 0.18021{2} | 0.28437{6} | 0.20689{3} | 0.32889{8} | 0.16508{1} | 0.24667{5} | 0.20833{4} | 0.31580{7} | ||
ˆδ | 0.36967{2} | 0.52327{8} | 0.42783{4} | 0.51993{6} | 0.35423{1} | 0.46864{5} | 0.41655{3} | 0.52172{7} | ||
MRE | ˆβ | 0.19934{2} | 0.30526{7} | 0.23317{4} | 0.30608{8} | 0.18726{1} | 0.25205{5} | 0.23271{3} | 0.27649{6} | |
ˆλ | 0.12129{2} | 0.15236{6} | 0.12996{3} | 0.16385{8} | 0.11609{1} | 0.14190{5} | 0.13041{4} | 0.16056{7} | ||
∑RANKS | 18.0{2} | 63.0{7} | 33.0{4} | 66.0{8} | 9.0{1} | 45.0{5} | 30.0{3} | 60.0{6} | ||
ˆδ | 0.31588{2} | 0.49339{7} | 0.36347{3} | 0.49549{8} | 0.30500{1} | 0.41165{5} | 0.38186{4} | 0.48256{6} | ||
BIAS | ˆβ | 0.21678{2} | 0.35354{8} | 0.25102{3} | 0.35267{7} | 0.19375{1} | 0.26734{5} | 0.26120{4} | 0.31289{6} | |
ˆλ | 0.21739{1} | 0.29760{7} | 0.23903{3} | 0.29268{6} | 0.22287{2} | 0.26049{5} | 0.24469{4} | 0.31120{8} | ||
ˆδ | 0.09978{2} | 0.24344{7} | 0.13211{3} | 0.24551{8} | 0.09302{1} | 0.16946{5} | 0.14581{4} | 0.23287{6} | ||
300 | MSE | ˆβ | 0.04700{2} | 0.12499{8} | 0.06301{3} | 0.12438{7} | 0.03754{1} | 0.07147{5} | 0.06823{4} | 0.09790{6} |
ˆλ | 0.04726{1} | 0.08857{7} | 0.05713{3} | 0.08566{6} | 0.04967{2} | 0.06786{5} | 0.05987{4} | 0.09684{8} | ||
ˆδ | 0.21059{2} | 0.32893{7} | 0.24231{3} | 0.33033{8} | 0.20333{1} | 0.27443{5} | 0.25457{4} | 0.32171{6} | ||
MRE | ˆβ | 0.10839{2} | 0.17677{8} | 0.12551{3} | 0.17633{7} | 0.09688{1} | 0.13367{5} | 0.13060{4} | 0.15645{6} | |
ˆλ | 0.06211{1} | 0.08503{7} | 0.06829{3} | 0.08362{6} | 0.06368{2} | 0.07443{5} | 0.06991{4} | 0.08891{8} | ||
∑RANKS | 15.0{2} | 66.0{8} | 27.0{3} | 63.0{7} | 12.0{1} | 45.0{5} | 36.0{4} | 60.0{6} | ||
ˆδ | 0.24597{2} | 0.38259{7} | 0.28932{3} | 0.38364{8} | 0.11464{1} | 0.32482{5} | 0.29036{4} | 0.37746{6} | ||
BIAS | ˆβ | 0.16657{2} | 0.26821{7} | 0.19443{3} | 0.26895{8} | 0.12803{1} | 0.21010{5} | 0.19701{4} | 0.24031{6} | |
ˆλ | 0.16887{1} | 0.21270{6} | 0.18628{4} | 0.22333{7} | 0.17062{2} | 0.20334{5} | 0.18523{3} | 0.22863{8} | ||
ˆδ | 0.06050{2} | 0.14637{7} | 0.08371{3} | 0.14718{8} | 0.01314{1} | 0.10551{5} | 0.08431{4} | 0.14247{6} | ||
500 | MSE | ˆβ | 0.02775{2} | 0.07194{7} | 0.03780{3} | 0.07233{8} | 0.01639{1} | 0.04414{5} | 0.03881{4} | 0.05775{6} |
ˆλ | 0.02852{1} | 0.04524{6} | 0.03470{4} | 0.04988{7} | 0.02911{2} | 0.04135{5} | 0.03431{3} | 0.05227{8} | ||
ˆδ | 0.16398{2} | 0.25506{7} | 0.19288{3} | 0.25576{8} | 0.07643{1} | 0.21655{5} | 0.19357{4} | 0.25164{6} | ||
MRE | ˆβ | 0.08329{2} | 0.13411{7} | 0.09722{3} | 0.13448{8} | 0.06401{1} | 0.10505{5} | 0.09851{4} | 0.12015{6} | |
ˆλ | 0.04825{1} | 0.06077{6} | 0.05322{4} | 0.06381{7} | 0.04875{2} | 0.05810{5} | 0.05292{3} | 0.06532{8} | ||
∑RANKS | 15.0{2} | 60.0{6.5} | 30.0{3} | 69.0{8} | 12.0{1} | 45.0{5} | 33.0{4} | 60.0{6.5} |
The partial and total rankings of the estimators under consideration are presented in Table 11. The estimation method with the lowest overall score is regarded as the best approach. Based on Table 11, the eight estimation methods can be ranked from best to worst as follows: MPS, ML, AD, WLS, RAD, OLS, PC, and CRVM. It is important to note that, based on the results of the detailed simulation study, the MPS method, which achieved the lowest overall rank of 45.5, is considered the most effective estimation method. This lower rank indicates that the MPS method consistently produces better results, as measured by MSE, BIAS, and MRE, across sample sizes and different parameter values studied. Hence, the MPS approach, overall score of 45.5, outperforms all other approaches. Consequently, our results confirm the superiority of MPS method for estimating the GKMW parameters.
ηT | n | MLE | OLSE | WLSE | CRVME | MPS | PCE | ADE | RADE |
(δ=0.5,β=0.25,λ=1.5) | 20 | 4 | 8 | 2.5 | 7 | 2.5 | 6 | 1 | 5 |
50 | 2.5 | 6 | 2.5 | 5 | 1 | 8 | 4 | 7 | |
100 | 3 | 6.5 | 2 | 6.5 | 1 | 8 | 4 | 5 | |
300 | 2 | 6 | 3 | 7 | 1 | 8 | 4 | 5 | |
500 | 2 | 5 | 3 | 7 | 1 | 8 | 4 | 6 | |
(δ=0.5,β=0.25,λ=3.5) | 20 | 3.5 | 5 | 3.5 | 8 | 1 | 6 | 2 | 7 |
50 | 5 | 6 | 3 | 7 | 1 | 8 | 2 | 4 | |
100 | 5 | 7 | 2 | 6 | 1 | 8 | 3 | 4 | |
300 | 5 | 6 | 2 | 7 | 1 | 8 | 3 | 4 | |
500 | 5 | 6 | 2 | 7 | 1 | 8 | 3 | 4 | |
(δ=0.5,β=2,λ=1.5) | 20 | 4 | 5 | 3 | 8 | 2 | 6.5 | 1 | 6.5 |
50 | 4 | 6 | 3 | 7.5 | 1 | 7.5 | 2 | 5 | |
100 | 2 | 6 | 3.5 | 7 | 1 | 8 | 3.5 | 5 | |
300 | 2 | 6 | 3 | 7 | 1 | 8 | 4 | 5 | |
500 | 2 | 6 | 3 | 7 | 1 | 8 | 4 | 5 | |
(δ=0.5,β=2,λ=3.5) | 20 | 4 | 5 | 3 | 8 | 1 | 6.5 | 2 | 6.5 |
50 | 3 | 7 | 4 | 8 | 1 | 6 | 2 | 5 | |
100 | 2 | 7 | 4 | 8 | 1 | 6 | 3 | 5 | |
300 | 1 | 7 | 3 | 8 | 2 | 6 | 4 | 5 | |
500 | 1 | 8 | 3 | 7 | 2 | 6 | 4 | 5 | |
(δ=1.5,β=0.25,λ=1.5) | 20 | 3 | 5 | 4 | 6.5 | 1 | 8 | 2 | 6.5 |
50 | 2 | 5 | 4 | 7 | 1 | 8 | 3 | 6 | |
100 | 2 | 7 | 4 | 6 | 1 | 8 | 3 | 5 | |
300 | 1 | 7 | 3 | 5.5 | 2 | 8 | 4 | 5.5 | |
500 | 2 | 6 | 3 | 7 | 1 | 8 | 4 | 5 | |
(δ=1.5,β=0.25,λ=3.5) | 20 | 3 | 6.5 | 4 | 8 | 1 | 6.5 | 2 | 5 |
50 | 2 | 5 | 4 | 7 | 1 | 8 | 3 | 6 | |
100 | 2 | 5 | 4 | 7 | 1 | 8 | 3 | 6 | |
300 | 2 | 5.5 | 3 | 7 | 1 | 8 | 4 | 5.5 | |
500 | 2 | 7 | 3 | 6 | 1 | 8 | 4 | 5 | |
(δ=1.5,β=2,λ=1.5) | 20 | 2.5 | 6 | 5 | 7.5 | 1 | 4 | 2.5 | 7.5 |
50 | 2 | 6 | 4 | 7.5 | 1 | 5 | 3 | 7.5 | |
100 | 2 | 6 | 4 | 8 | 1 | 5 | 3 | 7 | |
300 | 2 | 8 | 3 | 7 | 1 | 5 | 4 | 6 | |
500 | 2 | 8 | 3 | 7 | 1 | 5 | 4 | 6 | |
(δ=1.5,β=2,λ=3.5) | 20 | 5 | 6 | 4 | 8 | 1 | 3 | 2 | 7 |
50 | 2 | 7 | 4 | 8 | 1 | 5 | 3 | 6 | |
100 | 2 | 7 | 4 | 8 | 1 | 5 | 3 | 6 | |
300 | 2 | 8 | 3 | 7 | 1 | 5 | 4 | 6 | |
500 | 2 | 6.5 | 3 | 8 | 1 | 5 | 4 | 6.5 | |
∑Ranks | 106.5 | 252 | 131 | 286 | 45.5 | 270 | 124 | 225 | |
Overall Rank | 2 | 6 | 4 | 8 | 1 | 7 | 3 | 5 |
In this section, we analyze three real datasets to demonstrate the flexibility of the proposed GKMW model. The first dataset comprises 63 observations of gauge lengths of 10 mm from Kundu and Raqab [41]. The second dataset is uncensored and comes from Murty et al. [42], representing the failure times (in weeks) of 50 components that were put into use at a certain time. The third dataset details the distances from the transect line for 68 stakes detected while walking along a length of 1000 m and searching 20 m on each side of the line [43]. The three datasets are provided in Appendix A. We compare the fits of the GKMW distribution with several other competitive models, as presented in Table 12.
Distribution | Abbreviation | Author |
Modified beta Weibull | MBW | Khan [7] |
Beta Weibull | BW | Lee and Famoye [1] |
Odd log-logistic exponentiated Weibull | OLLEW | Afify et al. [11] |
Exponentiated generalized Weibull | EGW | Cordeiro et al. [5] |
Lindley Weibull | LiW | Cordeiro et al. [12] |
Exponentiated Weibull | EW | Mudholkar and Srivastava [13] |
Transmuted Weibull | TW | Aryal and Tsokos [4] |
For model comparison, we employ four widely recognized statistics: Akaike information criterion (AIC), consistent AIC (CAIC), Bayesian information criterion (BIC), and Hannan–Quinn information criterion (HQIC), as well as Cramér–von Mises (W∗) statistics, Anderson–Darling (A∗), minus log-likelihood (−L), and the Kolmogorov–Smirnov (KS) distance along with its associated p−value. Smaller values for these statistics indicate a better fit. Visual comparisons of the TTT, HRF, PDF, CDF, SF, and probability-probability (PP) plots for the GKMW model are also provided for the three datasets.
Tables 13–15 present the estimated parameters obtained through ML estimation, along with their corresponding standard errors (SE) (in parentheses). The goodness-of-fit measures for the fitted models are provided in Tables 16–18. The findings from these tables demonstrate the superiority of the GKMW model compared to other distributions for the three analyzed datasets.
Distribution | ML estimates and SE | ||||
GKMW | ˆδ= 45.2721 | ˆβ= 1.5646 | ˆλ= 0.6627 | ||
(108.9500) | (0.9374) | (1.1158) | |||
MBW | ˆδ= 0.1328 | ˆβ= 0.5224 | ˆa= 236.8925 | ˆb= 3.9570 | ˆc= 0.4084 |
(0.2897) | (0.3417) | (1389.4352) | (7.5948) | (2.4858) | |
BW | ˆδ=1.5535 | ˆβ= 0.9162 | ˆa= 102.4980 | ˆb= 2.0925 | |
(5.6168) | (2.0369) | (517.5903) | (8.0543) | ||
OLLEW | ˆδ= 69.5586 | ˆβ=3.4425 | ˆγ= 0.0641 | ˆθ= 19.5547 | |
(306.6782) | (6.6654) | (0.0384) | (27.8608) | ||
EGW | ˆδ= 3.7852 | ˆa= 5.6583 | ˆb= 37.1571 | ˆc= 1.4540 | |
(181.1960) | (393.8165) | (79.3795) | (0.7599) | ||
LiW | ˆδ= 0.1238 | ˆβ= 5.0487 | ˆθ= 90.5958 | ||
(0.5147) | (0.4560) | (1882.5304) | |||
EW | ˆδ= 0.8180 | ˆβ= 1.4532 | ˆθ= 37.2311 | ||
(1.1200) | (0.7583) | (79.4533) | |||
TW | ˆδ= 3.6164 | ˆβ= 5.4807 | ˆλ=0.7453 | ||
(0.1515) | (0.5021) | (0.2633) |
Distribution | ML estimates and SE | ||||
GKMW | ˆδ= 0.4582 | ˆβ= 1.3987 | ˆλ= 0.0184 | ||
(0.1995) | (0.4033) | (0.0272) | |||
MBW | ˆδ=4.3285 | ˆβ=0.3702 | ˆa= 1.6702 | ˆb= 22.2114 | ˆc=0.0342 |
(54.3129) | (0.6122) | (1.1828) | (265.3049) | (0.1894) | |
BW | ˆδ= 0.0252 | ˆβ=1.663 | ˆa=0.5592 | ˆb= 3.5694 | |
(0.0813) | (0.4550) | (0.3169) | (12.7630) | ||
OLLEW | ˆδ= 72.9308 | ˆβ= 3.2596 | ˆγ= 0.0769 | ˆθ= 2.2419 | |
(0.3032) | (0.2568) | (0.0084) | (0.2703) | ||
EGW | ˆδ= 2.0863 | ˆa= 0.1545 | ˆb= 0.5983 | ˆc=1.1009 | |
(37.6697) | (3.0671) | (0.3183) | (0.3915) | ||
LiW | ˆδ= 0.2790 | ˆβ= 0.7193 | ˆθ= 0.9699 | ||
(0.7219) | (0.1332) | (1.4562) | |||
EW | ˆδ=0.0687 | ˆβ= 1.1011 | ˆθ= 0.5982 | ||
(0.0978) | (0.3874) | (0.3150) | |||
TW | ˆδ= 6.9739 | ˆβ= 0.8004 | ˆλ= 0.0010 | ||
(5.0869) | (0.1739) | (0.9657) |
Distribution | ML estimates and SE | ||||
GKMW | ˆδ= 0.4596 | ˆβ= 2.1497 | ˆλ= 0.0055 | ||
(0.0924) | (0.2449) | (0.0038) | |||
MBW | ˆδ= 22.8768 | ˆβ= 1.3294 | ˆa= 0.7716 | ˆb= 26.1991 | ˆc=0.1360 |
(52.4569) | (2.0900) | (1.3573) | (169.7519) | (0.9503) | |
BW | ˆδ=0.0948 | ˆβ=1.7636 | ˆa=0.5664 | ˆb= 1.3142 | |
(0.2660) | (0.7832) | (0.3403) | (5.5844) | ||
OLLEW | ˆδ=20.1065 | ˆβ= 5.3078 | ˆγ= 0.0921 | ˆθ=1.6927 | |
(0.3340) | (0.2855) | (0.0099) | (0.1816) | ||
EGW | ˆδ= 2.3954 | ˆa= 0.1067 | ˆb= 0.5795 | ˆc=1.7274 | |
(16.6021) | (1.2706) | (0.3050) | (0.6189) | ||
LiW | ˆδ= 0.2309 | ˆβ=1.1040 | ˆθ= 1.0343 | ||
(0.4284) | (0.2085) | (1.7142) | |||
EW | ˆδ= 0.0237 | ˆβ= 1.7264 | ˆθ=0.5797 | ||
(0.0359) | (0.5159) | (0.2574) | |||
TW | ˆδ= 6.2398 | ˆβ= 1.2250 | ˆλ=0.0010 | ||
(2.4596) | (0.2312) | (0.7996) |
Distribution | AIC | CAIC | BIC | HQIC | W∗ | A∗ | −L | KS | p−value |
GKMW | 118.5520 | 118.9588 | 124.9814 | 121.0807 | 0.0601 | 0.3216 | 56.2760 | 0.0795 | 0.821305 |
MBW | 122.6182 | 123.6708 | 133.3338 | 126.8327 | 0.0615 | 0.3272 | 56.3091 | 0.0800 | 0.815108 |
BW | 120.6346 | 121.3242 | 129.2071 | 124.0062 | 0.0612 | 0.3268 | 56.3173 | 0.0796 | 0.820005 |
OLLEW | 123.9248 | 124.6144 | 132.4973 | 127.2964 | 0.0866 | 0.5041 | 57.9624 | 0.0916 | 0.665628 |
EGW | 120.6216 | 121.3112 | 129.1941 | 123.9932 | 0.0619 | 0.3287 | 56.3108 | 0.0813 | 0.799515 |
LiW | 129.9178 | 130.3246 | 136.3472 | 132.4465 | 0.1285 | 0.8922 | 61.9589 | 0.0876 | 0.718911 |
EW | 118.6216 | 119.0284 | 125.0510 | 121.1503 | 0.0619 | 0.3288 | 56.3108 | 0.0813 | 0.799320 |
TW | 127.1226 | 127.5294 | 133.5520 | 129.6513 | 0.1100 | 0.7623 | 60.5613 | 0.0835 | 0.772281 |
Distribution | AIC | CAIC | BIC | HQIC | W∗ | A∗ | −L | KS | p−value |
GKMW | 306.4025 | 306.9242 | 312.1386 | 308.5868 | 0.0575 | 0.2948 | 150.2012 | 0.0934 | 0.775179 |
MBW | 310.5294 | 311.8931 | 320.0895 | 314.1700 | 0.0582 | 0.2974 | 150.2647 | 0.0948 | 0.759432 |
BW | 308.4788 | 309.3677 | 316.1269 | 311.3913 | 0.0587 | 0.2990 | 150.2394 | 0.0957 | 0.750141 |
OLLEW | 309.0636 | 309.9525 | 316.7117 | 311.9760 | 0.0757 | 0.3810 | 150.5318 | 0.0999 | 0.700003 |
EGW | 308.5187 | 309.4076 | 316.1668 | 311.4311 | 0.0599 | 0.3044 | 150.2593 | 0.0965 | 0.740273 |
LiW | 306.7964 | 307.3181 | 312.5325 | 308.9807 | 0.0709 | 0.3539 | 150.3982 | 0.1018 | 0.677787 |
EW | 306.5187 | 307.0404 | 312.2548 | 308.7030 | 0.0599 | 0.3044 | 150.2593 | 0.0965 | 0.740475 |
TW | 307.3553 | 307.8771 | 313.0914 | 309.5396 | 0.0857 | 0.4275 | 150.6777 | 0.1119 | 0.558858 |
Distribution | AIC | CAIC | BIC | HQIC | W∗ | A∗ | −L | KS | p−value |
GKMW | 377.1478 | 377.5228 | 383.8063 | 379.7861 | 0.0385 | 0.2474 | 185.5739 | 0.0804 | 0.771339 |
MBW | 381.2396 | 382.2073 | 392.3371 | 385.6368 | 0.0420 | 0.2673 | 185.6198 | 0.0843 | 0.719002 |
BW | 379.3222 | 379.9571 | 388.2002 | 382.8399 | 0.0398 | 0.2547 | 185.6611 | 0.0818 | 0.753500 |
OLLEW | 379.0712 | 379.7061 | 387.9492 | 382.5890 | 0.0421 | 0.2739 | 185.5356 | 0.0807 | 0.767901 |
EGW | 379.3276 | 379.9625 | 388.2057 | 382.8454 | 0.0399 | 0.2553 | 185.6638 | 0.0820 | 0.751070 |
LiW | 377.8265 | 378.2015 | 384.4850 | 380.4648 | 0.0402 | 0.2658 | 185.9133 | 0.0820 | 0.749931 |
EW | 377.3276 | 377.7026 | 383.9862 | 379.9659 | 0.0399 | 0.2553 | 185.6638 | 0.0821 | 0.749379 |
TW | 378.3411 | 378.7161 | 384.9997 | 380.9794 | 0.0487 | 0.3192 | 186.1706 | 0.0887 | 0.659154 |
Figures 4–6 illustrate the fitted PDF, CDF, SF, and PP plots of the GKMW distribution for the three datasets, respectively. These figures reinforce the results shown in Tables 16–18, indicating that the proposed distribution offers a close fit for all datasets.
The GKMW distribution effectively models a wide range of data behaviors, including skewness and heavy tails, providing a better fit for the three datasets compared to other models. Its parameterization enables more accurate estimation and captures underlying patterns that may be missed by more restrictive models. Additionally, the GKMW model yields the lowest goodness-of-fit values and the highest p-values, confirming its superior fit.
Additionally, Figures 7–9 display the histograms of the three datasets along with the fitted densities for the GKMW distribution and other competing distributions. The GKMW distribution consistently outperforms the other Weibull extensions across all three datasets. Moreover, the PP plots for these datasets, shown in Figures 10–12, further illustrate that the GKMW distribution provides a superior fit compared to the other distributions analyzed.
The TTT and HRF plots of the GKMW distribution for the gauge lengths, failure time, and transect line datasets are presented in Figures 13–15. The TTT plots reveal concave shapes for the gauge lengths and distances datasets, indicating increasing HRFs, while it appears convex for the failure time dataset, suggesting a decreasing HRF. The GKMW model can accommodate both increasing and decreasing HRF, making it well-suited for modeling all datasets.
In this paper, we present the extended Kavya–Manoharan Weibull (GKMW) distribution, a novel extension of the Weibull distribution that provides a versatile and adaptable way to model diverse types of data. The proposed model is notable for its ability to support a wide range of distribution shapes, including symmetric, right-skewed, reversed-J, and left-skewed densities, making it adaptable to a variety of real-world datasets. Furthermore, it can model both non-monotonic and monotonic failure rates, increasing its applicability in a variety of statistical settings.
The mathematical properties of the GKMW model are investigated. Additionally, its parameters are estimated using eight alternative estimation techniques. Simulation studies show that the maximum product of the spacing estimation method outperforms all other estimators for reliably calculating GKMW parameters. This finding has significant implications for increasing the precision of statistical modeling in real-world applications.
The GKMW distribution is applied to three real-life datasets and outperforms existing Weibull distributions, highlighting its potential for improved data processing. The GKMW model's practical importance stems from its capacity to improve modeling flexibility and accuracy, especially in fields such as survival analysis, where it can provide more reliable insights into failure rates and data behavior.
In future work, we will focus on expanding the GKMW distribution's applications beyond survival analysis, including its use with large-scale datasets and refining computational methods for parameter estimation. Key areas for future research include:
• Improving parameter estimation techniques, such as maximum likelihood or Bayesian methods for censored data, to enhance the GKMW model's robustness and accuracy.
• Exploring non-parametric or semi-parametric versions of the model for broader applicability.
• Applying Bayesian methods for both parameter estimation and model comparison, offering a promising extension to the GKMW framework.
• Developing a discrete version of the GKMW model to facilitate its use in modeling count data in diverse applied fields.
A.Z.A.: Conceptualization, Methodology, Software, Project administration, Writing-original draft preparation, Writing-review and editing; R.A. and A.S.A.: Validation, Formal analysis, Investigation, Resources, Writing-review and editing; H.A.M.: Conceptualization, Methodology, Software, Writing-original draft preparation, Writing-review and editing. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors would like to express their gratitude to the editor and reviewers for their valuable suggestions, which have significantly improved this manuscript.
The authors declare no competing interests.
The three datasets used to evaluate the performance of the proposed GKMW model.
Gauge lengths dataset | |||||||||
1.901 | 2.132 | 2.203 | 2.228 | 2.257 | 2.350 | 2.361 | 2.396 | 2.397 | 2.445 |
2.454 | 2.474 | 2.518 | 2.522 | 2.525 | 2.532 | 2.575 | 2.614 | 2.616 | 2.618 |
2.624 | 2.659 | 2.675 | 2.738 | 2.740 | 2.856 | 2.917 | 2.928 | 2.937 | 2.937 |
2.996 | 3.125 | 2.977 | 3.030 | 3.139 | 3.145 | 3.220 | 3.223 | 3.235 | 3.243 |
3.264 | 3.272 | 3.294 | 3.332 | 3.346 | 3.377 | 3.408 | 3.435 | 3.493 | 3.501 |
3.537 | 3.554 | 3.562 | 3.628 | 3.852 | 3.871 | 3.886 | 3.971 | 4.024 | 4.027 |
4.225 | 4.395 | 5.020 | |||||||
Failure times dataset | |||||||||
0.013 | 0.065 | 0.111 | 0.111 | 0.163 | 0.309 | 0.426 | 0.535 | 0.684 | 0.747 |
0.997 | 1.284 | 1.304 | 1.647 | 1.829 | 2.336 | 2.838 | 3.269 | 3.977 | 3.981 |
4.520 | 4.789 | 4.849 | 5.202 | 5.291 | 5.349 | 5.911 | 6.018 | 6.427 | 6.456 |
6.572 | 7.023 | 7.087 | 7.291 | 7.787 | 8.596 | 9.388 | 10.261 | 10.713 | 11.658 |
13.006 | 13.388 | 13.842 | 17.152 | 17.283 | 19.418 | 23.471 | 24.777 | 32.795 | 48.105 |
Distance dataset | |||||||||
2.0 | 0.5 | 10.4 | 3.6 | 0.9 | 1.0 | 3.4 | 2.9 | 8.2 | 6.5 |
5.7 | 3.0 | 4.0 | 0.1 | 11.8 | 14.2 | 2.4 | 1.6 | 13.3 | 6.5 |
8.3 | 4.9 | 1.5 | 18.6 | 0.4 | 0.4 | 0.2 | 11.6 | 3.2 | 7.1 |
10.7 | 3.9 | 6.1 | 6.4 | 3.8 | 15.2 | 3.5 | 3.1 | 7.9 | 18.2 |
10.1 | 4.4 | 1.3 | 13.7 | 6.3 | 3.6 | 9.0 | 7.7 | 4.9 | 9.1 |
3.3 | 8.5 | 6.1 | 0.4 | 9.3 | 0.5 | 1.2 | 1.7 | 4.5 | 3.1 |
3.1 | 6.6 | 4.4 | 5.0 | 3.2 | 7.7 | 18.2 | 4.1 |
[1] | D. J. Acheson, Elementary Fluid Dynamics, The Clarendon Press Oxford University Press, New York, 1990. |
[2] | V. S. Ajaev, Evolution of dry patches in evaporating liquid films, Phys. Rev. E, 72 (2005), 031605. |
[3] |
V. S. Ajaev, Spreading of thin volatile liquid droplets on uniformly heated surfaces, J. Fluid Mech., 528 (2005), 279-296. doi: 10.1017/S0022112005003320
![]() |
[4] | V. S. Ajaev, Interfacial Fluid Mechanics, Springer, New York, 2012. |
[5] |
V. S. Ajaev, E. Y. Gatapova, O. A. Kabov, Stability and break-up of thin liquid films on patterned and structured surfaces, Adv. Colloid Interface Sci., 228 (2016), 92-104. doi: 10.1016/j.cis.2015.11.011
![]() |
[6] |
V. S. Ajaev and G. M. Homsy, Steady vapor bubbles in rectangular microchannels, J. Colloid Interface Sci., 240 (2001), 259-271. doi: 10.1006/jcis.2001.7562
![]() |
[7] |
V. S. Ajaev, J. Klentzman, T. Gambaryan-Roisman, et al. Fingering instability of partially wetting evaporating liquids, J. Eng. Math., 73 (2012), 31-38. doi: 10.1007/s10665-010-9448-y
![]() |
[8] |
D. M. Anderson, M. K. Gupta, A. A. Voevodin, et al. Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation, ACS Nano, 6 (2012), 3262-3268. doi: 10.1021/nn300183d
![]() |
[9] | D. G. Aronson, The porous medium equation. In Nonlinear diffusion problems (Montecatini Terme, 1985), volume 1224 of Lecture Notes in Math., pages 1-46. Springer, Berlin, 1986. |
[10] | M. Asgari and A. Moosavi, Coarsening dynamics of dewetting nanodroplets on chemically patterned substrates, Phys. Rev. E, 86 (2012), 016303. |
[11] | G. I. Barenblatt, Scaling, Self-similarity, and Intermediate Asymptotics, Cambridge University Press, New York, 1996. |
[12] | G. I. Barenblatt, Scaling, Cambridge University Press, New York, 2003. |
[13] |
J. Becker, G. Grün, R. Seemann, et al. Complex dewetting scenarios captured by thin-film models, Nat. Mater., 2 (2003), 59-63. doi: 10.1038/nmat788
![]() |
[14] |
P. Beltrame and U. Thiele, Time integration and steady-state continuation for 2d lubrication equations, SIAM J. Appl. Dyn. Syst., 9 (2010), 484-518. doi: 10.1137/080718619
![]() |
[15] | F. Bernis, Finite speed of propagation and continuity of the interface for thin viscous flows, Adv. Differential Equ., 1 (1996), 337-368. |
[16] |
F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations, J. Differ. Equations, 83 (1990), 179-206. doi: 10.1016/0022-0396(90)90074-Y
![]() |
[17] |
F. Bernis, J. Hulshof, J. R. King, Dipoles and similarity solutions of the thin film equation in the half-line, Nonlinearity, 13 (2000), 413-439. doi: 10.1088/0951-7715/13/2/305
![]() |
[18] |
A. L. Bertozzi, Symmetric singularity formation in lubrication-type equations for interface motion, SIAM J. Appl. Math., 56 (1996), 681-714. doi: 10.1137/S0036139994271972
![]() |
[19] | A. L. Bertozzi, The mathematics of moving contact lines in thin liquid films, Notices of the American Mathematical Society, 45 (1998), 689-697. |
[20] | A. L. Bertozzi, M. P. Brenner, T. F. Dupont, et al. Singularities and similarities in interface flows. In Trends and perspectives in applied mathematics, pages 155-208. Springer, New York, 1994. |
[21] |
A. L. Bertozzi, G. Grün, T. P. Witelski, Dewetting films: bifurcations and concentrations, Nonlinearity, 14 (2001), 1569-1592. doi: 10.1088/0951-7715/14/6/309
![]() |
[22] |
A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films: the moving contact line with a "porous media" cut-off of van der Waals interactions, Nonlinearity, 7 (1994), 1535-1564. doi: 10.1088/0951-7715/7/6/002
![]() |
[23] |
A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions, Commun. Pure Appl. Math., 49 (1996), 85-123. doi: 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.0.CO;2-2
![]() |
[24] |
A. L. Bertozzi and M. C. Pugh, Long-wave instabilities and saturation in thin film equations, Commun. Pure Appl. Math., 51 (1998), 625-661. doi: 10.1002/(SICI)1097-0312(199806)51:6<625::AID-CPA3>3.0.CO;2-9
![]() |
[25] | A. L. Bertozzi and M. C. Pugh, Finite-time blow-up of solutions of some long-wave unstable thin film equations, Indiana Univ. Math. J., 49 (2000), 1323-1366. |
[26] | M. Bertsch, R. Dal Passo, H. Garcke, et al. The thin viscous flow equation in higher space dimensions, Adv. Differ. Equations, 3 (1998), 417-440. |
[27] |
J. Bischof, D. Scherer, S. Herminghaus, et al. Dewetting modes of thin metallic films: Nucleation of holes and spinodal dewetting, Phys. Rev. Lett., 77 (1996), 1536-1539. doi: 10.1103/PhysRevLett.77.1536
![]() |
[28] | S. Boatto, L. P. Kadanoff, P. Olla, Traveling-wave solutions to thin-film equations, Phys. Rev. E, 48 (1993), 4423-4431. |
[29] |
D. Bonn, J. Eggers, J. Indekeu, et al. Wetting and spreading, Rev. Mod. Phys., 81 (2009), 739-805. doi: 10.1103/RevModPhys.81.739
![]() |
[30] |
M. Bowen, J. Hulshof, J. R. King, Anomalous exponents and dipole solutions for the thin film equation, SIAM J. Appl. Math., 62 (2001), 149-179. doi: 10.1137/S0036139900366936
![]() |
[31] |
R. J. Braun, Dynamics of the tear film, Annu. Rev. Fluid Mech., 44 (2012), 267-297. doi: 10.1146/annurev-fluid-120710-101042
![]() |
[32] | L. Brusch, H. Kühne, U. Thiele, et al. Dewetting of thin films on heterogeneous substrates: Pinning versus coarsening, Phys. Rev. E, 66 (2002), 011602. |
[33] |
L. N. Brush and S. H. Davis, A new law of thinning in foam dynamics, J. Fluid Mech., 534 (2005), 227-236. doi: 10.1017/S0022112005004763
![]() |
[34] |
J. P. Burelbach, S. G. Bankoff, S. H. Davis, Nonlinear stability of evaporating/condensing liquid films, J. Fluid Mech., 195 (1988), 463-494. doi: 10.1017/S0022112088002484
![]() |
[35] |
J. A. Carrillo and G. Toscani, Long-time asymptotics for strong solutions of the thin film equation, Commun. Math. Phys., 225 (2002), 551-571. doi: 10.1007/s002200100591
![]() |
[36] |
A.-M. Cazabat and G. Guena, Evaporation of macroscopic sessile droplets, Soft Matter, 6 (2010), 2591-2612. doi: 10.1039/b924477h
![]() |
[37] |
S. J. Chapman, P. H. Trinh, T. P. Witelski, Exponential asymptotics for thin film rupture, SIAM J. Appl. Math., 73 (2013), 232-253. doi: 10.1137/120872012
![]() |
[38] |
K.-S. Chou and S.-Z. Du, Estimates on the Hausdorff dimension of the rupture set of a thin film, SIAM J. Math. Anal., 40 (2008), 790-823. doi: 10.1137/070685348
![]() |
[39] |
K.-S. Chou and Y.-C. Kwong, Finite time rupture for thin films under van der Waals forces, Nonlinearity, 20 (2007), 299-317. doi: 10.1088/0951-7715/20/2/004
![]() |
[40] |
P. Constantin, T. F. Dupont, R. E. Goldstein, et al. Droplet breakup in a model of the Hele-Shaw cell, Phys. Rev. E, 47 (1993), 4169-4181. doi: 10.1103/PhysRevE.47.4169
![]() |
[41] |
P. Constantin, T. Elgindi, H. Nguyen, et al. On singularity formation in a Hele-Shaw model, Commun. Math. Phys., 363 (2018), 139-171. doi: 10.1007/s00220-018-3241-6
![]() |
[42] |
R. V. Craster and O. K. Matar, Dynamics and stability of thin liquid films, Rev. Mod. Phys., 81(2009), 1131-1198. doi: 10.1103/RevModPhys.81.1131
![]() |
[43] |
M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys., 65 (1993), 851-1112. doi: 10.1103/RevModPhys.65.851
![]() |
[44] | B. Dai, L. G. Leal, A. Redondo, Disjoining pressure for nonuniform thin films, Phys. Rev. E, 78 (2008), 061602. |
[45] |
S. B. Dai, On a mean field model for 1D thin film droplet coarsening, Nonlinearity, 23 (2010), 325-340. doi: 10.1088/0951-7715/23/2/006
![]() |
[46] |
S. B. Dai, On the Ostwald ripening of thin liquid films, Commun. Math. Sci., 9 (2011), 143-160. doi: 10.4310/CMS.2011.v9.n1.a7
![]() |
[47] |
S. B. Dai and R. L. Pego, Universal bounds on coarsening rates for mean-field models of phase transitions, SIAM J. Math. Anal., 37 (2005), 347-371. doi: 10.1137/040618047
![]() |
[48] |
R. Dal Passo, H. Garcke, G. Grün, On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal., 29 (1998), 321-342. doi: 10.1137/S0036141096306170
![]() |
[49] |
R. Dal Passo, L. Giacomelli, A. Shishkov, The thin film equation with nonlinear diffusion, Commun. Part. Diff. Eq., 26 (2001), 1509-1557. doi: 10.1081/PDE-100107451
![]() |
[50] | M. C. Dallaston, M. A. Fontelos, D. Tseluiko, et al. Discrete self-similarity in interfacial hydrodynamics and the formation of iterated structures, Phys. Rev. Lett., 120 (2018), 34505. |
[51] |
M. C. Dallaston, D. Tseluiko, Z. Zheng, et al. Self-similar finite-time singularity formation in degenerate parabolic equations arising in thin-film flows, Nonlinearity, 30 (2017), 2647-2666. doi: 10.1088/1361-6544/aa6eb3
![]() |
[52] |
A. A. Darhuber and S. M. Troian, Principles of microfluidic actuation by modulation of surface stresses, Annu. Rev. Fluid Mech., 37 (2005), 425-455. doi: 10.1146/annurev.fluid.36.050802.122052
![]() |
[53] |
A. A. Darhuber, S. M. Troian, S. M. Miller, et al. Morphology of liquid microstructures on chemically patterned surfaces, J. Appl. Phys., 87 (2000), 7768-7775. doi: 10.1063/1.373452
![]() |
[54] | A. A. Darhuber, S. M. Troian, W. W. Reisner, Dynamics of capillary spreading along hydrophilic microstripes, Phys. Rev. E, 64 (2001), 031603. |
[55] | B. Davidovitch, E. Moro, H. A. Stone, Spreading of viscous fluid drops on a solid substrate assisted by thermal fluctuations, Phys. Rev. Lett., 95 (2005), 244505. |
[56] |
P. G. de Gennes, Wetting - statics and dynamics, Rev. Mod. Phys., 57 (1985), 827-863. doi: 10.1103/RevModPhys.57.827
![]() |
[57] | P. G. de Gennes, F. Brochard-Wyart, D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer Verlag, New York, 2003. |
[58] | M. di Bernardo, C. J. Budd, A. R. Champneys, et al. Piecewise-smooth Dynamical Systems, volume 163 of Applied Mathematical Sciences, Springer-Verlag London, Ltd., London, 2008. |
[59] | J. A. Diez, A. G. Gonzalez, L. Kondic, On the breakup of fluid rivulets, Phys. Fluids, 21 (2009), 082105. |
[60] | J. A. Diez and L. Kondic, On the breakup of fluid films of finite and infinite extent, Phys. Fluids, 19 (2007), 072107. |
[61] |
M. A. Durán-Olivencia, R. S. Gvalani, S. Kalliadasis, et al. Instability, rupture and fluctuations in thin liquid films: Theory and computations, J. Stat. Phys., 174 (2019), 579-604. doi: 10.1007/s10955-018-2200-0
![]() |
[62] |
M. Dziwnik, M. Korzec, A. Münch, et al. Stability analysis of unsteady, nonuniform base states in thin film equations, Multiscale Model. Sim., 12 (2014), 755-780. doi: 10.1137/130943352
![]() |
[63] | E. Weinan, Principles of Multiscale Modeling, Cambridge University Press, Cambridge, 2011. |
[64] |
J. Eggers, Nonlinear dynamics and breakup of free-surface flows, Rev. Mod. Phys., 69 (1997), 865-929. doi: 10.1103/RevModPhys.69.865
![]() |
[65] | J. Eggers and M. A. Fontelos, The role of self-similarity in singularities of partial differential equations, Nonlinearity, 22 (2009), R1-R44. |
[66] | J. Eggers and M. A. Fontelos, Singularities: Formation, Structure, and Propagation, Cambridge University Press, 2015. |
[67] | J. Eggers and L. Pismen, Nonlocal description of evaporating drops, Phys. Fluids, 22 (2010), 112101. |
[68] |
C. M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), 404-423. doi: 10.1137/S0036141094267662
![]() |
[69] | S. Engelnkemper, S. V. Gurevich, H. Uecker, et al. Continuation for thin film hydrodynamics and related scalar problems. In Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics, pages 459-501. Springer, 2019. |
[70] |
R. Enright, N. Miljkovic, J. L. Alvarado, et al. Dropwise condensation on micro-and nanostructured surfaces, Nanosc. Microsc. Therm., 18 (2014), 223-250. doi: 10.1080/15567265.2013.862889
![]() |
[71] | P. L. Evans, J. R. King, A. Münch, Intermediate-asymptotic structure of a dewetting rim with strong slip, Applied Mathematics Research Express, 2006 (2006), 25262. |
[72] |
P. L. Evans, J. R. King, A. Münch, The structure of a dewetting rim with strong slip: the long-time evolution, Multiscale Model. Sim., 16 (2018), 1365-1391. doi: 10.1137/15M1051221
![]() |
[73] | R. Fetzer, K. Jacobs, A. Munch, et al. New slip regimes and the shape of dewetting thin liquid films, Phys. Rev. Lett., 95 (2005), 127801. |
[74] |
J. Fischer and G. Grün, Existence of positive solutions to stochastic thin-film equations, SIAM J. Math. Anal., 50 (2018), 411-455. doi: 10.1137/16M1098796
![]() |
[75] |
L. S. Fisher and A. A. Golovin, Nonlinear stability analysis of a two-layer thin liquid film: Dewetting and autophobic behavior, J. Colloid Interf. Sci., 291 (2005), 515-528. doi: 10.1016/j.jcis.2005.05.024
![]() |
[76] | Y. Gao, H. Ji, J.-G. Liu, et al. A vicinal surface model for epitaxial growth with logarithmic free energy, Discrete & Continuous Dynamical Systems-B, 23 (2018), 4433-4453. |
[77] | Y. Gao, J.-G. Liu, X. Y. Lu, Gradient flow approach to an exponential thin film equation: global existence and latent singularity, ESAIM: Control, Optimisation and Calculus of Variations, 25 (2019), 49. |
[78] |
A. Ghatak, R. Khanna, A. Sharma, Dynamics and morphology of holes in dewetting thin films, J. Colloid Interf. Sci., 212 (1999), 483-494. doi: 10.1006/jcis.1998.6052
![]() |
[79] | L. Giacomelli, A fourth-order degenerate parabolic equation describing thin viscous flows over an inclined plane, Appl. Math. Lett., 12 (1999), 107-111. |
[80] |
L. Giacomelli, M. V. Gnann, F. Otto, Regularity of source-type solutions to the thin-film equation with zero contact angle and mobility exponent between 3/2 and 3, Eur. J. Appl. Math., 24 (2013), 735-760. doi: 10.1017/S0956792513000156
![]() |
[81] | L. Giacomelli and F. Otto, Rigorous lubrication approximation, Interfaces Free Bound., 5 (2003), 483-529. |
[82] | M.-H. Giga, Y. Giga, J. Saal, Nonlinear Partial Differential Equations: Asymptotic Behavior of Solutions and Self-Similar Solutions, Birkhäuser Boston, Ltd., Boston, MA, 2010. |
[83] |
K. Glasner and S. Orizaga, Improving the accuracy of convexity splitting methods for gradient flow equations, J. Comput. Phys., 315 (2016), 52-64. doi: 10.1016/j.jcp.2016.03.042
![]() |
[84] |
K. Glasner, F. Otto, T. Rump, et al. Ostwald ripening of droplets: The role of migration, Eur. J. Appl. Math., 20 (2009), 1-67. doi: 10.1017/S0956792508007559
![]() |
[85] |
K. B. Glasner, Spreading of droplets under the influence of intermolecular forces, Phys. Fluids, 15 (2003), 1837-1842. doi: 10.1063/1.1578076
![]() |
[86] | K. B. Glasner, Ostwald ripening in thin film equations, SIAM J. Appl. Math., 6 (2008), 473-493. |
[87] | K. B. Glasner and T. P. Witelski, Coarsening dynamics of dewetting films, Phys. Rev. E, 67 (2003), 016302. |
[88] |
K. B. Glasner and T. P. Witelski, Collision versus collapse of droplets in coarsening of dewetting thin films, Physica D, 209 (2005), 80-104. doi: 10.1016/j.physd.2005.06.010
![]() |
[89] |
M. V. Gnann and M. Petrache, The Navier-slip thin-film equation for 3D fluid films: existence and uniqueness, J. Differ. Equations, 265 (2018), 5832-5958. doi: 10.1016/j.jde.2018.07.015
![]() |
[90] |
R. E. Goldstein, A. I. Pesci, M. J. Shelley, Attracting manifold for a viscous topology transition, Phys. Rev. Lett., 75 (1995), 3665-3668. doi: 10.1103/PhysRevLett.75.3665
![]() |
[91] |
C. P. Grant, Spinodal decomposition for the Cahn-Hilliard equation, Commun. Part. Diff. Eq., 18 (1993), 453-490. doi: 10.1080/03605309308820937
![]() |
[92] |
M. B. Gratton and T. P. Witelski, Transient and self-similar dynamics in thin film coarsening, Physica D, 238 (2009), 2380-2394. doi: 10.1016/j.physd.2009.09.015
![]() |
[93] |
H. P. Greenspan, On the motion of a small viscous droplet that wets a surface, J. Fluid Mech., 84 (1978), 125-143. doi: 10.1017/S0022112078000075
![]() |
[94] |
G. Grün, K. Mecke, M. Rauscher, Thin-film flow influenced by thermal noise, J. Stat. Phys., 122 (2006), 1261-1291. doi: 10.1007/s10955-006-9028-8
![]() |
[95] |
G. Grün and M. Rumpf, Nonnegativity preserving convergent schemes for the thin film equation, Numer. Math., 87 (2000), 113-152. doi: 10.1007/s002110000197
![]() |
[96] |
G. Grün and M. Rumpf, Simulation of singularities and instabilities arising in thin film flow, Eur. J. Appl. Math., 12 (2001), 293-320. doi: 10.1017/S0956792501004429
![]() |
[97] | E. K. O. Hellen and J. Krug, Coarsening of sand ripples in mass transfer models, Phys. Rev. E, 66 (2002), 011304. |
[98] | D. Herde, U. Thiele, S. Herminghaus, et al. Driven large contact angle droplets on chemically heterogeneous substrates, EPL, 100 (2012), 16002. |
[99] |
S. Herminghaus, M. Brinkmann, R. Seemann, Wetting and dewetting of complex surface geometries, Annu. Rev. Mater. Res., 38 (2008), 101-121. doi: 10.1146/annurev.matsci.38.060407.130335
![]() |
[100] |
S. Herminghaus and F. Brochard, Dewetting though nucleation, C. R. Phys., 7 (2006), 1073-1081. doi: 10.1016/j.crhy.2006.10.021
![]() |
[101] | S. Herminghaus, K. Jacobs, K. Mecke, et al. Spinodal dewetting in liquid crystal and liquid metal films, Science, 282 (1998), 916-919. |
[102] |
L. M. Hocking, The influence of intermolecular forces on thin fluid layers, Phys. Fluids, 5 (1993), 793-798. doi: 10.1063/1.858627
![]() |
[103] |
C. Huh and L. E. Scriven, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Colloid Interf. Sci., 35 (1971), 85-101. doi: 10.1016/0021-9797(71)90188-3
![]() |
[104] |
H. J. Hwang and T. P. Witelski, Short-time pattern formation in thin film equations, Discrete and Continuous Dynamical Systems. Series A, 23 (2009), 867-885. doi: 10.3934/dcds.2009.23.867
![]() |
[105] | J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press, New York, 1992. |
[106] | K. Jacobs, R. Seemann, S. Herminghaus, Stability and dewetting of thin liquid films. In Polymer thin films, pages 243-265. World Scientific, 2008. |
[107] |
H. Ji and T. P. Witelski, Finite-time thin film rupture driven by modified evaporative loss, Physica D, 342 (2017), 1-15. doi: 10.1016/j.physd.2016.10.002
![]() |
[108] | H. Ji and T. P. Witelski, Instability and dynamics of volatile thin films, Phys. Rev. Fluids, 3 (2018), 024001. |
[109] | H. Ji and T. P. Witelski, Steady states and dynamics of a thin-film-type equation with nonconserved mass, Eur. J. Appl. Math., (2019), 1-34. |
[110] |
H. Jiang and W.-M. Ni, On steady states of van der Waals force driven thin film equations, Eur. J. Appl. Math., 18 (2007), 153-180. doi: 10.1017/S0956792507006936
![]() |
[111] | S. Kalliadasis, C. Ruyer-Quil, B. Scheid, et al. Falling Liquid Films, volume 176 of Applied Mathematical Sciences, Springer, London, 2012. |
[112] |
H. S. Kheshgi and L. E. Scriven, Dewetting - nucleation and growth of dry regions, Chem. Eng. Sci., 46 (1991), 519-526. doi: 10.1016/0009-2509(91)80012-N
![]() |
[113] |
J. R. King, Two generalisations of the thin film equation, Math. Comput. Model., 34 (2001), 737-756. doi: 10.1016/S0895-7177(01)00095-4
![]() |
[114] |
J. R. King and M. Bowen, Moving boundary problems and non-uniqueness for the thin film equation, Eur. J. Appl. Math., 12 (2001), 321-356. doi: 10.1017/S0956792501004405
![]() |
[115] |
J. R. King, A. Münch, B. Wagner, Linear stability of a ridge, Nonlinearity, 19 (2006), 2813-2831. doi: 10.1088/0951-7715/19/12/005
![]() |
[116] |
J. R. King, A. Münch, B. A. Wagner, Linear stability analysis of a sharp-interface model for dewetting thin films, J. Eng. Math., 63 (2009), 177-195. doi: 10.1007/s10665-008-9242-2
![]() |
[117] |
G. Kitavtsev, L. Recke, B. Wagner, Centre manifold reduction approach for the lubrication equation, Nonlinearity, 24 (2011), 2347-2369. doi: 10.1088/0951-7715/24/8/010
![]() |
[118] |
G. Kitavtsev, L. Recke, B. Wagner, Asymptotics for the spectrum of a thin film equation in a singular limit, SIAM J. Appl. Dyn. Syst., 11 (2012), 1425-1457. doi: 10.1137/100813488
![]() |
[119] | R. V. Kohn and F. Otto, Upper bounds on coarsening rates, Commun. Math. Phys., 229 (2002), 275-295. |
[120] |
R. Konnur, K. Kargupta, A. Sharma, Instability and morphology of thin liquid films on chemically heterogeneous substrates, Phys. Rev. Lett., 84 (2000), 931-934. doi: 10.1103/PhysRevLett.84.931
![]() |
[121] | M.-A. Y.-H. Lam, L. J. Cummings, L. Kondic, Computing dynamics of thin films via large scale GPU-based simulations, Journal of Computational Physics: X, 2 (2019), 100001. |
[122] | E. Lauga, M. P. Brenner, H. A. Stone, Microfluidics: The no-slip boundary condition. In J. Foss, C. Tropea, and A. Yarin, editors, Handbook of Experimental Fluid Dynamics, chapter 19, pages 1-27. Springer, 2007. |
[123] |
R. S. Laugesen and M. C. Pugh, Linear stability of steady states for thin film and Cahn-Hilliard type equations, Arch. Ration. Mech. An., 154 (2000), 3-51. doi: 10.1007/PL00004234
![]() |
[124] |
R. S. Laugesen and M. C. Pugh, Properties of steady states for thin film equations, Eur. J. Appl. Math., 11 (2000), 293-351. doi: 10.1017/S0956792599003794
![]() |
[125] |
R. S. Laugesen and M. C. Pugh, Energy levels of steady states for thin-film-type equations, J. Differ. Equations, 182 (2002), 377-415. doi: 10.1006/jdeq.2001.4108
![]() |
[126] | R. S. Laugesen and M. C. Pugh, Heteroclinic orbits, mobility parameters and stability for thin film type equations, Electron. J. Differ. Eq., 2002 (2002), 1-29. |
[127] |
R. N. Leach, F. Stevens, S. C. Langford, et al. Dropwise condensation: Experiments and simulations of nucleation and growth of water drops in a cooling system, Langmuir, 22 (2006), 8864-8872. doi: 10.1021/la061901+
![]() |
[128] | L. G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, Cambridge University Press, 2007. |
[129] |
I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19 (1961), 35-50. doi: 10.1016/0022-3697(61)90054-3
![]() |
[130] |
R. Limary and P. F. Green, Dewetting instabilities in thin block copolymer films: nucleation and growth, Langmuir, 15 (1999), 5617-5622. doi: 10.1021/la981693o
![]() |
[131] |
R. Limary and P. F. Green, Dynamics of droplets on the surface of a structured fluid film: latestage coarsening, Langmuir, 19 (2003), 2419-2424. doi: 10.1021/la026560o
![]() |
[132] |
F. Liu, G. Ghigliotti, J. J. Feng, et al. Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces, J. Fluid Mech., 752 (2014), 39-65. doi: 10.1017/jfm.2014.320
![]() |
[133] | W. Liu and T. P. Witelski, Steady-states of thin film droplets on chemically heterogeneous substrates, preprint, 2020. |
[134] |
A. M. Macner, S. Daniel, P. H. Steen, Condensation on surface energy gradient shifts drop size distribution toward small drops, Langmuir, 30 (2014), 1788-1798. doi: 10.1021/la404057g
![]() |
[135] |
J. A. Marqusee and J. Ross, Kinetics of phase transitions: Theory of Ostwald ripening, J. Chem. Phys., 79 (1983), 373-378. doi: 10.1063/1.445532
![]() |
[136] | L. C. Mayo, S. W. McCue, T. J. Moroney, et al. Simulating droplet motion on virtual leaf surfaces, Roy. Soc. Open Sci., 2 (2015), 140528. |
[137] | K. Mecke and M. Rauscher, On thermal fluctuations in thin film flow, Journal of Physics: Condensed Matter, 17 (2005), S3515. |
[138] |
N. Miljkovic, R. Enright, E. N. Wang, Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces, ACS Nano, 6 (2012), 1776-1785. doi: 10.1021/nn205052a
![]() |
[139] |
A. Miranville, The Cahn-Hilliard equation and some of its variants, AIMS Mathematics, 2 (2017), 479-544. doi: 10.3934/Math.2017.2.479
![]() |
[140] |
V. Mitlin, Dewetting revisited: New asymptotics of the film stability diagram and the metastable regime of nucleation and growth of dry zones, J. Colloid Interf. Sci., 227 (2000), 371-379. doi: 10.1006/jcis.2000.6792
![]() |
[141] |
V. S. Mitlin, Dewetting of a solid surface: analogy with spinodal decomposition, J. Colloid Interf. Sci., 156 (1993), 491-497. doi: 10.1006/jcis.1993.1142
![]() |
[142] |
V. S. Mitlin and N. V. Petviashvili, Nonlinear dynamics of dewetting: kinetically stable structures, Phys. Lett. A, 192 (1994), 323-326. doi: 10.1016/0375-9601(94)90213-5
![]() |
[143] |
R. Mukherjee and A. Sharma, Instability, self-organization and pattern formation in thin soft films, Soft matter, 11 (2015), 8717-8740. doi: 10.1039/C5SM01724F
![]() |
[144] |
A. Münch and B. Wagner, Contact-line instability of dewetting thin films, Physica D, 209 (2005), 178-190. doi: 10.1016/j.physd.2005.06.027
![]() |
[145] |
A. Münch, B. Wagner, T. P. Witelski, Lubrication models with small to large slip lengths, J. Eng. Math., 53 (2005), 359-383. doi: 10.1007/s10665-005-9020-3
![]() |
[146] |
N. Murisic and L. Kondic, On evaporation of sessile drops with moving contact lines, J. Fluid Mech., 679 (2011), 219-246. doi: 10.1017/jfm.2011.133
![]() |
[147] |
T. G. Myers, Thin films with high surface tension, SIAM Review, 40 (1998), 441-462. doi: 10.1137/S003614459529284X
![]() |
[148] | C. Neto, K. Jacobs, R. Seemann, et al. Correlated dewetting patterns in thin polystyrene films, Journal of Physics: Condensed Matter, 15 (2003), S421-S426. |
[149] |
C. Neto, K. Jacobs, R. Seemann, et al. Satellite hole formation during dewetting: experiment and simulation, Journal of Physics: Condensed Matter, 15 (2003), 3355-3366. doi: 10.1088/0953-8984/15/19/334
![]() |
[150] |
B. Niethammer, Derivation of the LSW-theory for Ostwald ripening by homogenization methods, Arch. Ration. Mech. An., 147 (1999), 119-178. doi: 10.1007/s002050050147
![]() |
[151] | B. Niethammer, The mathematics of Ostwald ripening. In Geometric analysis and nonlinear partial differential equations, pages 649-663. Springer, Berlin, 2003. |
[152] |
B. Niethammer and R. L. Pego, Non-self-similar behavior in the LSW theory of Ostwald ripening, J. Stat. Phys., 95 (1999), 867-902. doi: 10.1023/A:1004546215920
![]() |
[153] |
B. Niethammer and R. L. Pego, On the initial-value problem in the Lifshitz-Slyozov-Wagner theory of Ostwald ripening, SIAM J. Math. Anal., 31 (2000), 467-485. doi: 10.1137/S0036141098338211
![]() |
[154] |
B. Niethammer and R. L. Pego, Well-posedness for measure transport in a family of nonlocal domain coarsening models, Indiana U. Math. J., 54 (2005), 499-530. doi: 10.1512/iumj.2005.54.2598
![]() |
[155] |
B. Niethammer and J. J. L. Velázquez, On the convergence to the smooth self-similar solution in the LSW model, Indiana U. Math. J., 55 (2006), 761-794. doi: 10.1512/iumj.2006.55.2854
![]() |
[156] | A. Novick-Cohen, The Cahn-Hilliard equation. In Handbook of differential equations: evolutionary equations. Vol. IV, Handb. Differ. Equ., pages 201-228. Elsevier/North-Holland, Amsterdam, 2008. |
[157] |
A. Novick-Cohen and L. A. Segel, Nonlinear aspects of the Cahn-Hilliard equation, Physica D, 10 (1984), 277-298. doi: 10.1016/0167-2789(84)90180-5
![]() |
[158] | J. R. Ockendon and H. Ockendon, Viscous Flow, Cambridge University, Cambridge, 1995. |
[159] |
A. Oron and S. G. Bankoff, Dewetting of a heated surface by an evaporating liquid film under conjoining/disjoining pressures, J. Colloid Interf. Sci., 218 (1999), 152-166. doi: 10.1006/jcis.1999.6390
![]() |
[160] |
A. Oron and S. G. Bankoff, Dynamics of a condensing liquid film under conjoining/disjoining pressures, Phys. Fluids, 13 (2001), 1107-1117. doi: 10.1063/1.1355022
![]() |
[161] |
A. Oron, S. H. Davis, S. G. Bankoff, Long-scale evolution of thin liquid films, Rev. Mod. Phys., 69 (1997), 931-980. doi: 10.1103/RevModPhys.69.931
![]() |
[162] |
F. Otto, T. Rump, D. Slepcev, Coarsening rates for a droplet model: rigorous upper bounds, SIAM J. Math. Anal., 38 (2006), 503-529. doi: 10.1137/050630192
![]() |
[163] | S. B. G. O'Brien and L. W. Schwartz, Theory and Modeling of Thin Film Flows, In Encyclopedia of Surface and Colloid Science, pages 5283-5297. Marcel Dekker, 2002. |
[164] |
A. A. Pahlavan, L. Cueto-Felgueroso, A. E. Hosoi, et al. Thin films in partial wetting: Stability, dewetting and coarsening, J. Fluid Mech., 845 (2018), 642-681. doi: 10.1017/jfm.2018.255
![]() |
[165] | A. A. Pahlavan, L. Cueto-Felgueroso, G. H. McKinley, et al. Thin films in partial wetting: internal selection of contact-line dynamics, Phys. Rev. Lett., 115 (2015), 034502. |
[166] |
D. Peschka, S. Haefner, L. Marquant, et al. Signatures of slip in dewetting polymer films, P. Natl. Acad. Sci. USA, 116 (2019), 9275-9284. doi: 10.1073/pnas.1820487116
![]() |
[167] | L. M. Pismen, Spinodal dewetting in a volatile liquid film, Phys. Rev. E, 70 (2004), 021601. |
[168] |
L. M. Pismen and Y. Pomeau, Mobility and interactions of weakly nonwetting droplets, Phys. Fluids, 16 (2004), 2604-2612. doi: 10.1063/1.1758911
![]() |
[169] | A. Pototsky, M. Bestehorn, D. Merkt, et al. Alternative pathways of dewetting for a thin liquid two-layer film, Phys. Rev. E, 70 (2004), 025201. |
[170] | C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1992. |
[171] |
M. Rauscher and S. Dietrich, Wetting phenomena in nanofluidics, Annu. Rev. Mater. Res., 38 (2008), 143-172. doi: 10.1146/annurev.matsci.38.060407.132451
![]() |
[172] |
G. Reiter, Dewetting of thin polymer films, Phys. Rev. Lett., 68 (1992), 75-78. doi: 10.1103/PhysRevLett.68.75
![]() |
[173] |
S. N. Reznik and A. L. Yarin, Spreading of a viscous drop due to gravity and capillarity on a horizontal or an inclined dry wall, Phys. Fluids, 14 (2002), 118-132. doi: 10.1063/1.1426388
![]() |
[174] |
A. J. Roberts and Z. Li, An accurate and comprehensive model of thin fluid flows with inertia on curved substrates, J. Fluid Mech., 553 (2006), 33-73. doi: 10.1017/S0022112006008640
![]() |
[175] | N. O. Rojas, M. Argentina, E. Cerda, et al. Inertial lubrication theory, Phys. Rev. Lett., 104 (2010), 187801. |
[176] |
J. W. Rose, On the mechanism of dropwise condensation, Int. J. Heat Mass Tran., 10 (1967), 755-762. doi: 10.1016/0017-9310(67)90135-4
![]() |
[177] | J. W. Rose, Dropwise condensation theory and experiment: A review, Journal of Power Energy, 216 (2012), 115-128. |
[178] |
R. V. Roy, A. J. Roberts, M. E. Simpson, A lubrication model of coating flows over a curved substrate in space, J. Fluid Mech., 454 (2002), 235-261. doi: 10.1017/S0022112001007133
![]() |
[179] |
E. Ruckenstein and R. K. Jain, Spontaneous rupture of thin liquid films, Journal of the Chemical Society-Faraday Transactions II, 70 (1974), 132-147. doi: 10.1039/f29747000132
![]() |
[180] | K. Rykaczewski, A. T. Paxson, M. Staymates, et al. Dropwise condensation of low surface tension fluids on omniphobic surfaces, Scientific reports, 4 (2015), 4158. |
[181] |
E. Sander and T. Wanner, Monte Carlo simulations for spinodal decomposition, J. Stat. Phys., 95 (1999), 925-948. doi: 10.1023/A:1004550416829
![]() |
[182] |
E. Sander and T. Wanner, Unexpectedly linear behavior for the Cahn-Hilliard equation, SIAM J. Appl. Math., 60 (2000), 2182-2202. doi: 10.1137/S0036139999352225
![]() |
[183] | L. W. Schwartz, Unsteady simulation of viscous thin-layer flows. In P. A. Tyvand, editor, Free surface flows with viscosity, pages 203-233. Computational Mechanics Publications, Boston, 1997. |
[184] |
L. W. Schwartz, R. V. Roy, R. R. Eley, et al. Dewetting patterns in a drying liquid film, J. Colloid Interf. Sci., 234 (2001), 363-374. doi: 10.1006/jcis.2000.7312
![]() |
[185] |
L. W. Schwartz and D. E. Weidner, Modeling of coating flows on curved surfaces, J. Eng. Math., 29 (1995), 91-103. doi: 10.1007/BF00046385
![]() |
[186] |
R. Seemann, S. Herminghaus, K. Jacobs, Dewetting patterns and molecular forces: a reconciliation, Phys. Rev. Lett., 86 (2001), 5534-5537. doi: 10.1103/PhysRevLett.86.5534
![]() |
[187] |
A. Sharma, Many paths to dewetting of thin films, Eur. Phys. J. E, 12 (2003), 397-407. doi: 10.1140/epje/e2004-00008-5
![]() |
[188] |
A. Sharma and R. Khanna, Pattern formation in unstable thin liquid films, Phys. Rev. Lett., 81 (1998), 3463-3466. doi: 10.1103/PhysRevLett.81.3463
![]() |
[189] |
A. Sharma and G. Reiter, Instability of thin polymer films on coated substrates: rupture, dewetting, and drop formation, J. Colloid Interf. Sci., 178 (1996), 383-399. doi: 10.1006/jcis.1996.0133
![]() |
[190] |
A. Sharma and R. Verma, Pattern formation and dewetting in thin films of liquids showing complete macroscale wetting: From "pancakes" to "swiss cheese", Langmuir, 20 (2004), 10337-10345. doi: 10.1021/la048669x
![]() |
[191] | D. N. Sibley, A. Nold, N. Savva, et al. A comparison of slip, disjoining pressure, and interface formation models for contact line motion through asymptotic analysis of thin two-dimensional droplet spreading, J. Eng. Math., 94 (2015), 19-41. |
[192] | V. M. Starov, M. G. Velarde, C. J. Radke, Wetting and Spreading Dynamics, CRC Press, Boca Raton Florida, 2007. |
[193] |
P. S. Stewart and S. H. Davis, Dynamics and stability of metallic foams: Network modeling, J. Rheol., 56 (2012), 543-574. doi: 10.1122/1.3695029
![]() |
[194] |
P. S. Stewart and S. H. Davis, Self-similar coalescence of clean foams, J. Fluid Mech., 722 (2013), 645-664. doi: 10.1017/jfm.2013.145
![]() |
[195] |
H. A. Stone, A. D. Stroock, A. Ajdari, Engineering flows in small devices: microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid Mech., 36 (2004), 381-411. doi: 10.1146/annurev.fluid.36.050802.122124
![]() |
[196] |
U. Thiele, Open questions and promising new fields in dewetting, Eur. Phys. J. E, 12 (2003), 409-414. doi: 10.1140/epje/e2004-00009-4
![]() |
[197] | U. Thiele, Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth, Journal of Physics: Condensed Matter, 22 (2010), 084019. |
[198] |
U. Thiele, Patterned deposition at moving contact lines, Adv. Colloid Interfac., 206 (2014), 399-413. doi: 10.1016/j.cis.2013.11.002
![]() |
[199] |
U. Thiele, Recent advances in and future challenges for mesoscopic hydrodynamic modelling of complex wetting, Colloids and Surfaces A, 553 (2018), 487-495. doi: 10.1016/j.colsurfa.2018.05.049
![]() |
[200] | U. Thiele, A. J. Archer, L. M. Pismen, Gradient dynamics models for liquid films with soluble surfactant, Phys. Rev. Fluids, 1 (2016), 083903. |
[201] | U. Thiele, A. J. Archer, M. Plapp, Thermodynamically consistent description of the hydrodynamics of free surfaces covered by insoluble surfactants of high concentration, Phys. Fluids, 24 (2012), 102107. |
[202] | U. Thiele and E. Knobloch, Driven drops on heterogeneous substrates: Onset of sliding motion, Phys. Rev. Lett., 97 (2006), 204501. |
[203] |
U. Thiele, M. Mertig, W. Pompe, Dewetting of an evaporating thin liquid film: Heterogeneous nucleation and surface instability, Phys. Rev. Lett., 80 (1998), 2869-2872. doi: 10.1103/PhysRevLett.80.2869
![]() |
[204] | U. Thiele, M. G. Velarde, K. Neuffer, et al. Film rupture in the diffuse interface model coupled to hydrodynamics, Phys. Rev. E, 64 (2001), 031602. |
[205] |
D. Tseluiko and D. T. Papageorgiou, Nonlinear dynamics of electrified thin liquid films, SIAM J. Appl. Math., 67 (2007), 1310-1329. doi: 10.1137/060663532
![]() |
[206] |
D. Tseluiko, J. Baxter, U. Thiele, A homotopy continuation approach for analysing finite-time singularities in thin liquid films, IMA J. Appl. Math., 78 (2013), 762-776. doi: 10.1093/imamat/hxt021
![]() |
[207] | H. B. van Lengerich, M. J. Vogel, P. H. Steen, Coarsening of capillary drops coupled by conduit networks, Phys. Rev. E, 82 (2010), 66312. |
[208] |
F. Vandenbrouck, M. P. Valignat, A. M. Cazabat, Thin nematic films: metastability and spinodal dewetting, Phys. Rev. Lett., 82 (1999), 2693-2696. doi: 10.1103/PhysRevLett.82.2693
![]() |
[209] |
S. J. VanHook, M. F. Schatz, W. D. McCormick, et al. Long-wavelength surface-tension-driven Bénard convection: experiment and theory, J. Fluid Mech., 345 (1997), 45-78. doi: 10.1017/S0022112097006101
![]() |
[210] | J. L. Vázquez, The Porous Medium Equation, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007. |
[211] |
A. Vrij, Possible mechanism for spontaneous rupture of thin free liquid films, Discussions of the Faraday Society, 42 (1966), 23-33. doi: 10.1039/df9664200023
![]() |
[212] | C. Wagner, Theorie der alterung von niedershlagen durch umlosen (Ostwald-Reifung), Z. Elektrochem, 65 (1961), 581-591. |
[213] | M. H. Ward, Interfacial thin films rupture and self-similarity, Phys. Fluids, 23 (2011), 062105. |
[214] |
S. J. Watson, F. Otto, B. Y. Rubinstein, et al. Coarsening dynamics of the convective Cahn-Hilliard equation, Physica D, 178 (2003), 127-148. doi: 10.1016/S0167-2789(03)00048-4
![]() |
[215] | T. Wei and F. Duan, Interfacial stability and self-similar rupture of evaporating liquid layers under vapor recoil, Phys. Fluids, 28 (2016), 124106. |
[216] |
G. M. Whitesides, The origins and the future of microfluidics, Nature, 442 (2006), 368-373. doi: 10.1038/nature05058
![]() |
[217] |
M. B. Williams and S. H. Davis, Nonlinear theory of film rupture, J. Colloid Interf. Sci., 90 (1982), 220-228. doi: 10.1016/0021-9797(82)90415-5
![]() |
[218] | T. P. Witelski, Computing finite-time singularities in interfacial flows. In G. Sabidussi, editor, Modern Methods in Scientific Computing and Applications, NATO ASI series proceedings, pages 451-487. Kluwer, 2002. |
[219] |
T. P. Witelski and A. J. Bernoff, Stability of self-similar solutions for van der Waals driven thin film rupture, Phys. Fluids, 11 (1999), 2443-2445. doi: 10.1063/1.870138
![]() |
[220] |
T. P. Witelski and A. J. Bernoff, Dynamics of three-dimensional thin film rupture, Physica D, 147 (2000), 155-176. doi: 10.1016/S0167-2789(00)00165-2
![]() |
[221] |
T. P. Witelski, A. J. Bernoff, A. L. Bertozzi, Blowup and dissipation in a critical-case unstable thin film equation, Eur. J. Appl. Math., 15 (2004), 223-256. doi: 10.1017/S0956792504005418
![]() |
[222] |
T. P. Witelski and M. Bowen, ADI schemes for higher-order nonlinear diffusion equations, Appl. Numer. Math., 45 (2003), 331-351. doi: 10.1016/S0168-9274(02)00194-0
![]() |
[223] |
Q. Wu and H. Wong, A slope-dependent disjoining pressure for non-zero contact angles, J. Fluid Mech., 506 (2004), 157-185. doi: 10.1017/S0022112004008420
![]() |
[224] |
W. W. Zhang and J. R. Lister, Similarity solutions for van der Waals rupture of a thin film on a solid substrate, Phys. Fluids, 11 (1999), 2454-2462. doi: 10.1063/1.870110
![]() |
[225] | L. Zhornitskaya and A. L. Bertozzi, Positivity-preserving numerical schemes for lubrication-type equations, SIAM J. Numer. Anal., 37 (2000), 523-555. |
λ | δ | β | M | Summation | NI |
0.5 | 2 | 0.5 | 10 | 9.56790 | |
20 | 9.56325 | 9.56325 | |||
50 | 9.56325 | ||||
1.5 | 10 | 1.65060 | |||
20 | 1.65025 | 1.65025 | |||
50 | 1.65025 | ||||
4 | 0.5 | 10 | 33.26973 | ||
20 | 16.24027 | 16.24025 | |||
50 | 16.24025 | ||||
1.5 | 10 | 3.46152 | |||
20 | 2.15191 | 2.15191 | |||
50 | 2.15191 | ||||
0.9 | 2 | 0.5 | 10 | 2.95306 | |
20 | 2.95162 | 2.95162 | |||
50 | 2.95162 | ||||
1.5 | 10 | 1.11548 | |||
20 | 1.11524 | 1.11524 | |||
50 | 1.11524 | ||||
4 | 0.5 | 10 | 10.26843 | ||
20 | 5.01243 | 5.01242 | |||
50 | 5.01242 | ||||
1.5 | 10 | 2.33929 | |||
20 | 1.45426 | 1.45426 | |||
50 | 1.45426 | ||||
1.5 | 2 | 0.5 | 10 | 1.06310 | |
20 | 1.06258 | 1.06258 | |||
50 | 1.06258 | ||||
1.5 | 10 | 0.79353 | |||
20 | 0.79336 | 0.79336 | |||
50 | 0.79336 | ||||
4 | 0.5 | 10 | 3.69664 | ||
20 | 1.80447 | 1.80447 | |||
50 | 1.80447 | ||||
1.5 | 10 | 1.66412 | |||
20 | 1.03453 | 1.03453 | |||
50 | 1.03453 |
δ | β | μx | σ2x | ψ1 | ψ2 |
0.5 | 0.5 | 0.7139 | 6.7945 | 11.1133 | 242.1702 |
1.5 | 0.4887 | 0.2526 | 1.7860 | 7.1495 | |
2.8 | 0.5958 | 0.1257 | 0.6322 | 3.0474 | |
3.5 | 0.6409 | 0.0996 | 0.3478 | 2.6707 | |
5 | 0.7117 | 0.0670 | -0.0309 | 2.5560 | |
0.75 | 0.5 | 1.0338 | 9.8213 | 9.2802 | 169.9559 |
1.5 | 0.6313 | 0.2893 | 1.5059 | 5.9591 | |
2.8 | 0.7128 | 0.1182 | 0.4924 | 2.9654 | |
3.5 | 0.7478 | 0.0874 | 0.2419 | 2.7303 | |
5 | 0.8014 | 0.0530 | -0.0874 | 2.7295 | |
1.5 | 0.5 | 1.8882 | 17.8440 | 6.9544 | 97.0234 |
1.5 | 0.9131 | 0.3298 | 1.1791 | 4.8586 | |
2.8 | 0.9067 | 0.0981 | 0.3788 | 2.9892 | |
3.5 | 0.9156 | 0.0655 | 0.1865 | 2.8588 | |
5 | 0.9321 | 0.0345 | -0.0571 | 2.8753 | |
2 | 0.5 | 2.3908 | 22.5235 | 6.2248 | 78.4523 |
1.5 | 1.0396 | 0.3379 | 1.0866 | 4.6063 | |
2.8 | 0.9823 | 0.0893 | 0.3625 | 3.0139 | |
3.5 | 0.9784 | 0.0577 | 0.1912 | 2.8969 | |
5 | 0.9785 | 0.0290 | -0.0225 | 2.8929 | |
5 | 0.5 | 4.7553 | 44.1219 | 4.5572 | 43.7214 |
1.5 | 1.4588 | 0.3369 | 0.9032 | 4.2015 | |
2.8 | 1.2009 | 0.0652 | 0.3653 | 3.1052 | |
3.5 | 1.1536 | 0.0386 | 0.2431 | 2.9961 | |
5 | 1.1018 | 0.0174 | 0.0954 | 2.9332 |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 0.44805{4} | 0.46606{5} | 0.40387{3} | 0.47616{6} | 0.39067{2} | 2.44726{8} | 0.37975{1} | 0.48266{7} | ||
BIAS | ˆβ | 0.14364{5} | 0.15331{7} | 0.13623{4} | 0.14834{6} | 0.13404{3} | 0.65763{8} | 0.13143{1} | 0.13160{2} | |
ˆλ | 0.66572{4} | 0.66928{8} | 0.66508{3} | 0.66627{6} | 0.66622{5} | 0.64430{1} | 0.64661{2} | 0.66871{7} | ||
ˆδ | 0.20075{4} | 0.21722{5} | 0.16311{3} | 0.22673{6} | 0.15262{2} | 5.98910{8} | 0.14421{1} | 0.23296{7} | ||
20 | MSE | ˆβ | 0.02063{5} | 0.02350{7} | 0.01856{4} | 0.02200{6} | 0.01797{3} | 0.43248{8} | 0.01727{1} | 0.01732{2} |
ˆλ | 0.44319{4} | 0.44793{8} | 0.44233{3} | 0.44392{6} | 0.44384{5} | 0.41513{1} | 0.41811{2} | 0.44717{7} | ||
ˆδ | 0.59740{4} | 0.62142{5} | 0.53849{3} | 0.63489{6} | 0.52089{2} | 0.88991{8} | 0.50633{1} | 0.64355{7} | ||
MRE | ˆβ | 0.28728{5} | 0.30662{7} | 0.27246{4} | 0.29667{6} | 0.26808{3} | 0.32881{8} | 0.26286{1} | 0.26320{2} | |
ˆλ | 0.99362{4} | 0.99892{8} | 0.99265{3} | 0.99444{6} | 0.99435{5} | 0.96165{1} | 0.96509{2} | 0.99807{7} | ||
∑RANKS | 39.0{4} | 60.0{8} | 30.0{2.5} | 54.0{7} | 30.0{2.5} | 51.0{6} | 12.0{1} | 48.0{5} | ||
ˆδ | 0.25007{3} | 0.29937{5} | 0.24733{2} | 0.31057{6} | 0.22757{1} | 2.37250{8} | 0.25066{4} | 0.31836{7} | ||
BIAS | ˆβ | 0.08437{3} | 0.09749{7} | 0.08281{2} | 0.09732{6} | 0.07884{1} | 0.49530{8} | 0.08464{4} | 0.08707{5} | |
ˆλ | 0.51229{1} | 0.59472{6} | 0.52254{3} | 0.57940{5} | 0.51959{2} | 0.63231{8} | 0.53069{4} | 0.60133{7} | ||
ˆδ | 0.06254{3} | 0.08962{5} | 0.06117{2} | 0.09645{6} | 0.05179{1} | 5.62873{8} | 0.06283{4} | 0.10135{7} | ||
50 | MSE | ˆβ | 0.00712{3} | 0.00951{7} | 0.00686{2} | 0.00947{6} | 0.00622{1} | 0.24532{8} | 0.00716{4} | 0.00758{5} |
ˆλ | 0.26244{1} | 0.35369{6} | 0.27305{3} | 0.33571{5} | 0.26998{2} | 0.39982{8} | 0.28164{4} | 0.36160{7} | ||
ˆδ | 0.33343{3} | 0.39916{5} | 0.32978{2} | 0.41409{6} | 0.30342{1} | 0.86273{8} | 0.33422{4} | 0.42447{7} | ||
MRE | ˆβ | 0.16874{3} | 0.19499{7} | 0.16562{2} | 0.19465{6} | 0.15768{1} | 0.24765{8} | 0.16927{4} | 0.17413{5} | |
ˆλ | 0.76461{1} | 0.88764{6} | 0.77991{3} | 0.86478{5} | 0.77551{2} | 0.94375{8} | 0.79208{4} | 0.89751{7} | ||
∑RANKS | 21.0{2.5} | 54.0{6} | 21.0{2.5} | 51.0{5} | 12.0{1} | 72.0{8} | 36.0{4} | 57.0{7} | ||
ˆδ | 0.17337{3} | 0.21780{6} | 0.17020{2} | 0.22097{7} | 0.15701{1} | 2.39904{8} | 0.17686{4} | 0.21457{5} | ||
BIAS | ˆβ | 0.05580{3} | 0.06830{6} | 0.05577{2} | 0.06885{7} | 0.05374{1} | 0.41721{8} | 0.05725{4} | 0.06044{5} | |
ˆλ | 0.39296{2} | 0.46927{7} | 0.39857{3} | 0.45336{5} | 0.38016{1} | 0.62525{8} | 0.40082{4} | 0.46343{6} | ||
ˆδ | 0.03006{3} | 0.04744{6} | 0.02897{2} | 0.04883{7} | 0.02465{1} | 5.75540{8} | 0.03128{4} | 0.04604{5} | ||
100 | MSE | ˆβ | 0.00311{2.5} | 0.00466{6} | 0.00311{2.5} | 0.00474{7} | 0.00289{1} | 0.17406{8} | 0.00328{4} | 0.00365{5} |
ˆλ | 0.15441{2} | 0.22022{7} | 0.15886{3} | 0.20554{5} | 0.14452{1} | 0.39094{8} | 0.16066{4} | 0.21477{6} | ||
ˆδ | 0.23116{3} | 0.29040{6} | 0.22693{2} | 0.29462{7} | 0.20935{1} | 0.87238{8} | 0.23582{4} | 0.28610{5} | ||
MRE | ˆβ | 0.11161{3} | 0.13660{6} | 0.11155{2} | 0.13770{7} | 0.10749{1} | 0.20860{8} | 0.11449{4} | 0.12089{5} | |
ˆλ | 0.58650{2} | 0.70041{7} | 0.59488{3} | 0.67666{5} | 0.56741{1} | 0.93322{8} | 0.59824{4} | 0.69169{6} | ||
∑RANKS | 23.5{3} | 57.0{6.5} | 21.5{2} | 57.0{6.5} | 9.0{1} | 72.0{8} | 36.0{4} | 48.0{5} | ||
ˆδ | 0.11921{2} | 0.15274{6} | 0.12118{3} | 0.15801{7} | 0.11128{1} | 2.36301{8} | 0.12134{4} | 0.15004{5} | ||
BIAS | ˆβ | 0.03944{2} | 0.04894{6} | 0.03986{4} | 0.04966{7} | 0.03780{1} | 0.35089{8} | 0.03953{3} | 0.04230{5} | |
ˆλ | 0.28268{2} | 0.35098{6} | 0.28501{3} | 0.35253{7} | 0.27401{1} | 0.61586{8} | 0.29546{4} | 0.35009{5} | ||
ˆδ | 0.01421{2} | 0.02333{6} | 0.01469{3} | 0.02497{7} | 0.01238{1} | 5.58381{8} | 0.01472{4} | 0.02251{5} | ||
300 | MSE | ˆβ | 0.00156{2.5} | 0.00239{6} | 0.00159{4} | 0.00247{7} | 0.00143{1} | 0.12312{8} | 0.00156{2.5} | 0.00179{5} |
ˆλ | 0.07991{2} | 0.12319{6} | 0.08123{3} | 0.12428{7} | 0.07508{1} | 0.37928{8} | 0.08730{4} | 0.12256{5} | ||
ˆδ | 0.15895{2} | 0.20365{6} | 0.16158{3} | 0.21068{7} | 0.14838{1} | 0.85928{8} | 0.16179{4} | 0.20005{5} | ||
MRE | ˆβ | 0.07887{2} | 0.09787{6} | 0.07972{4} | 0.09932{7} | 0.07560{1} | 0.17545{8} | 0.07905{3} | 0.08460{5} | |
ˆλ | 0.42191{2} | 0.52386{6} | 0.42539{3} | 0.52616{7} | 0.40896{1} | 0.91919{8} | 0.44099{4} | 0.52252{5} | ||
∑RANKS | 18.5{2} | 54.0{6} | 30.0{3} | 63.0{7} | 9.0{1} | 72.0{8} | 32.5{4} | 45.0{5} | ||
ˆδ | 0.08419{2} | 0.10545{5} | 0.08572{3} | 0.10981{7} | 0.07707{1} | 2.51646{8} | 0.08962{4} | 0.10567{6} | ||
BIAS | ˆβ | 0.02771{2} | 0.03356{6} | 0.02858{3} | 0.03361{7} | 0.02586{1} | 0.30410{8} | 0.02884{4} | 0.03016{5} | |
ˆλ | 0.20338{1} | 0.25009{5} | 0.20668{3} | 0.25785{7} | 0.20635{2} | 0.60619{8} | 0.21717{4} | 0.25239{6} | ||
ˆδ | 0.00709{2} | 0.01112{5} | 0.00735{3} | 0.01206{7} | 0.00594{1} | 6.33269{8} | 0.00803{4} | 0.01117{6} | ||
500 | MSE | ˆβ | 0.00077{2} | 0.00113{6.5} | 0.00082{3} | 0.00113{6.5} | 0.00067{1} | 0.09247{8} | 0.00083{4} | 0.00091{5} |
ˆλ | 0.04136{1} | 0.06255{5} | 0.04272{3} | 0.06649{7} | 0.04258{2} | 0.36747{8} | 0.04716{4} | 0.06370{6} | ||
ˆδ | 0.11225{2} | 0.14061{5} | 0.11429{3} | 0.14641{7} | 0.10276{1} | 0.91508{8} | 0.11950{4} | 0.14089{6} | ||
MRE | ˆβ | 0.05542{2} | 0.06711{6} | 0.05716{3} | 0.06723{7} | 0.05173{1} | 0.15205{8} | 0.05768{4} | 0.06033{5} | |
ˆλ | 0.30355{1} | 0.37327{5} | 0.30848{3} | 0.38486{7} | 0.30798{2} | 0.90477{8} | 0.32413{4} | 0.37671{6} | ||
∑RANKS | 15.0{2} | 48.5{5} | 27.0{3} | 62.5{7} | 12.0{1} | 72.0{8} | 36.0{4} | 51.0{6} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 0.32426{3} | 0.36749{5} | 0.32579{4} | 0.37178{6} | 0.32305{2} | 0.48308{8} | 0.31426{1} | 0.38908{7} | ||
BIAS | ˆβ | 0.16279{6} | 0.16255{5} | 0.13270{3} | 0.16800{7} | 0.12181{1} | 0.17744{8} | 0.12182{2} | 0.14583{4} | |
ˆλ | 1.02635{2} | 1.49446{6} | 1.25347{4} | 1.89848{8} | 1.11158{3} | 0.98297{1} | 1.27708{5} | 1.62940{7} | ||
ˆδ | 0.10515{3} | 0.13505{5} | 0.10614{4} | 0.13822{6} | 0.10436{2} | 0.23336{8} | 0.09876{1} | 0.15138{7} | ||
20 | MSE | ˆβ | 0.02650{6} | 0.02642{5} | 0.01761{3} | 0.02822{7} | 0.01484{1.5} | 0.03148{8} | 0.01484{1.5} | 0.02127{4} |
ˆλ | 1.05340{2} | 2.23340{6} | 1.57119{4} | 3.60423{8} | 1.23560{3} | 0.96623{1} | 1.63094{5} | 2.65496{7} | ||
ˆδ | 0.64853{3} | 0.73498{5} | 0.65157{4} | 0.74356{6} | 0.64610{2} | 0.96616{8} | 0.62852{1} | 0.77815{7} | ||
MRE | ˆβ | 0.65115{6} | 0.65020{5} | 0.53081{3} | 0.67201{7} | 0.48723{1} | 0.70975{8} | 0.48728{2} | 0.58331{4} | |
ˆλ | 0.29324{2} | 0.42699{6} | 0.35813{4} | 0.54242{8} | 0.31759{3} | 0.28085{1} | 0.36488{5} | 0.46554{7} | ||
∑RANKS | 33.0{3.5} | 48.0{5} | 33.0{3.5} | 63.0{8} | 18.5{1} | 51.0{6} | 23.5{2} | 54.0{7} | ||
ˆδ | 0.26539{6} | 0.25563{5} | 0.20593{3} | 0.26669{7} | 0.18851{1} | 0.49483{8} | 0.20458{2} | 0.23977{4} | ||
BIAS | ˆβ | 0.12742{7} | 0.09473{5} | 0.07337{3} | 0.09606{6} | 0.06554{1} | 0.25000{8} | 0.07268{2} | 0.07792{4} | |
ˆλ | 0.31068{1} | 0.87506{6} | 0.65401{3} | 0.93368{7} | 0.63524{2} | 1.70896{8} | 0.70057{4} | 0.77199{5} | ||
ˆδ | 0.07043{6} | 0.06534{5} | 0.04241{3} | 0.07112{7} | 0.03554{1} | 0.24486{8} | 0.04185{2} | 0.05749{4} | ||
50 | MSE | ˆβ | 0.01624{7} | 0.00897{5} | 0.00538{3} | 0.00923{6} | 0.00429{1} | 0.06250{8} | 0.00528{2} | 0.00607{4} |
ˆλ | 0.09652{1} | 0.76574{6} | 0.42773{3} | 0.87176{7} | 0.40352{2} | 2.92055{8} | 0.49080{4} | 0.59596{5} | ||
ˆδ | 0.53078{6} | 0.51125{5} | 0.41186{3} | 0.53337{7} | 0.37702{1} | 0.98966{8} | 0.40915{2} | 0.47955{4} | ||
MRE | ˆβ | 0.50967{7} | 0.37893{5} | 0.29349{3} | 0.38424{6} | 0.26214{1} | 1.00000{8} | 0.29071{2} | 0.31167{4} | |
ˆλ | 0.08876{1} | 0.25002{6} | 0.18686{3} | 0.26677{7} | 0.18150{2} | 0.48827{8} | 0.20016{4} | 0.22057{5} | ||
∑RANKS | 42.0{5} | 48.0{6} | 27.0{3} | 60.0{7} | 12.0{1} | 72.0{8} | 24.0{2} | 39.0{4} | ||
ˆδ | 0.23814{7} | 0.19152{5} | 0.14325{2} | 0.19335{6} | 0.13433{1} | 0.50000{8} | 0.14782{3} | 0.17393{4} | ||
BIAS | ˆβ | 0.12253{7} | 0.06875{6} | 0.04895{2} | 0.06860{5} | 0.04607{1} | 0.25000{8} | 0.05166{3} | 0.05613{4} | |
ˆλ | 0.13396{1} | 0.59512{7} | 0.43461{2} | 0.59336{6} | 0.45566{3} | 2.33232{8} | 0.48957{4} | 0.49276{5} | ||
ˆδ | 0.05671{7} | 0.03668{5} | 0.02052{2} | 0.03739{6} | 0.01805{1} | 0.25000{8} | 0.02185{3} | 0.03025{4} | ||
100 | MSE | ˆβ | 0.01501{7} | 0.00473{6} | 0.00240{2} | 0.00471{5} | 0.00212{1} | 0.06250{8} | 0.00267{3} | 0.00315{4} |
ˆλ | 0.01795{1} | 0.35416{7} | 0.18889{2} | 0.35207{6} | 0.20762{3} | 5.43973{8} | 0.23968{4} | 0.24281{5} | ||
ˆδ | 0.47627{7} | 0.38303{5} | 0.28650{2} | 0.38671{6} | 0.26866{1} | 1.00000{8} | 0.29563{3} | 0.34787{4} | ||
MRE | ˆβ | 0.49013{7} | 0.27502{6} | 0.19579{2} | 0.27439{5} | 0.18427{1} | 1.00000{8} | 0.20663{3} | 0.22454{4} | |
ˆλ | 0.03827{1} | 0.17003{7} | 0.12417{2} | 0.16953{6} | 0.13019{3} | 0.66638{8} | 0.13988{4} | 0.14079{5} | ||
∑RANKS | 45.0{5} | 54.0{7} | 18.0{2} | 51.0{6} | 15.0{1} | 72.0{8} | 30.0{3} | 39.0{4} | ||
ˆδ | 0.16105{7} | 0.11059{5} | 0.08394{2} | 0.11359{6} | 0.07800{1} | 0.49787{8} | 0.08757{3} | 0.10016{4} | ||
BIAS | ˆβ | 0.06283{7} | 0.03817{5} | 0.02859{2} | 0.03946{6} | 0.02634{1} | 0.26436{8} | 0.03008{3} | 0.03194{4} | |
ˆλ | 0.09811{1} | 0.32542{6} | 0.26408{3} | 0.33776{7} | 0.26030{2} | 3.29688{8} | 0.27467{4} | 0.27699{5} | ||
ˆδ | 0.02594{7} | 0.01223{5} | 0.00705{2} | 0.0129{6} | 0.00608{1} | 0.24788{8} | 0.00767{3} | 0.01003{4} | ||
300 | MSE | ˆβ | 0.00395{7} | 0.00146{5} | 0.00082{2} | 0.00156{6} | 0.00069{1} | 0.06989{8} | 0.0009{3} | 0.00102{4} |
ˆλ | 0.00963{1} | 0.10590{6} | 0.06974{3} | 0.11408{7} | 0.06775{2} | 10.86939{8} | 0.07544{4} | 0.07673{5} | ||
ˆδ | 0.32211{7} | 0.22118{5} | 0.16788{2} | 0.22718{6} | 0.15600{1} | 0.99575{8} | 0.17513{3} | 0.20033{4} | ||
MRE | ˆβ | 0.25131{7} | 0.15269{5} | 0.11437{2} | 0.15786{6} | 0.10537{1} | 1.05746{8} | 0.12030{3} | 0.12777{4} | |
ˆλ | 0.02803{1} | 0.09298{6} | 0.07545{3} | 0.09650{7} | 0.07437{2} | 0.94196{8} | 0.07848{4} | 0.07914{5} | ||
∑RANKS | 45.0{5} | 48.0{6} | 21.0{2} | 57.0{7} | 12.0{1} | 72.0{8} | 30.0{3} | 39.0{4} | ||
ˆδ | 0.13682{7} | 0.08518{5} | 0.06806{2} | 0.08903{6} | 0.06143{1} | 0.49767{8} | 0.06854{3} | 0.07835{4} | ||
BIAS | ˆβ | 0.04912{7} | 0.02897{5} | 0.02309{2} | 0.03037{6} | 0.02041{1} | 0.19514{8} | 0.02314{3} | 0.02444{4} | |
ˆλ | 0.07977{1} | 0.25952{6} | 0.19725{2} | 0.26898{7} | 0.20086{3} | 3.31272{8} | 0.22096{5} | 0.21419{4} | ||
ˆδ | 0.01872{7} | 0.00726{5} | 0.00463{2} | 0.00793{6} | 0.00377{1} | 0.24768{8} | 0.00470{3} | 0.00614{4} | ||
500 | MSE | ˆβ | 0.00241{7} | 0.00084{5} | 0.00053{2} | 0.00092{6} | 0.00042{1} | 0.03808{8} | 0.00054{3} | 0.00060{4} |
ˆλ | 0.00636{1} | 0.06735{6} | 0.03891{2} | 0.07235{7} | 0.04034{3} | 10.97413{8} | 0.04883{5} | 0.04588{4} | ||
ˆδ | 0.27364{7} | 0.17036{5} | 0.13611{2} | 0.17807{6} | 0.12285{1} | 0.99535{8} | 0.13709{3} | 0.15669{4} | ||
MRE | ˆβ | 0.19649{7} | 0.11589{5} | 0.09236{2} | 0.12148{6} | 0.08166{1} | 0.78054{8} | 0.09258{3} | 0.09775{4} | |
ˆλ | 0.02279{1} | 0.07415{6} | 0.05636{2} | 0.07685{7} | 0.05739{3} | 0.94649{8} | 0.06313{5} | 0.06120{4} | ||
∑RANKS | 45.0{5} | 48.0{6} | 18.0{2} | 57.0{7} | 15.0{1} | 72.0{8} | 33.0{3} | 36.0{4} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 0.33176{3} | 0.36562{5} | 0.33913{4} | 0.37397{6} | 0.32582{2} | 0.38712{7} | 0.32087{1} | 0.38878{8} | ||
BIAS | ˆβ | 1.12766{4} | 1.27666{6} | 1.07109{3} | 1.35020{8} | 0.96289{2} | 1.28521{7} | 0.94279{1} | 1.17226{5} | |
ˆλ | 0.86191{4} | 0.88497{5} | 0.76644{3} | 0.99457{8} | 0.70889{1} | 0.90068{6} | 0.74792{2} | 0.95949{7} | ||
ˆδ | 0.11007{3} | 0.13368{5} | 0.11501{4} | 0.13985{6} | 0.10616{2} | 0.14986{7} | 0.10296{1} | 0.15115{8} | ||
20 | MSE | ˆβ | 1.27161{4} | 1.62986{6} | 1.14723{3} | 1.82303{8} | 0.92715{2} | 1.65176{7} | 0.88885{1} | 1.37420{5} |
ˆλ | 0.74288{4} | 0.78317{5} | 0.58742{3} | 0.98917{8} | 0.50252{1} | 0.81123{6} | 0.55939{2} | 0.92062{7} | ||
ˆδ | 0.66352{3} | 0.73125{5} | 0.67827{4} | 0.74793{6} | 0.65165{2} | 0.77425{7} | 0.64175{1} | 0.77755{8} | ||
MRE | ˆβ | 0.56383{4} | 0.63833{6} | 0.53555{3} | 0.67510{8} | 0.48144{2} | 0.64260{7} | 0.47140{1} | 0.58613{5} | |
ˆλ | 0.57461{4} | 0.58998{5} | 0.51096{3} | 0.66305{8} | 0.47259{1} | 0.60045{6} | 0.49861{2} | 0.63966{7} | ||
∑RANKS | 33.0{4} | 48.0{5} | 30.0{3} | 66.0{8} | 15.0{2} | 60.0{6.5} | 12.0{1} | 60.0{6.5} | ||
ˆδ | 0.21959{4} | 0.24961{6} | 0.21918{3} | 0.26981{7} | 0.19148{1} | 0.27897{8} | 0.20495{2} | 0.24813{5} | ||
BIAS | ˆβ | 0.62370{3} | 0.76053{7} | 0.62516{4} | 0.77811{8} | 0.54002{1} | 0.73260{6} | 0.57135{2} | 0.64916{5} | |
ˆλ | 0.45268{4} | 0.48195{5} | 0.42714{2} | 0.52178{7} | 0.39191{1} | 0.56415{8} | 0.43028{3} | 0.51147{6} | ||
ˆδ | 0.04822{4} | 0.06230{6} | 0.04804{3} | 0.07280{7} | 0.03666{1} | 0.07783{8} | 0.04200{2} | 0.06157{5} | ||
50 | MSE | ˆβ | 0.38900{3} | 0.57840{7} | 0.39083{4} | 0.60546{8} | 0.29162{1} | 0.53670{6} | 0.32644{2} | 0.42141{5} |
ˆλ | 0.20492{4} | 0.23227{5} | 0.18245{2} | 0.27226{7} | 0.15360{1} | 0.31827{8} | 0.18514{3} | 0.26160{6} | ||
ˆδ | 0.43918{4} | 0.49921{6} | 0.43837{3} | 0.53963{7} | 0.38295{1} | 0.55795{8} | 0.40990{2} | 0.49627{5} | ||
MRE | ˆβ | 0.31185{3} | 0.38026{7} | 0.31258{4} | 0.38906{8} | 0.27001{1} | 0.36630{6} | 0.28568{2} | 0.32458{5} | |
ˆλ | 0.30179{4} | 0.32130{5} | 0.28476{2} | 0.34786{7} | 0.26128{1} | 0.37610{8} | 0.28685{3} | 0.34098{6} | ||
∑RANKS | 33.0{4} | 54.0{6} | 27.0{3} | 66.0{7.5} | 9.0{1} | 66.0{7.5} | 21.0{2} | 48.0{5} | ||
ˆδ | 0.14671{2} | 0.18823{6} | 0.15343{4} | 0.19493{7} | 0.13279{1} | 0.21007{8} | 0.15276{3} | 0.17687{5} | ||
BIAS | ˆβ | 0.39391{2} | 0.53496{7} | 0.42885{4} | 0.55301{8} | 0.35810{1} | 0.52138{6} | 0.41247{3} | 0.44862{5} | |
ˆλ | 0.29759{3} | 0.32702{5} | 0.27960{2} | 0.34665{6} | 0.26772{1} | 0.39649{8} | 0.30125{4} | 0.35571{7} | ||
ˆδ | 0.02152{2} | 0.03543{6} | 0.02354{4} | 0.03800{7} | 0.01763{1} | 0.04413{8} | 0.02334{3} | 0.03128{5} | ||
100 | MSE | ˆβ | 0.15516{2} | 0.28618{7} | 0.18391{4} | 0.30582{8} | 0.12824{1} | 0.27184{6} | 0.17013{3} | 0.20126{5} |
ˆλ | 0.08856{3} | 0.10694{5} | 0.07818{2} | 0.12017{6} | 0.07167{1} | 0.15720{8} | 0.09075{4} | 0.12653{7} | ||
ˆδ | 0.29341{2} | 0.37646{6} | 0.30687{4} | 0.38987{7} | 0.26559{1} | 0.42015{8} | 0.30552{3} | 0.35375{5} | ||
MRE | ˆβ | 0.19695{2} | 0.26748{7} | 0.21443{4} | 0.27650{8} | 0.17905{1} | 0.26069{6} | 0.20623{3} | 0.22431{5} | |
ˆλ | 0.19839{3} | 0.21801{5} | 0.18640{2} | 0.23110{6} | 0.17848{1} | 0.26433{8} | 0.20083{4} | 0.23714{7} | ||
∑RANKS | 21.0{2} | 54.0{6} | 30.0{3.5} | 63.0{7} | 9.0{1} | 66.0{8} | 30.0{3.5} | 51.0{5} | ||
ˆδ | 0.08098{2} | 0.10961{6} | 0.08512{3} | 0.11525{7} | 0.07733{1} | 0.12222{8} | 0.08977{4} | 0.10159{5} | ||
BIAS | ˆβ | 0.21831{2} | 0.30112{7} | 0.23615{3} | 0.31930{8} | 0.20764{1} | 0.28937{6} | 0.24578{4} | 0.26022{5} | |
ˆλ | 0.15901{2} | 0.18217{5} | 0.16388{3} | 0.18257{6} | 0.15273{1} | 0.22463{8} | 0.16393{4} | 0.19128{7} | ||
ˆδ | 0.00656{2} | 0.01201{6} | 0.00725{3} | 0.01328{7} | 0.00598{1} | 0.01494{8} | 0.00806{4} | 0.01032{5} | ||
300 | MSE | ˆβ | 0.04766{2} | 0.09067{7} | 0.05576{3} | 0.10195{8} | 0.04312{1} | 0.08374{6} | 0.06041{4} | 0.06771{5} |
ˆλ | 0.02529{2} | 0.03319{5} | 0.02686{3} | 0.03333{6} | 0.02333{1} | 0.05046{8} | 0.02687{4} | 0.03659{7} | ||
ˆδ | 0.16196{2} | 0.21922{6} | 0.17024{3} | 0.23050{7} | 0.15466{1} | 0.24444{8} | 0.17953{4} | 0.20317{5} | ||
MRE | ˆβ | 0.10916{2} | 0.15056{7} | 0.11807{3} | 0.15965{8} | 0.10382{1} | 0.14469{6} | 0.12289{4} | 0.13011{5} | |
ˆλ | 0.10601{2} | 0.12145{5} | 0.10925{3} | 0.12171{6} | 0.10182{1} | 0.14975{8} | 0.10929{4} | 0.12752{7} | ||
∑RANKS | 18.0{2} | 54.0{6} | 27.0{3} | 63.0{7} | 9.0{1} | 66.0{8} | 36.0{4} | 51.0{5} | ||
ˆδ | 0.06133{2} | 0.08655{6} | 0.06579{3} | 0.08942{7} | 0.05873{1} | 0.09305{8} | 0.06982{4} | 0.07986{5} | ||
BIAS | ˆβ | 0.16505{2} | 0.23942{7} | 0.17980{3} | 0.24405{8} | 0.15115{1} | 0.21914{6} | 0.18812{4} | 0.20420{5} | |
ˆλ | 0.12258{3} | 0.14193{5} | 0.12071{2} | 0.14351{6} | 0.11629{1} | 0.17353{8} | 0.12581{4} | 0.14648{7} | ||
ˆδ | 0.00376{2} | 0.00749{6} | 0.00433{3} | 0.00800{7} | 0.00345{1} | 0.00866{8} | 0.00488{4} | 0.00638{5} | ||
500 | MSE | ˆβ | 0.02724{2} | 0.05732{7} | 0.03233{3} | 0.05956{8} | 0.02285{1} | 0.04802{6} | 0.03539{4} | 0.04170{5} |
ˆλ | 0.01503{3} | 0.02014{5} | 0.01457{2} | 0.02059{6} | 0.01352{1} | 0.03011{8} | 0.01583{4} | 0.02146{7} | ||
ˆδ | 0.12266{2} | 0.17311{6} | 0.13157{3} | 0.17883{7} | 0.11745{1} | 0.18610{8} | 0.13965{4} | 0.15972{5} | ||
MRE | ˆβ | 0.08253{2} | 0.11971{7} | 0.08990{3} | 0.12203{8} | 0.07557{1} | 0.10957{6} | 0.09406{4} | 0.10210{5} | |
ˆλ | 0.08172{3} | 0.09462{5} | 0.08047{2} | 0.09567{6} | 0.07753{1} | 0.11568{8} | 0.08387{4} | 0.09765{7} | ||
∑RANKS | 21.0{2} | 54.0{6} | 24.0{3} | 63.0{7} | 9.0{1} | 66.0{8} | 36.0{4} | 51.0{5} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 0.33110{3} | 0.36615{5} | 0.33585{4} | 0.37061{6} | 0.31868{1} | 0.39913{8} | 0.32453{2} | 0.38922{7} | ||
BIAS | ˆβ | 1.11460{4} | 1.27786{6} | 1.06641{3} | 1.32616{8} | 0.95015{2} | 1.28377{7} | 0.94504{1} | 1.17382{5} | |
ˆλ | 1.55737{5} | 1.59665{6} | 1.34503{3} | 1.91607{8} | 1.19054{1} | 1.53949{4} | 1.23604{2} | 1.70187{7} | ||
ˆδ | 0.10963{3} | 0.13407{5} | 0.11279{4} | 0.13735{6} | 0.10155{1} | 0.15930{8} | 0.10532{2} | 0.15149{7} | ||
20 | MSE | ˆβ | 1.24233{4} | 1.63291{6} | 1.13723{3} | 1.75870{8} | 0.90278{2} | 1.64808{7} | 0.89310{1} | 1.37786{5} |
ˆλ | 2.42540{5} | 2.54930{6} | 1.80910{3} | 3.67132{8} | 1.41739{1} | 2.37004{4} | 1.52779{2} | 2.89636{7} | ||
ˆδ | 0.66220{3} | 0.73230{5} | 0.67170{4} | 0.74122{6} | 0.63735{1} | 0.79825{8} | 0.64906{2} | 0.77844{7} | ||
MRE | ˆβ | 0.55730{4} | 0.63893{6} | 0.53320{3} | 0.66308{8} | 0.47507{2} | 0.64189{7} | 0.47252{1} | 0.58691{5} | |
ˆλ | 0.44496{5} | 0.45619{6} | 0.38429{3} | 0.54745{8} | 0.34016{1} | 0.43986{4} | 0.35315{2} | 0.48625{7} | ||
∑RANKS | 36.0{4} | 51.0{5} | 30.0{3} | 66.0{8} | 12.0{1} | 57.0{6.5} | 15.0{2} | 57.0{6.5} | ||
ˆδ | 0.21390{3} | 0.26182{6} | 0.22139{4} | 0.27439{7} | 0.19140{1} | 0.28679{8} | 0.20785{2} | 0.24663{5} | ||
BIAS | ˆβ | 0.61150{3} | 0.78181{7} | 0.64730{4} | 0.78486{8} | 0.53103{1} | 0.76841{6} | 0.59128{2} | 0.64931{5} | |
ˆλ | 0.78611{4} | 0.86510{7} | 0.76550{3} | 0.92676{8} | 0.68749{1} | 0.80892{5} | 0.73796{2} | 0.81282{6} | ||
ˆδ | 0.04575{3} | 0.06855{6} | 0.04901{4} | 0.07529{7} | 0.03664{1} | 0.08225{8} | 0.04320{2} | 0.06082{5} | ||
50 | MSE | ˆβ | 0.37393{3} | 0.61123{7} | 0.41900{4} | 0.61600{8} | 0.28200{1} | 0.59046{6} | 0.34961{2} | 0.42160{5} |
ˆλ | 0.61798{4} | 0.74840{7} | 0.58599{3} | 0.85888{8} | 0.47264{1} | 0.65435{5} | 0.54459{2} | 0.66068{6} | ||
ˆδ | 0.42780{3} | 0.52365{6} | 0.44278{4} | 0.54878{7} | 0.38281{1} | 0.57358{8} | 0.41571{2} | 0.49325{5} | ||
MRE | ˆβ | 0.30575{3} | 0.39091{7} | 0.32365{4} | 0.39243{8} | 0.26552{1} | 0.38421{6} | 0.29564{2} | 0.32465{5} | |
ˆλ | 0.22460{4} | 0.24717{7} | 0.21871{3} | 0.26479{8} | 0.19643{1} | 0.23112{5} | 0.21085{2} | 0.23223{6} | ||
∑RANKS | 30.0{3} | 60.0{7} | 33.0{4} | 69.0{8} | 9.0{1} | 57.0{6} | 18.0{2} | 48.0{5} | ||
ˆδ | 0.14038{2} | 0.19164{6} | 0.15667{4} | 0.19596{7} | 0.13391{1} | 0.20535{8} | 0.15291{3} | 0.17192{5} | ||
BIAS | ˆβ | 0.38434{2} | 0.54048{7} | 0.42196{4} | 0.56208{8} | 0.36139{1} | 0.51354{6} | 0.42009{3} | 0.45263{5} | |
ˆλ | 0.47694{2} | 0.58765{7} | 0.51182{4} | 0.60332{8} | 0.45658{1} | 0.51860{5} | 0.49143{3} | 0.53797{6} | ||
ˆδ | 0.01971{2} | 0.03672{6} | 0.02455{4} | 0.03840{7} | 0.01793{1} | 0.04217{8} | 0.02338{3} | 0.02956{5} | ||
100 | MSE | ˆβ | 0.14772{2} | 0.29211{7} | 0.17805{4} | 0.31594{8} | 0.13060{1} | 0.26372{6} | 0.17648{3} | 0.20488{5} |
ˆλ | 0.22747{2} | 0.34533{7} | 0.26196{4} | 0.36399{8} | 0.20847{1} | 0.26895{5} | 0.24150{3} | 0.28941{6} | ||
ˆδ | 0.28075{2} | 0.38327{6} | 0.31335{4} | 0.39192{7} | 0.26781{1} | 0.41070{8} | 0.30583{3} | 0.34385{5} | ||
MRE | ˆβ | 0.19217{2} | 0.27024{7} | 0.21098{4} | 0.28104{8} | 0.18069{1} | 0.25677{6} | 0.21004{3} | 0.22632{5} | |
ˆλ | 0.13627{2} | 0.16790{7} | 0.14623{4} | 0.17238{8} | 0.13045{1} | 0.14817{5} | 0.14041{3} | 0.15371{6} | ||
∑RANKS | 18.0{2} | 60.0{7} | 36.0{4} | 69.0{8} | 9.0{1} | 57.0{6} | 27.0{3} | 48.0{5} | ||
ˆδ | 0.07851{1} | 0.11388{6} | 0.08746{3} | 0.11416{7} | 0.08299{2} | 0.12225{8} | 0.09006{4} | 0.10489{5} | ||
BIAS | ˆβ | 0.20925{1} | 0.31575{7} | 0.23592{3} | 0.31907{8} | 0.22303{2} | 0.28419{6} | 0.24085{4} | 0.26648{5} | |
ˆλ | 0.26941{2} | 0.33461{8} | 0.27809{4} | 0.33184{7} | 0.24439{1} | 0.27271{3} | 0.28243{5} | 0.29963{6} | ||
ˆδ | 0.00616{1} | 0.01297{6} | 0.00765{3} | 0.01303{7} | 0.00689{2} | 0.01495{8} | 0.00811{4} | 0.01100{5} | ||
300 | MSE | ˆβ | 0.04379{1} | 0.09970{7} | 0.05566{3} | 0.10180{8} | 0.04974{2} | 0.08077{6} | 0.05801{4} | 0.07101{5} |
ˆλ | 0.07258{2} | 0.11196{8} | 0.07733{4} | 0.11012{7} | 0.05973{1} | 0.07437{3} | 0.07977{5} | 0.08978{6} | ||
ˆδ | 0.15702{1} | 0.22776{6} | 0.17492{3} | 0.22833{7} | 0.16597{2} | 0.24450{8} | 0.18013{4} | 0.20979{5} | ||
MRE | ˆβ | 0.10463{1} | 0.15787{7} | 0.11796{3} | 0.15953{8} | 0.11152{2} | 0.14210{6} | 0.12042{4} | 0.13324{5} | |
ˆλ | 0.07697{2} | 0.09560{8} | 0.07945{4} | 0.09481{7} | 0.06983{1} | 0.07792{3} | 0.08069{5} | 0.08561{6} | ||
∑RANKS | 12.0{1} | 63.0{7} | 30.0{3} | 66.0{8} | 15.0{2} | 51.0{6} | 39.0{4} | 48.0{5} | ||
ˆδ | 0.06024{1} | 0.08637{7} | 0.06664{3} | 0.08502{6} | 0.06628{2} | 0.09635{8} | 0.06819{4} | 0.07999{5} | ||
BIAS | ˆβ | 0.16078{1} | 0.24082{7} | 0.18266{3} | 0.24124{8} | 0.17382{2} | 0.22598{6} | 0.18545{4} | 0.20491{5} | |
ˆλ | 0.20606{2} | 0.26665{8} | 0.22231{5} | 0.26483{7} | 0.18095{1} | 0.21196{3} | 0.22040{4} | 0.22496{6} | ||
ˆδ | 0.00363{1} | 0.00746{7} | 0.00444{3} | 0.00723{6} | 0.00439{2} | 0.00928{8} | 0.00465{4} | 0.00640{5} | ||
500 | MSE | ˆβ | 0.02585{1} | 0.05800{7} | 0.03337{3} | 0.05820{8} | 0.03021{2} | 0.05107{6} | 0.03439{4} | 0.04199{5} |
ˆλ | 0.04246{2} | 0.07110{8} | 0.04942{5} | 0.07014{7} | 0.03274{1} | 0.04493{3} | 0.04858{4} | 0.05061{6} | ||
ˆδ | 0.12048{1} | 0.17273{7} | 0.13328{3} | 0.17003{6} | 0.13257{2} | 0.19270{8} | 0.13637{4} | 0.15997{5} | ||
MRE | ˆβ | 0.08039{1} | 0.12041{7} | 0.09133{3} | 0.12062{8} | 0.08691{2} | 0.11299{6} | 0.09272{4} | 0.10245{5} | |
ˆλ | 0.05887{2} | 0.07619{8} | 0.06352{5} | 0.07567{7} | 0.05170{1} | 0.06056{3} | 0.06297{4} | 0.06427{6} | ||
∑RANKS | 12.0{1} | 66.0{8} | 33.0{3} | 63.0{7} | 15.0{2} | 51.0{6} | 36.0{4} | 48.0{5} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 1.22185{4} | 1.30796{5} | 1.18799{3} | 1.33931{6} | 1.11412{1} | 1.45636{8} | 1.13362{2} | 1.36998{7} | ||
BIAS | ˆβ | 0.12675{1} | 0.17951{6} | 0.15149{4} | 0.18035{7} | 0.12973{3} | 0.19587{8} | 0.12793{2} | 0.16035{5} | |
ˆλ | 0.94495{3} | 1.13870{5} | 0.96082{4} | 1.15670{6} | 0.88794{1} | 1.49717{8} | 0.89346{2} | 1.21562{7} | ||
ˆδ | 1.49293{4} | 1.71077{5} | 1.41132{3} | 1.79374{6} | 1.24126{1} | 2.12099{8} | 1.28510{2} | 1.87684{7} | ||
20 | MSE | ˆβ | 0.01607{1} | 0.03223{6} | 0.02295{4} | 0.03253{7} | 0.01683{3} | 0.03837{8} | 0.01637{2} | 0.02571{5} |
ˆλ | 0.89294{3} | 1.29664{5} | 0.92317{4} | 1.33795{6} | 0.78844{1} | 2.24151{8} | 0.79826{2} | 1.47773{7} | ||
ˆδ | 0.81457{4} | 0.87198{5} | 0.79199{3} | 0.89287{6} | 0.74275{1} | 0.97091{8} | 0.75575{2} | 0.91332{7} | ||
MRE | ˆβ | 0.50700{1} | 0.71806{6} | 0.60596{4} | 0.72140{7} | 0.51892{3} | 0.78348{8} | 0.51172{2} | 0.64141{5} | |
ˆλ | 0.62997{3} | 0.75913{5} | 0.64055{4} | 0.77113{6} | 0.59196{1} | 0.99811{8} | 0.59564{2} | 0.81041{7} | ||
∑RANKS | 24.0{3} | 48.0{5} | 33.0{4} | 57.0{6.5} | 15.0{1} | 72.0{8} | 18.0{2} | 57.0{6.5} | ||
ˆδ | 0.79315{2} | 0.99146{5} | 0.84310{4} | 1.01743{7} | 0.72849{1} | 1.46287{8} | 0.80972{3} | 0.99359{6} | ||
BIAS | ˆβ | 0.07620{2} | 0.11078{6} | 0.08734{4} | 0.11296{7} | 0.06930{1} | 0.18453{8} | 0.07794{3} | 0.09839{5} | |
ˆλ | 0.54797{2} | 0.71063{6} | 0.57525{4} | 0.70987{5} | 0.50083{1} | 1.49746{8} | 0.55093{3} | 0.72034{7} | ||
ˆδ | 0.62908{2} | 0.98300{5} | 0.71082{4} | 1.03516{7} | 0.53070{1} | 2.13998{8} | 0.65565{3} | 0.98721{6} | ||
50 | MSE | ˆβ | 0.00581{2} | 0.01227{6} | 0.00763{4} | 0.01276{7} | 0.00480{1} | 0.03405{8} | 0.00607{3} | 0.00968{5} |
ˆλ | 0.30027{2} | 0.50499{6} | 0.33091{4} | 0.50392{5} | 0.25083{1} | 2.24238{8} | 0.30352{3} | 0.51889{7} | ||
ˆδ | 0.52876{2} | 0.66097{5} | 0.56207{4} | 0.67829{7} | 0.48566{1} | 0.97524{8} | 0.53982{3} | 0.66239{6} | ||
MRE | ˆβ | 0.30480{2} | 0.44310{6} | 0.34938{4} | 0.45185{7} | 0.27722{1} | 0.73812{8} | 0.31176{3} | 0.39356{5} | |
ˆλ | 0.36531{2} | 0.47375{6} | 0.38350{4} | 0.47325{5} | 0.33389{1} | 0.99831{8} | 0.36729{3} | 0.48022{7} | ||
∑RANKS | 18.0{2} | 51.0{5} | 36.0{4} | 57.0{7} | 9.0{1} | 72.0{8} | 27.0{3} | 54.0{6} | ||
ˆδ | 0.55352{2} | 0.79898{7} | 0.61847{4} | 0.79686{6} | 0.53296{1} | 1.46195{8} | 0.60399{3} | 0.77763{5} | ||
BIAS | ˆβ | 0.05036{2} | 0.07948{7} | 0.05744{4} | 0.07839{6} | 0.04670{1} | 0.18270{8} | 0.05485{3} | 0.06844{5} | |
ˆλ | 0.35861{2} | 0.51616{6} | 0.39537{4} | 0.52199{7} | 0.33928{1} | 1.49165{8} | 0.38740{3} | 0.51469{5} | ||
ˆδ | 0.30638{2} | 0.63837{7} | 0.38250{4} | 0.63499{6} | 0.28404{1} | 2.13729{8} | 0.36481{3} | 0.60470{5} | ||
100 | MSE | ˆβ | 0.00254{2} | 0.00632{7} | 0.00330{4} | 0.00615{6} | 0.00218{1} | 0.03338{8} | 0.00301{3} | 0.00468{5} |
ˆλ | 0.12860{2} | 0.26642{6} | 0.15632{4} | 0.27248{7} | 0.11511{1} | 2.22502{8} | 0.15008{3} | 0.26490{5} | ||
ˆδ | 0.36901{2} | 0.53266{7} | 0.41231{4} | 0.53124{6} | 0.35530{1} | 0.97463{8} | 0.40266{3} | 0.51842{5} | ||
MRE | ˆβ | 0.20143{2} | 0.31790{7} | 0.22975{4} | 0.31356{6} | 0.18681{1} | 0.73078{8} | 0.21941{3} | 0.27376{5} | |
ˆλ | 0.23907{2} | 0.34411{6} | 0.26358{4} | 0.34800{7} | 0.22619{1} | 0.99443{8} | 0.25827{3} | 0.34313{5} | ||
∑RANKS | 18.0{2} | 60.0{7} | 36.0{4} | 57.0{6} | 9.0{1} | 72.0{8} | 27.0{3} | 45.0{5} | ||
ˆδ | 0.29712{1} | 0.48781{7} | 0.35956{3} | 0.48497{6} | 0.30236{2} | 1.41996{8} | 0.36469{4} | 0.47766{5} | ||
BIAS | ˆβ | 0.02561{2} | 0.04395{7} | 0.03174{4} | 0.04365{6} | 0.02442{1} | 0.16410{8} | 0.03163{3} | 0.03873{5} | |
ˆλ | 0.18604{1} | 0.29854{6} | 0.22010{3} | 0.28985{5} | 0.18861{2} | 1.38022{8} | 0.22173{4} | 0.29943{7} | ||
ˆδ | 0.08828{1} | 0.23796{7} | 0.12929{3} | 0.23520{6} | 0.09142{2} | 2.01629{8} | 0.13300{4} | 0.22816{5} | ||
300 | MSE | ˆβ | 0.00066{2} | 0.00193{7} | 0.00101{4} | 0.00191{6} | 0.00060{1} | 0.02693{8} | 0.00100{3} | 0.00150{5} |
ˆλ | 0.03461{1} | 0.08912{6} | 0.04845{3} | 0.08401{5} | 0.03557{2} | 1.90500{8} | 0.04917{4} | 0.08966{7} | ||
ˆδ | 0.19808{1} | 0.32521{7} | 0.23971{3} | 0.32331{6} | 0.20157{2} | 0.94664{8} | 0.24313{4} | 0.31844{5} | ||
MRE | ˆβ | 0.10244{2} | 0.17578{7} | 0.12698{4} | 0.17461{6} | 0.09767{1} | 0.65638{8} | 0.12653{3} | 0.15491{5} | |
ˆλ | 0.12403{1} | 0.19902{6} | 0.14674{3} | 0.19323{5} | 0.12574{2} | 0.92015{8} | 0.14782{4} | 0.19962{7} | ||
∑RANKS | 12.0{1} | 60.0{7} | 30.0{3} | 51.0{5.5} | 15.0{2} | 72.0{8} | 33.0{4} | 51.0{5.5} | ||
ˆδ | 0.25086{2} | 0.38648{6} | 0.28600{3} | 0.38981{7} | 0.07680{1} | 1.39954{8} | 0.29130{4} | 0.36782{5} | ||
BIAS | ˆβ | 0.02112{2} | 0.03402{7} | 0.02419{3} | 0.03401{6} | 0.01531{1} | 0.15183{8} | 0.02464{4} | 0.02929{5} | |
ˆλ | 0.15715{2} | 0.22582{6} | 0.17344{3} | 0.22961{7} | 0.10142{1} | 1.32012{8} | 0.17784{4} | 0.22455{5} | ||
ˆδ | 0.06293{2} | 0.14937{6} | 0.08180{3} | 0.15195{7} | 0.00590{1} | 1.95872{8} | 0.08486{4} | 0.13529{5} | ||
500 | MSE | ˆβ | 0.00045{2} | 0.00116{6.5} | 0.00059{3} | 0.00116{6.5} | 0.00023{1} | 0.02305{8} | 0.00061{4} | 0.00086{5} |
ˆλ | 0.02470{2} | 0.05100{6} | 0.03008{3} | 0.05272{7} | 0.01029{1} | 1.74272{8} | 0.03163{4} | 0.05042{5} | ||
ˆδ | 0.16724{2} | 0.25766{6} | 0.19067{3} | 0.25987{7} | 0.05120{1} | 0.93303{8} | 0.19420{4} | 0.24521{5} | ||
MRE | ˆβ | 0.08448{2} | 0.13606{7} | 0.09677{3} | 0.13603{6} | 0.06123{1} | 0.60731{8} | 0.09858{4} | 0.11714{5} | |
ˆλ | 0.10477{2} | 0.15055{6} | 0.11562{3} | 0.15307{7} | 0.06761{1} | 0.88008{8} | 0.11856{4} | 0.14970{5} | ||
∑RANKS | 18.0{2} | 56.5{6} | 27.0{3} | 60.5{7} | 9.0{1} | 72.0{8} | 36.0{4} | 45.0{5} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 1.22894{4} | 1.28950{5} | 1.18086{3} | 1.33073{7} | 1.07161{1} | 1.46572{8} | 1.13889{2} | 1.32101{6} | ||
BIAS | ˆβ | 0.12828{2} | 0.17671{7} | 0.15224{4} | 0.17548{6} | 0.12637{1} | 0.25000{8} | 0.13350{3} | 0.15810{5} | |
ˆλ | 1.39638{4} | 1.74017{7} | 1.43119{5} | 1.95764{8} | 1.18946{1} | 1.36218{3} | 1.33183{2} | 1.70681{6} | ||
ˆδ | 1.51029{4} | 1.66282{5} | 1.39442{3} | 1.77085{7} | 1.14834{1} | 2.14833{8} | 1.29707{2} | 1.74507{6} | ||
20 | MSE | ˆβ | 0.01645{2} | 0.03123{7} | 0.02318{4} | 0.03079{6} | 0.01597{1} | 0.06250{8} | 0.01782{3} | 0.02500{5} |
ˆλ | 1.94988{4} | 3.02819{7} | 2.04831{5} | 3.83234{8} | 1.41481{1} | 1.85553{3} | 1.77378{2} | 2.91320{6} | ||
ˆδ | 0.81929{4} | 0.85967{5} | 0.78724{3} | 0.88716{7} | 0.71440{1} | 0.97715{8} | 0.75926{2} | 0.88067{6} | ||
MRE | ˆβ | 0.51311{2} | 0.70683{7} | 0.60895{4} | 0.70191{6} | 0.50547{1} | 1.00000{8} | 0.53399{3} | 0.63242{5} | |
ˆλ | 0.39897{4} | 0.49719{7} | 0.40891{5} | 0.55932{8} | 0.33985{1} | 0.38919{3} | 0.38052{2} | 0.48766{6} | ||
∑RANKS | 30.0{3} | 57.0{6.5} | 36.0{4} | 63.0{8} | 9.0{1} | 57.0{6.5} | 21.0{2} | 51.0{5} | ||
ˆδ | 0.77632{2} | 1.00262{6} | 0.83470{4} | 0.99986{5} | 0.74758{1} | 1.49055{8} | 0.80751{3} | 1.00385{7} | ||
BIAS | ˆβ | 0.07277{2} | 0.11010{6} | 0.08714{4} | 0.11377{7} | 0.06972{1} | 0.25000{8} | 0.07820{3} | 0.09997{5} | |
ˆλ | 0.64433{2} | 0.84802{5} | 0.70844{4} | 0.93484{7} | 0.61040{1} | 3.02012{8} | 0.67029{3} | 0.85822{6} | ||
ˆδ | 0.60268{2} | 1.00524{6} | 0.69673{4} | 0.99972{5} | 0.55887{1} | 2.22174{8} | 0.65208{3} | 1.00772{7} | ||
50 | MSE | ˆβ | 0.00530{2} | 0.01212{6} | 0.00759{4} | 0.01294{7} | 0.00486{1} | 0.06250{8} | 0.00612{3} | 0.00999{5} |
ˆλ | 0.41517{2} | 0.71914{5} | 0.50188{4} | 0.87393{7} | 0.37259{1} | 9.12110{8} | 0.44929{3} | 0.73654{6} | ||
ˆδ | 0.51755{2} | 0.66841{6} | 0.55647{4} | 0.66657{5} | 0.49838{1} | 0.99370{8} | 0.53834{3} | 0.66924{7} | ||
MRE | ˆβ | 0.29110{2} | 0.44040{6} | 0.34855{4} | 0.45506{7} | 0.27886{1} | 1.00000{8} | 0.31281{3} | 0.39987{5} | |
ˆλ | 0.18410{2} | 0.24229{5} | 0.20241{4} | 0.26710{7} | 0.17440{1} | 0.86289{8} | 0.19151{3} | 0.24521{6} | ||
∑RANKS | 18.0{2} | 51.0{5} | 36.0{4} | 57.0{7} | 9.0{1} | 72.0{8} | 27.0{3} | 54.0{6} | ||
ˆδ | 0.52877{2} | 0.75982{5} | 0.61324{4} | 0.79300{7} | 0.50211{1} | 1.49311{8} | 0.59239{3} | 0.76087{6} | ||
BIAS | ˆβ | 0.04745{2} | 0.07544{6} | 0.05512{4} | 0.07800{7} | 0.04411{1} | 0.24115{8} | 0.05318{3} | 0.06564{5} | |
ˆλ | 0.41302{2} | 0.54237{5} | 0.44237{4} | 0.55690{7} | 0.40469{1} | 3.40952{8} | 0.43465{3} | 0.54540{6} | ||
ˆδ | 0.27959{2} | 0.57732{5} | 0.37606{4} | 0.62885{7} | 0.25211{1} | 2.22937{8} | 0.35092{3} | 0.57892{6} | ||
100 | MSE | ˆβ | 0.00225{2} | 0.00569{6} | 0.00304{4} | 0.00608{7} | 0.00195{1} | 0.05816{8} | 0.00283{3} | 0.00431{5} |
ˆλ | 0.17058{2} | 0.29416{5} | 0.19569{4} | 0.31014{7} | 0.16378{1} | 11.62479{8} | 0.18892{3} | 0.29747{6} | ||
ˆδ | 0.35251{2} | 0.50654{5} | 0.40883{4} | 0.52867{7} | 0.33474{1} | 0.99540{8} | 0.39493{3} | 0.50724{6} | ||
MRE | ˆβ | 0.18979{2} | 0.30177{6} | 0.22048{4} | 0.31201{7} | 0.17643{1} | 0.96461{8} | 0.21274{3} | 0.26254{5} | |
ˆλ | 0.11800{2} | 0.15496{5} | 0.12639{4} | 0.15912{7} | 0.11563{1} | 0.97415{8} | 0.12419{3} | 0.15583{6} | ||
∑RANKS | 18.0{2} | 48.0{5} | 36.0{4} | 63.0{7} | 9.0{1} | 72.0{8} | 27.0{3} | 51.0{6} | ||
ˆδ | 0.30459{2} | 0.47883{6} | 0.34599{3} | 0.49318{7} | 0.26509{1} | 1.49412{8} | 0.36119{4} | 0.47006{5} | ||
BIAS | ˆβ | 0.02610{2} | 0.04267{6} | 0.03044{3} | 0.04300{7} | 0.02472{1} | 0.19207{8} | 0.03073{4} | 0.03788{5} | |
ˆλ | 0.22180{2} | 0.28352{5} | 0.23322{3} | 0.29399{6} | 0.21278{1} | 3.31702{8} | 0.24050{4} | 0.29989{7} | ||
ˆδ | 0.09277{2} | 0.22927{6} | 0.11971{3} | 0.24323{7} | 0.07027{1} | 2.23239{8} | 0.13046{4} | 0.22096{5} | ||
300 | MSE | ˆβ | 0.00068{2} | 0.00182{6} | 0.00093{3} | 0.00185{7} | 0.00061{1} | 0.03689{8} | 0.00094{4} | 0.00143{5} |
ˆλ | 0.04919{2} | 0.08038{5} | 0.05439{3} | 0.08643{6} | 0.04528{1} | 11.00263{8} | 0.05784{4} | 0.08994{7} | ||
ˆδ | 0.20306{2} | 0.31922{6} | 0.23066{3} | 0.32879{7} | 0.17673{1} | 0.99608{8} | 0.24079{4} | 0.31337{5} | ||
MRE | ˆβ | 0.10439{2} | 0.17067{6} | 0.12174{3} | 0.17200{7} | 0.09888{1} | 0.76827{8} | 0.12292{4} | 0.15151{5} | |
ˆλ | 0.06337{2} | 0.08101{5} | 0.06663{3} | 0.08400{6} | 0.06080{1} | 0.94772{8} | 0.06872{4} | 0.08568{7} | ||
∑RANKS | 18.0{2} | 51.0{5.5} | 27.0{3} | 60.0{7} | 9.0{1} | 72.0{8} | 36.0{4} | 51.0{5.5} | ||
ˆδ | 0.23897{2} | 0.38214{7} | 0.25570{3} | 0.37845{6} | 0.16914{1} | 1.48632{8} | 0.28414{4} | 0.37467{5} | ||
BIAS | ˆβ | 0.01978{2} | 0.03282{7} | 0.02240{3} | 0.03281{6} | 0.01819{1} | 0.18313{8} | 0.02426{4} | 0.03009{5} | |
ˆλ | 0.16576{2} | 0.21315{6} | 0.17902{3} | 0.20973{5} | 0.16236{1} | 3.09819{8} | 0.18473{4} | 0.23445{7} | ||
ˆδ | 0.05711{2} | 0.14603{7} | 0.06538{3} | 0.14322{6} | 0.02861{1} | 2.20913{8} | 0.08074{4} | 0.14037{5} | ||
500 | MSE | ˆβ | 0.00039{2} | 0.00108{6.5} | 0.00050{3} | 0.00108{6.5} | 0.00033{1} | 0.03354{8} | 0.00059{4} | 0.00091{5} |
ˆλ | 0.02748{2} | 0.04543{6} | 0.03205{3} | 0.04399{5} | 0.02636{1} | 9.59881{8} | 0.03413{4} | 0.05496{7} | ||
ˆδ | 0.15931{2} | 0.25476{7} | 0.17047{3} | 0.25230{6} | 0.11276{1} | 0.99088{8} | 0.18943{4} | 0.24978{5} | ||
MRE | ˆβ | 0.07914{2} | 0.13129{7} | 0.08961{3} | 0.13125{6} | 0.07275{1} | 0.73250{8} | 0.09705{4} | 0.12037{5} | |
ˆλ | 0.04736{2} | 0.06090{6} | 0.05115{3} | 0.05992{5} | 0.04639{1} | 0.88520{8} | 0.05278{4} | 0.06698{7} | ||
∑RANKS | 18.0{2} | 59.5{7} | 27.0{3} | 51.5{6} | 9.0{1} | 72.0{8} | 36.0{4} | 51.0{5} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 1.21790{4} | 1.30887{6} | 1.21865{5} | 1.34306{7} | 1.11438{1} | 1.21283{3} | 1.17647{2} | 1.35914{8} | ||
BIAS | ˆβ | 1.05826{2} | 1.39100{7} | 1.23608{5} | 1.44930{8} | 1.03052{1} | 1.18538{4} | 1.06741{3} | 1.27677{6} | |
ˆλ | 0.93963{2} | 1.12156{6} | 0.98145{4} | 1.15279{7} | 0.87281{1} | 1.02784{5} | 0.94055{3} | 1.17198{8} | ||
ˆδ | 1.48329{4} | 1.71313{6} | 1.48511{5} | 1.80380{7} | 1.24185{1} | 1.47095{3} | 1.38408{2} | 1.84725{8} | ||
20 | MSE | ˆβ | 1.11992{2} | 1.93489{7} | 1.52788{5} | 2.10047{8} | 1.06198{1} | 1.40512{4} | 1.13937{3} | 1.63014{6} |
ˆλ | 0.88290{2} | 1.25789{6} | 0.96325{4} | 1.32892{7} | 0.76181{1} | 1.05646{5} | 0.88463{3} | 1.37353{8} | ||
ˆδ | 0.81194{4} | 0.87258{6} | 0.81243{5} | 0.89537{7} | 0.74292{1} | 0.80855{3} | 0.78431{2} | 0.90609{8} | ||
MRE | ˆβ | 0.52913{2} | 0.69550{7} | 0.61804{5} | 0.72465{8} | 0.51526{1} | 0.59269{4} | 0.53371{3} | 0.63839{6} | |
ˆλ | 0.62642{2} | 0.74771{6} | 0.65430{4} | 0.76853{7} | 0.58188{1} | 0.68523{5} | 0.62703{3} | 0.78132{8} | ||
∑RANKS | 24.0{2.5} | 57.0{6} | 42.0{5} | 66.0{7.5} | 9.0{1} | 36.0{4} | 24.0{2.5} | 66.0{7.5} | ||
ˆδ | 0.79539{3} | 1.00353{6} | 0.85786{4} | 1.01445{7} | 0.75478{1} | 0.91041{5} | 0.79011{2} | 1.01556{8} | ||
BIAS | ˆβ | 0.59966{2} | 0.90678{7} | 0.70921{4} | 0.91942{8} | 0.56750{1} | 0.72809{5} | 0.62593{3} | 0.77242{6} | |
ˆλ | 0.53020{2} | 0.72106{6} | 0.59163{4} | 0.72648{7} | 0.52005{1} | 0.64409{5} | 0.54187{3} | 0.75003{8} | ||
ˆδ | 0.63265{3} | 1.00707{6} | 0.73592{4} | 1.02910{7} | 0.56970{1} | 0.82884{5} | 0.62427{2} | 1.03136{8} | ||
50 | MSE | ˆβ | 0.35960{2} | 0.82226{7} | 0.50298{4} | 0.84533{8} | 0.32206{1} | 0.53012{5} | 0.39178{3} | 0.59663{6} |
ˆλ | 0.28111{2} | 0.51992{6} | 0.35002{4} | 0.52777{7} | 0.27045{1} | 0.41485{5} | 0.29363{3} | 0.56255{8} | ||
ˆδ | 0.53026{3} | 0.66902{6} | 0.57190{4} | 0.67630{7} | 0.50319{1} | 0.60694{5} | 0.52674{2} | 0.67704{8} | ||
MRE | ˆβ | 0.29983{2} | 0.45339{7} | 0.35461{4} | 0.45971{8} | 0.28375{1} | 0.36405{5} | 0.31296{3} | 0.38621{6} | |
ˆλ | 0.35347{2} | 0.48070{6} | 0.39442{4} | 0.48432{7} | 0.34670{1} | 0.42939{5} | 0.36125{3} | 0.50002{8} | ||
∑RANKS | 21.0{2} | 57.0{6} | 36.0{4} | 66.0{7.5} | 9.0{1} | 45.0{5} | 24.0{3} | 66.0{7.5} | ||
ˆδ | 0.56242{2} | 0.77628{6} | 0.61241{4} | 0.80807{8} | 0.54109{1} | 0.68672{5} | 0.59950{3} | 0.77986{7} | ||
BIAS | ˆβ | 0.39983{2} | 0.61330{7} | 0.43840{4} | 0.63189{8} | 0.38098{1} | 0.49069{5} | 0.43820{3} | 0.56198{6} | |
ˆλ | 0.36312{2} | 0.49911{6} | 0.38759{4} | 0.52894{8} | 0.35611{1} | 0.45134{5} | 0.38358{3} | 0.52830{7} | ||
ˆδ | 0.31631{2} | 0.60261{6} | 0.37505{4} | 0.65298{8} | 0.29278{1} | 0.47158{5} | 0.35940{3} | 0.60819{7} | ||
100 | MSE | ˆβ | 0.15986{2} | 0.37613{7} | 0.19220{4} | 0.39929{8} | 0.14515{1} | 0.24078{5} | 0.19202{3} | 0.31582{6} |
ˆλ | 0.13185{2} | 0.24911{6} | 0.15023{4} | 0.27978{8} | 0.12682{1} | 0.20370{5} | 0.14714{3} | 0.27910{7} | ||
ˆδ | 0.37494{2} | 0.51752{6} | 0.40827{4} | 0.53871{8} | 0.36073{1} | 0.45781{5} | 0.39966{3} | 0.51991{7} | ||
MRE | ˆβ | 0.19991{2} | 0.30665{7} | 0.21920{4} | 0.31595{8} | 0.19049{1} | 0.24535{5} | 0.21910{3} | 0.28099{6} | |
ˆλ | 0.24208{2} | 0.33274{6} | 0.25839{4} | 0.35263{8} | 0.23741{1} | 0.30089{5} | 0.25572{3} | 0.35220{7} | ||
∑RANKS | 18.0{2} | 57.0{6} | 36.0{4} | 72.0{8} | 9.0{1} | 45.0{5} | 27.0{3} | 60.0{7} | ||
ˆδ | 0.32323{2} | 0.49569{8} | 0.36255{4} | 0.48956{7} | 0.30782{1} | 0.41508{5} | 0.35994{3} | 0.48713{6} | ||
BIAS | ˆβ | 0.22461{2} | 0.35416{7} | 0.25156{3} | 0.35426{8} | 0.19092{1} | 0.27075{5} | 0.25279{4} | 0.31981{6} | |
ˆλ | 0.20246{2} | 0.30157{7} | 0.21812{3} | 0.29793{6} | 0.17845{1} | 0.25460{5} | 0.22575{4} | 0.30237{8} | ||
ˆδ | 0.10448{2} | 0.24571{8} | 0.13144{4} | 0.23967{7} | 0.09475{1} | 0.17229{5} | 0.12955{3} | 0.23729{6} | ||
300 | MSE | ˆβ | 0.05045{2} | 0.12543{7} | 0.06328{3} | 0.12550{8} | 0.03645{1} | 0.07331{5} | 0.06390{4} | 0.10228{6} |
ˆλ | 0.04099{2} | 0.09095{7} | 0.04757{3} | 0.08876{6} | 0.03184{1} | 0.06482{5} | 0.05096{4} | 0.09143{8} | ||
ˆδ | 0.21549{2} | 0.33046{8} | 0.24170{4} | 0.32637{7} | 0.20521{1} | 0.27672{5} | 0.23996{3} | 0.32475{6} | ||
MRE | ˆβ | 0.11231{2} | 0.17708{7} | 0.12578{3} | 0.17713{8} | 0.09546{1} | 0.13538{5} | 0.12640{4} | 0.15991{6} | |
ˆλ | 0.13497{2} | 0.20105{7} | 0.14541{3} | 0.19862{6} | 0.11897{1} | 0.16974{5} | 0.15050{4} | 0.20158{8} | ||
∑RANKS | 18.0{2} | 66.0{8} | 30.0{3} | 63.0{7} | 9.0{1} | 45.0{5} | 33.0{4} | 60.0{6} | ||
ˆδ | 0.24699{2} | 0.39408{8} | 0.27937{3} | 0.38856{7} | 0.06292{1} | 0.32464{5} | 0.29210{4} | 0.36675{6} | ||
BIAS | ˆβ | 0.16520{2} | 0.27112{8} | 0.18661{3} | 0.26750{7} | 0.10938{1} | 0.20723{5} | 0.20130{4} | 0.23228{6} | |
ˆλ | 0.15305{2} | 0.23378{8} | 0.16744{3} | 0.22923{7} | 0.10184{1} | 0.20077{5} | 0.17960{4} | 0.22513{6} | ||
ˆδ | 0.06100{2} | 0.15530{8} | 0.07805{3} | 0.15098{7} | 0.00396{1} | 0.10539{5} | 0.08532{4} | 0.13450{6} | ||
500 | MSE | ˆβ | 0.02729{2} | 0.07350{8} | 0.03482{3} | 0.07155{7} | 0.01196{1} | 0.04295{5} | 0.04052{4} | 0.05395{6} |
ˆλ | 0.02343{2} | 0.05465{8} | 0.02804{3} | 0.05255{7} | 0.01037{1} | 0.04031{5} | 0.03226{4} | 0.05068{6} | ||
ˆδ | 0.16466{2} | 0.26272{8} | 0.18625{3} | 0.25904{7} | 0.04195{1} | 0.21643{5} | 0.19473{4} | 0.24450{6} | ||
MRE | ˆβ | 0.08260{2} | 0.13556{8} | 0.09331{3} | 0.13375{7} | 0.05469{1} | 0.10362{5} | 0.10065{4} | 0.11614{6} | |
ˆλ | 0.10203{2} | 0.15585{8} | 0.11163{3} | 0.15282{7} | 0.06789{1} | 0.13385{5} | 0.11973{4} | 0.15008{6} | ||
∑RANKS | 18.0{2} | 72.0{8} | 27.0{3} | 63.0{7} | 9.0{1} | 45.0{5} | 36.0{4} | 54.0{6} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 1.23462{5} | 1.31283{7} | 1.20528{3} | 1.31253{6} | 1.10360{1} | 1.22863{4} | 1.14760{2} | 1.36649{8} | ||
BIAS | ˆβ | 1.05009{3} | 1.40142{7} | 1.24705{5} | 1.42459{8} | 1.02087{1} | 1.20712{4} | 1.04620{2} | 1.28075{6} | |
ˆλ | 1.50774{5} | 1.68716{6} | 1.45155{4} | 2.02470{8} | 1.20515{1} | 1.41364{3} | 1.31014{2} | 1.72834{7} | ||
ˆδ | 1.52429{5} | 1.72353{7} | 1.45270{3} | 1.72274{6} | 1.21793{1} | 1.50952{4} | 1.31698{2} | 1.86730{8} | ||
20 | MSE | ˆβ | 1.10269{3} | 1.96399{7} | 1.55514{5} | 2.02944{8} | 1.04218{1} | 1.45713{4} | 1.09454{2} | 1.64033{6} |
ˆλ | 2.27328{5} | 2.84649{6} | 2.10700{4} | 4.09940{8} | 1.45239{1} | 1.99839{3} | 1.71647{2} | 2.98715{7} | ||
ˆδ | 0.82308{5} | 0.87522{7} | 0.80352{3} | 0.87502{6} | 0.73573{1} | 0.81908{4} | 0.76507{2} | 0.91099{8} | ||
MRE | ˆβ | 0.52504{3} | 0.70071{7} | 0.62353{5} | 0.71229{8} | 0.51044{1} | 0.60356{4} | 0.52310{2} | 0.64038{6} | |
ˆλ | 0.43078{5} | 0.48204{6} | 0.41473{4} | 0.57848{8} | 0.34433{1} | 0.40390{3} | 0.37433{2} | 0.49381{7} | ||
∑RANKS | 39.0{5} | 60.0{6} | 36.0{4} | 66.0{8} | 9.0{1} | 33.0{3} | 18.0{2} | 63.0{7} | ||
ˆδ | 0.80023{2} | 0.99949{7} | 0.86165{4} | 1.00938{8} | 0.75322{1} | 0.92477{5} | 0.80210{3} | 0.97979{6} | ||
BIAS | ˆβ | 0.60978{2} | 0.90738{8} | 0.71608{4} | 0.89419{7} | 0.56524{1} | 0.73706{5} | 0.62063{3} | 0.75250{6} | |
ˆλ | 0.68845{3} | 0.85525{7} | 0.71642{4} | 0.92531{8} | 0.62309{1} | 0.72238{5} | 0.66644{2} | 0.85091{6} | ||
ˆδ | 0.64037{2} | 0.99899{7} | 0.74245{4} | 1.01885{8} | 0.56734{1} | 0.85521{5} | 0.64336{3} | 0.95999{6} | ||
50 | MSE | ˆβ | 0.37183{2} | 0.82334{8} | 0.51277{4} | 0.79957{7} | 0.31950{1} | 0.54325{5} | 0.38519{3} | 0.56626{6} |
ˆλ | 0.47397{3} | 0.73146{7} | 0.51326{4} | 0.85620{8} | 0.38824{1} | 0.52183{5} | 0.44414{2} | 0.72404{6} | ||
ˆδ | 0.53349{2} | 0.66633{7} | 0.57444{4} | 0.67292{8} | 0.50215{1} | 0.61652{5} | 0.53473{3} | 0.65319{6} | ||
MRE | ˆβ | 0.30489{2} | 0.45369{8} | 0.35804{4} | 0.44709{7} | 0.28262{1} | 0.36853{5} | 0.31032{3} | 0.37625{6} | |
ˆλ | 0.19670{3} | 0.24436{7} | 0.20469{4} | 0.26437{8} | 0.17803{1} | 0.20639{5} | 0.19041{2} | 0.24312{6} | ||
∑RANKS | 21.0{2} | 66.0{7} | 36.0{4} | 69.0{8} | 9.0{1} | 45.0{5} | 24.0{3} | 54.0{6} | ||
ˆδ | 0.55451{2} | 0.78491{8} | 0.64174{4} | 0.77990{6} | 0.53134{1} | 0.70296{5} | 0.62483{3} | 0.78258{7} | ||
BIAS | ˆβ | 0.39869{2} | 0.61053{7} | 0.46633{4} | 0.61217{8} | 0.37452{1} | 0.50410{5} | 0.46542{3} | 0.55297{6} | |
ˆλ | 0.42451{2} | 0.53326{6} | 0.45485{3} | 0.57349{8} | 0.40630{1} | 0.49665{5} | 0.45643{4} | 0.56196{7} | ||
ˆδ | 0.30748{2} | 0.61608{8} | 0.41183{4} | 0.60824{6} | 0.28232{1} | 0.49416{5} | 0.39041{3} | 0.61243{7} | ||
100 | MSE | ˆβ | 0.15895{2} | 0.37274{7} | 0.21747{4} | 0.37475{8} | 0.14027{1} | 0.25412{5} | 0.21662{3} | 0.30578{6} |
ˆλ | 0.18021{2} | 0.28437{6} | 0.20689{3} | 0.32889{8} | 0.16508{1} | 0.24667{5} | 0.20833{4} | 0.31580{7} | ||
ˆδ | 0.36967{2} | 0.52327{8} | 0.42783{4} | 0.51993{6} | 0.35423{1} | 0.46864{5} | 0.41655{3} | 0.52172{7} | ||
MRE | ˆβ | 0.19934{2} | 0.30526{7} | 0.23317{4} | 0.30608{8} | 0.18726{1} | 0.25205{5} | 0.23271{3} | 0.27649{6} | |
ˆλ | 0.12129{2} | 0.15236{6} | 0.12996{3} | 0.16385{8} | 0.11609{1} | 0.14190{5} | 0.13041{4} | 0.16056{7} | ||
∑RANKS | 18.0{2} | 63.0{7} | 33.0{4} | 66.0{8} | 9.0{1} | 45.0{5} | 30.0{3} | 60.0{6} | ||
ˆδ | 0.31588{2} | 0.49339{7} | 0.36347{3} | 0.49549{8} | 0.30500{1} | 0.41165{5} | 0.38186{4} | 0.48256{6} | ||
BIAS | ˆβ | 0.21678{2} | 0.35354{8} | 0.25102{3} | 0.35267{7} | 0.19375{1} | 0.26734{5} | 0.26120{4} | 0.31289{6} | |
ˆλ | 0.21739{1} | 0.29760{7} | 0.23903{3} | 0.29268{6} | 0.22287{2} | 0.26049{5} | 0.24469{4} | 0.31120{8} | ||
ˆδ | 0.09978{2} | 0.24344{7} | 0.13211{3} | 0.24551{8} | 0.09302{1} | 0.16946{5} | 0.14581{4} | 0.23287{6} | ||
300 | MSE | ˆβ | 0.04700{2} | 0.12499{8} | 0.06301{3} | 0.12438{7} | 0.03754{1} | 0.07147{5} | 0.06823{4} | 0.09790{6} |
ˆλ | 0.04726{1} | 0.08857{7} | 0.05713{3} | 0.08566{6} | 0.04967{2} | 0.06786{5} | 0.05987{4} | 0.09684{8} | ||
ˆδ | 0.21059{2} | 0.32893{7} | 0.24231{3} | 0.33033{8} | 0.20333{1} | 0.27443{5} | 0.25457{4} | 0.32171{6} | ||
MRE | ˆβ | 0.10839{2} | 0.17677{8} | 0.12551{3} | 0.17633{7} | 0.09688{1} | 0.13367{5} | 0.13060{4} | 0.15645{6} | |
ˆλ | 0.06211{1} | 0.08503{7} | 0.06829{3} | 0.08362{6} | 0.06368{2} | 0.07443{5} | 0.06991{4} | 0.08891{8} | ||
∑RANKS | 15.0{2} | 66.0{8} | 27.0{3} | 63.0{7} | 12.0{1} | 45.0{5} | 36.0{4} | 60.0{6} | ||
ˆδ | 0.24597{2} | 0.38259{7} | 0.28932{3} | 0.38364{8} | 0.11464{1} | 0.32482{5} | 0.29036{4} | 0.37746{6} | ||
BIAS | ˆβ | 0.16657{2} | 0.26821{7} | 0.19443{3} | 0.26895{8} | 0.12803{1} | 0.21010{5} | 0.19701{4} | 0.24031{6} | |
ˆλ | 0.16887{1} | 0.21270{6} | 0.18628{4} | 0.22333{7} | 0.17062{2} | 0.20334{5} | 0.18523{3} | 0.22863{8} | ||
ˆδ | 0.06050{2} | 0.14637{7} | 0.08371{3} | 0.14718{8} | 0.01314{1} | 0.10551{5} | 0.08431{4} | 0.14247{6} | ||
500 | MSE | ˆβ | 0.02775{2} | 0.07194{7} | 0.03780{3} | 0.07233{8} | 0.01639{1} | 0.04414{5} | 0.03881{4} | 0.05775{6} |
ˆλ | 0.02852{1} | 0.04524{6} | 0.03470{4} | 0.04988{7} | 0.02911{2} | 0.04135{5} | 0.03431{3} | 0.05227{8} | ||
ˆδ | 0.16398{2} | 0.25506{7} | 0.19288{3} | 0.25576{8} | 0.07643{1} | 0.21655{5} | 0.19357{4} | 0.25164{6} | ||
MRE | ˆβ | 0.08329{2} | 0.13411{7} | 0.09722{3} | 0.13448{8} | 0.06401{1} | 0.10505{5} | 0.09851{4} | 0.12015{6} | |
ˆλ | 0.04825{1} | 0.06077{6} | 0.05322{4} | 0.06381{7} | 0.04875{2} | 0.05810{5} | 0.05292{3} | 0.06532{8} | ||
∑RANKS | 15.0{2} | 60.0{6.5} | 30.0{3} | 69.0{8} | 12.0{1} | 45.0{5} | 33.0{4} | 60.0{6.5} |
ηT | n | MLE | OLSE | WLSE | CRVME | MPS | PCE | ADE | RADE |
(δ=0.5,β=0.25,λ=1.5) | 20 | 4 | 8 | 2.5 | 7 | 2.5 | 6 | 1 | 5 |
50 | 2.5 | 6 | 2.5 | 5 | 1 | 8 | 4 | 7 | |
100 | 3 | 6.5 | 2 | 6.5 | 1 | 8 | 4 | 5 | |
300 | 2 | 6 | 3 | 7 | 1 | 8 | 4 | 5 | |
500 | 2 | 5 | 3 | 7 | 1 | 8 | 4 | 6 | |
(δ=0.5,β=0.25,λ=3.5) | 20 | 3.5 | 5 | 3.5 | 8 | 1 | 6 | 2 | 7 |
50 | 5 | 6 | 3 | 7 | 1 | 8 | 2 | 4 | |
100 | 5 | 7 | 2 | 6 | 1 | 8 | 3 | 4 | |
300 | 5 | 6 | 2 | 7 | 1 | 8 | 3 | 4 | |
500 | 5 | 6 | 2 | 7 | 1 | 8 | 3 | 4 | |
(δ=0.5,β=2,λ=1.5) | 20 | 4 | 5 | 3 | 8 | 2 | 6.5 | 1 | 6.5 |
50 | 4 | 6 | 3 | 7.5 | 1 | 7.5 | 2 | 5 | |
100 | 2 | 6 | 3.5 | 7 | 1 | 8 | 3.5 | 5 | |
300 | 2 | 6 | 3 | 7 | 1 | 8 | 4 | 5 | |
500 | 2 | 6 | 3 | 7 | 1 | 8 | 4 | 5 | |
(δ=0.5,β=2,λ=3.5) | 20 | 4 | 5 | 3 | 8 | 1 | 6.5 | 2 | 6.5 |
50 | 3 | 7 | 4 | 8 | 1 | 6 | 2 | 5 | |
100 | 2 | 7 | 4 | 8 | 1 | 6 | 3 | 5 | |
300 | 1 | 7 | 3 | 8 | 2 | 6 | 4 | 5 | |
500 | 1 | 8 | 3 | 7 | 2 | 6 | 4 | 5 | |
(δ=1.5,β=0.25,λ=1.5) | 20 | 3 | 5 | 4 | 6.5 | 1 | 8 | 2 | 6.5 |
50 | 2 | 5 | 4 | 7 | 1 | 8 | 3 | 6 | |
100 | 2 | 7 | 4 | 6 | 1 | 8 | 3 | 5 | |
300 | 1 | 7 | 3 | 5.5 | 2 | 8 | 4 | 5.5 | |
500 | 2 | 6 | 3 | 7 | 1 | 8 | 4 | 5 | |
(δ=1.5,β=0.25,λ=3.5) | 20 | 3 | 6.5 | 4 | 8 | 1 | 6.5 | 2 | 5 |
50 | 2 | 5 | 4 | 7 | 1 | 8 | 3 | 6 | |
100 | 2 | 5 | 4 | 7 | 1 | 8 | 3 | 6 | |
300 | 2 | 5.5 | 3 | 7 | 1 | 8 | 4 | 5.5 | |
500 | 2 | 7 | 3 | 6 | 1 | 8 | 4 | 5 | |
(δ=1.5,β=2,λ=1.5) | 20 | 2.5 | 6 | 5 | 7.5 | 1 | 4 | 2.5 | 7.5 |
50 | 2 | 6 | 4 | 7.5 | 1 | 5 | 3 | 7.5 | |
100 | 2 | 6 | 4 | 8 | 1 | 5 | 3 | 7 | |
300 | 2 | 8 | 3 | 7 | 1 | 5 | 4 | 6 | |
500 | 2 | 8 | 3 | 7 | 1 | 5 | 4 | 6 | |
(δ=1.5,β=2,λ=3.5) | 20 | 5 | 6 | 4 | 8 | 1 | 3 | 2 | 7 |
50 | 2 | 7 | 4 | 8 | 1 | 5 | 3 | 6 | |
100 | 2 | 7 | 4 | 8 | 1 | 5 | 3 | 6 | |
300 | 2 | 8 | 3 | 7 | 1 | 5 | 4 | 6 | |
500 | 2 | 6.5 | 3 | 8 | 1 | 5 | 4 | 6.5 | |
∑Ranks | 106.5 | 252 | 131 | 286 | 45.5 | 270 | 124 | 225 | |
Overall Rank | 2 | 6 | 4 | 8 | 1 | 7 | 3 | 5 |
Distribution | Abbreviation | Author |
Modified beta Weibull | MBW | Khan [7] |
Beta Weibull | BW | Lee and Famoye [1] |
Odd log-logistic exponentiated Weibull | OLLEW | Afify et al. [11] |
Exponentiated generalized Weibull | EGW | Cordeiro et al. [5] |
Lindley Weibull | LiW | Cordeiro et al. [12] |
Exponentiated Weibull | EW | Mudholkar and Srivastava [13] |
Transmuted Weibull | TW | Aryal and Tsokos [4] |
Distribution | ML estimates and SE | ||||
GKMW | ˆδ= 45.2721 | ˆβ= 1.5646 | ˆλ= 0.6627 | ||
(108.9500) | (0.9374) | (1.1158) | |||
MBW | ˆδ= 0.1328 | ˆβ= 0.5224 | ˆa= 236.8925 | ˆb= 3.9570 | ˆc= 0.4084 |
(0.2897) | (0.3417) | (1389.4352) | (7.5948) | (2.4858) | |
BW | ˆδ=1.5535 | ˆβ= 0.9162 | ˆa= 102.4980 | ˆb= 2.0925 | |
(5.6168) | (2.0369) | (517.5903) | (8.0543) | ||
OLLEW | ˆδ= 69.5586 | ˆβ=3.4425 | ˆγ= 0.0641 | ˆθ= 19.5547 | |
(306.6782) | (6.6654) | (0.0384) | (27.8608) | ||
EGW | ˆδ= 3.7852 | ˆa= 5.6583 | ˆb= 37.1571 | ˆc= 1.4540 | |
(181.1960) | (393.8165) | (79.3795) | (0.7599) | ||
LiW | ˆδ= 0.1238 | ˆβ= 5.0487 | ˆθ= 90.5958 | ||
(0.5147) | (0.4560) | (1882.5304) | |||
EW | ˆδ= 0.8180 | ˆβ= 1.4532 | ˆθ= 37.2311 | ||
(1.1200) | (0.7583) | (79.4533) | |||
TW | ˆδ= 3.6164 | ˆβ= 5.4807 | ˆλ=0.7453 | ||
(0.1515) | (0.5021) | (0.2633) |
Distribution | ML estimates and SE | ||||
GKMW | ˆδ= 0.4582 | ˆβ= 1.3987 | ˆλ= 0.0184 | ||
(0.1995) | (0.4033) | (0.0272) | |||
MBW | ˆδ=4.3285 | ˆβ=0.3702 | ˆa= 1.6702 | ˆb= 22.2114 | ˆc=0.0342 |
(54.3129) | (0.6122) | (1.1828) | (265.3049) | (0.1894) | |
BW | ˆδ= 0.0252 | ˆβ=1.663 | ˆa=0.5592 | ˆb= 3.5694 | |
(0.0813) | (0.4550) | (0.3169) | (12.7630) | ||
OLLEW | ˆδ= 72.9308 | ˆβ= 3.2596 | ˆγ= 0.0769 | ˆθ= 2.2419 | |
(0.3032) | (0.2568) | (0.0084) | (0.2703) | ||
EGW | ˆδ= 2.0863 | ˆa= 0.1545 | ˆb= 0.5983 | ˆc=1.1009 | |
(37.6697) | (3.0671) | (0.3183) | (0.3915) | ||
LiW | ˆδ= 0.2790 | ˆβ= 0.7193 | ˆθ= 0.9699 | ||
(0.7219) | (0.1332) | (1.4562) | |||
EW | ˆδ=0.0687 | ˆβ= 1.1011 | ˆθ= 0.5982 | ||
(0.0978) | (0.3874) | (0.3150) | |||
TW | ˆδ= 6.9739 | ˆβ= 0.8004 | ˆλ= 0.0010 | ||
(5.0869) | (0.1739) | (0.9657) |
Distribution | ML estimates and SE | ||||
GKMW | ˆδ= 0.4596 | ˆβ= 2.1497 | ˆλ= 0.0055 | ||
(0.0924) | (0.2449) | (0.0038) | |||
MBW | ˆδ= 22.8768 | ˆβ= 1.3294 | ˆa= 0.7716 | ˆb= 26.1991 | ˆc=0.1360 |
(52.4569) | (2.0900) | (1.3573) | (169.7519) | (0.9503) | |
BW | ˆδ=0.0948 | ˆβ=1.7636 | ˆa=0.5664 | ˆb= 1.3142 | |
(0.2660) | (0.7832) | (0.3403) | (5.5844) | ||
OLLEW | ˆδ=20.1065 | ˆβ= 5.3078 | ˆγ= 0.0921 | ˆθ=1.6927 | |
(0.3340) | (0.2855) | (0.0099) | (0.1816) | ||
EGW | ˆδ= 2.3954 | ˆa= 0.1067 | ˆb= 0.5795 | ˆc=1.7274 | |
(16.6021) | (1.2706) | (0.3050) | (0.6189) | ||
LiW | ˆδ= 0.2309 | ˆβ=1.1040 | ˆθ= 1.0343 | ||
(0.4284) | (0.2085) | (1.7142) | |||
EW | ˆδ= 0.0237 | ˆβ= 1.7264 | ˆθ=0.5797 | ||
(0.0359) | (0.5159) | (0.2574) | |||
TW | ˆδ= 6.2398 | ˆβ= 1.2250 | ˆλ=0.0010 | ||
(2.4596) | (0.2312) | (0.7996) |
Distribution | AIC | CAIC | BIC | HQIC | W∗ | A∗ | −L | KS | p−value |
GKMW | 118.5520 | 118.9588 | 124.9814 | 121.0807 | 0.0601 | 0.3216 | 56.2760 | 0.0795 | 0.821305 |
MBW | 122.6182 | 123.6708 | 133.3338 | 126.8327 | 0.0615 | 0.3272 | 56.3091 | 0.0800 | 0.815108 |
BW | 120.6346 | 121.3242 | 129.2071 | 124.0062 | 0.0612 | 0.3268 | 56.3173 | 0.0796 | 0.820005 |
OLLEW | 123.9248 | 124.6144 | 132.4973 | 127.2964 | 0.0866 | 0.5041 | 57.9624 | 0.0916 | 0.665628 |
EGW | 120.6216 | 121.3112 | 129.1941 | 123.9932 | 0.0619 | 0.3287 | 56.3108 | 0.0813 | 0.799515 |
LiW | 129.9178 | 130.3246 | 136.3472 | 132.4465 | 0.1285 | 0.8922 | 61.9589 | 0.0876 | 0.718911 |
EW | 118.6216 | 119.0284 | 125.0510 | 121.1503 | 0.0619 | 0.3288 | 56.3108 | 0.0813 | 0.799320 |
TW | 127.1226 | 127.5294 | 133.5520 | 129.6513 | 0.1100 | 0.7623 | 60.5613 | 0.0835 | 0.772281 |
Distribution | AIC | CAIC | BIC | HQIC | W∗ | A∗ | −L | KS | p−value |
GKMW | 306.4025 | 306.9242 | 312.1386 | 308.5868 | 0.0575 | 0.2948 | 150.2012 | 0.0934 | 0.775179 |
MBW | 310.5294 | 311.8931 | 320.0895 | 314.1700 | 0.0582 | 0.2974 | 150.2647 | 0.0948 | 0.759432 |
BW | 308.4788 | 309.3677 | 316.1269 | 311.3913 | 0.0587 | 0.2990 | 150.2394 | 0.0957 | 0.750141 |
OLLEW | 309.0636 | 309.9525 | 316.7117 | 311.9760 | 0.0757 | 0.3810 | 150.5318 | 0.0999 | 0.700003 |
EGW | 308.5187 | 309.4076 | 316.1668 | 311.4311 | 0.0599 | 0.3044 | 150.2593 | 0.0965 | 0.740273 |
LiW | 306.7964 | 307.3181 | 312.5325 | 308.9807 | 0.0709 | 0.3539 | 150.3982 | 0.1018 | 0.677787 |
EW | 306.5187 | 307.0404 | 312.2548 | 308.7030 | 0.0599 | 0.3044 | 150.2593 | 0.0965 | 0.740475 |
TW | 307.3553 | 307.8771 | 313.0914 | 309.5396 | 0.0857 | 0.4275 | 150.6777 | 0.1119 | 0.558858 |
Distribution | AIC | CAIC | BIC | HQIC | W∗ | A∗ | −L | KS | p−value |
GKMW | 377.1478 | 377.5228 | 383.8063 | 379.7861 | 0.0385 | 0.2474 | 185.5739 | 0.0804 | 0.771339 |
MBW | 381.2396 | 382.2073 | 392.3371 | 385.6368 | 0.0420 | 0.2673 | 185.6198 | 0.0843 | 0.719002 |
BW | 379.3222 | 379.9571 | 388.2002 | 382.8399 | 0.0398 | 0.2547 | 185.6611 | 0.0818 | 0.753500 |
OLLEW | 379.0712 | 379.7061 | 387.9492 | 382.5890 | 0.0421 | 0.2739 | 185.5356 | 0.0807 | 0.767901 |
EGW | 379.3276 | 379.9625 | 388.2057 | 382.8454 | 0.0399 | 0.2553 | 185.6638 | 0.0820 | 0.751070 |
LiW | 377.8265 | 378.2015 | 384.4850 | 380.4648 | 0.0402 | 0.2658 | 185.9133 | 0.0820 | 0.749931 |
EW | 377.3276 | 377.7026 | 383.9862 | 379.9659 | 0.0399 | 0.2553 | 185.6638 | 0.0821 | 0.749379 |
TW | 378.3411 | 378.7161 | 384.9997 | 380.9794 | 0.0487 | 0.3192 | 186.1706 | 0.0887 | 0.659154 |
Gauge lengths dataset | |||||||||
1.901 | 2.132 | 2.203 | 2.228 | 2.257 | 2.350 | 2.361 | 2.396 | 2.397 | 2.445 |
2.454 | 2.474 | 2.518 | 2.522 | 2.525 | 2.532 | 2.575 | 2.614 | 2.616 | 2.618 |
2.624 | 2.659 | 2.675 | 2.738 | 2.740 | 2.856 | 2.917 | 2.928 | 2.937 | 2.937 |
2.996 | 3.125 | 2.977 | 3.030 | 3.139 | 3.145 | 3.220 | 3.223 | 3.235 | 3.243 |
3.264 | 3.272 | 3.294 | 3.332 | 3.346 | 3.377 | 3.408 | 3.435 | 3.493 | 3.501 |
3.537 | 3.554 | 3.562 | 3.628 | 3.852 | 3.871 | 3.886 | 3.971 | 4.024 | 4.027 |
4.225 | 4.395 | 5.020 | |||||||
Failure times dataset | |||||||||
0.013 | 0.065 | 0.111 | 0.111 | 0.163 | 0.309 | 0.426 | 0.535 | 0.684 | 0.747 |
0.997 | 1.284 | 1.304 | 1.647 | 1.829 | 2.336 | 2.838 | 3.269 | 3.977 | 3.981 |
4.520 | 4.789 | 4.849 | 5.202 | 5.291 | 5.349 | 5.911 | 6.018 | 6.427 | 6.456 |
6.572 | 7.023 | 7.087 | 7.291 | 7.787 | 8.596 | 9.388 | 10.261 | 10.713 | 11.658 |
13.006 | 13.388 | 13.842 | 17.152 | 17.283 | 19.418 | 23.471 | 24.777 | 32.795 | 48.105 |
Distance dataset | |||||||||
2.0 | 0.5 | 10.4 | 3.6 | 0.9 | 1.0 | 3.4 | 2.9 | 8.2 | 6.5 |
5.7 | 3.0 | 4.0 | 0.1 | 11.8 | 14.2 | 2.4 | 1.6 | 13.3 | 6.5 |
8.3 | 4.9 | 1.5 | 18.6 | 0.4 | 0.4 | 0.2 | 11.6 | 3.2 | 7.1 |
10.7 | 3.9 | 6.1 | 6.4 | 3.8 | 15.2 | 3.5 | 3.1 | 7.9 | 18.2 |
10.1 | 4.4 | 1.3 | 13.7 | 6.3 | 3.6 | 9.0 | 7.7 | 4.9 | 9.1 |
3.3 | 8.5 | 6.1 | 0.4 | 9.3 | 0.5 | 1.2 | 1.7 | 4.5 | 3.1 |
3.1 | 6.6 | 4.4 | 5.0 | 3.2 | 7.7 | 18.2 | 4.1 |
λ | δ | β | M | Summation | NI |
0.5 | 2 | 0.5 | 10 | 9.56790 | |
20 | 9.56325 | 9.56325 | |||
50 | 9.56325 | ||||
1.5 | 10 | 1.65060 | |||
20 | 1.65025 | 1.65025 | |||
50 | 1.65025 | ||||
4 | 0.5 | 10 | 33.26973 | ||
20 | 16.24027 | 16.24025 | |||
50 | 16.24025 | ||||
1.5 | 10 | 3.46152 | |||
20 | 2.15191 | 2.15191 | |||
50 | 2.15191 | ||||
0.9 | 2 | 0.5 | 10 | 2.95306 | |
20 | 2.95162 | 2.95162 | |||
50 | 2.95162 | ||||
1.5 | 10 | 1.11548 | |||
20 | 1.11524 | 1.11524 | |||
50 | 1.11524 | ||||
4 | 0.5 | 10 | 10.26843 | ||
20 | 5.01243 | 5.01242 | |||
50 | 5.01242 | ||||
1.5 | 10 | 2.33929 | |||
20 | 1.45426 | 1.45426 | |||
50 | 1.45426 | ||||
1.5 | 2 | 0.5 | 10 | 1.06310 | |
20 | 1.06258 | 1.06258 | |||
50 | 1.06258 | ||||
1.5 | 10 | 0.79353 | |||
20 | 0.79336 | 0.79336 | |||
50 | 0.79336 | ||||
4 | 0.5 | 10 | 3.69664 | ||
20 | 1.80447 | 1.80447 | |||
50 | 1.80447 | ||||
1.5 | 10 | 1.66412 | |||
20 | 1.03453 | 1.03453 | |||
50 | 1.03453 |
δ | β | μx | σ2x | ψ1 | ψ2 |
0.5 | 0.5 | 0.7139 | 6.7945 | 11.1133 | 242.1702 |
1.5 | 0.4887 | 0.2526 | 1.7860 | 7.1495 | |
2.8 | 0.5958 | 0.1257 | 0.6322 | 3.0474 | |
3.5 | 0.6409 | 0.0996 | 0.3478 | 2.6707 | |
5 | 0.7117 | 0.0670 | -0.0309 | 2.5560 | |
0.75 | 0.5 | 1.0338 | 9.8213 | 9.2802 | 169.9559 |
1.5 | 0.6313 | 0.2893 | 1.5059 | 5.9591 | |
2.8 | 0.7128 | 0.1182 | 0.4924 | 2.9654 | |
3.5 | 0.7478 | 0.0874 | 0.2419 | 2.7303 | |
5 | 0.8014 | 0.0530 | -0.0874 | 2.7295 | |
1.5 | 0.5 | 1.8882 | 17.8440 | 6.9544 | 97.0234 |
1.5 | 0.9131 | 0.3298 | 1.1791 | 4.8586 | |
2.8 | 0.9067 | 0.0981 | 0.3788 | 2.9892 | |
3.5 | 0.9156 | 0.0655 | 0.1865 | 2.8588 | |
5 | 0.9321 | 0.0345 | -0.0571 | 2.8753 | |
2 | 0.5 | 2.3908 | 22.5235 | 6.2248 | 78.4523 |
1.5 | 1.0396 | 0.3379 | 1.0866 | 4.6063 | |
2.8 | 0.9823 | 0.0893 | 0.3625 | 3.0139 | |
3.5 | 0.9784 | 0.0577 | 0.1912 | 2.8969 | |
5 | 0.9785 | 0.0290 | -0.0225 | 2.8929 | |
5 | 0.5 | 4.7553 | 44.1219 | 4.5572 | 43.7214 |
1.5 | 1.4588 | 0.3369 | 0.9032 | 4.2015 | |
2.8 | 1.2009 | 0.0652 | 0.3653 | 3.1052 | |
3.5 | 1.1536 | 0.0386 | 0.2431 | 2.9961 | |
5 | 1.1018 | 0.0174 | 0.0954 | 2.9332 |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 0.44805{4} | 0.46606{5} | 0.40387{3} | 0.47616{6} | 0.39067{2} | 2.44726{8} | 0.37975{1} | 0.48266{7} | ||
BIAS | ˆβ | 0.14364{5} | 0.15331{7} | 0.13623{4} | 0.14834{6} | 0.13404{3} | 0.65763{8} | 0.13143{1} | 0.13160{2} | |
ˆλ | 0.66572{4} | 0.66928{8} | 0.66508{3} | 0.66627{6} | 0.66622{5} | 0.64430{1} | 0.64661{2} | 0.66871{7} | ||
ˆδ | 0.20075{4} | 0.21722{5} | 0.16311{3} | 0.22673{6} | 0.15262{2} | 5.98910{8} | 0.14421{1} | 0.23296{7} | ||
20 | MSE | ˆβ | 0.02063{5} | 0.02350{7} | 0.01856{4} | 0.02200{6} | 0.01797{3} | 0.43248{8} | 0.01727{1} | 0.01732{2} |
ˆλ | 0.44319{4} | 0.44793{8} | 0.44233{3} | 0.44392{6} | 0.44384{5} | 0.41513{1} | 0.41811{2} | 0.44717{7} | ||
ˆδ | 0.59740{4} | 0.62142{5} | 0.53849{3} | 0.63489{6} | 0.52089{2} | 0.88991{8} | 0.50633{1} | 0.64355{7} | ||
MRE | ˆβ | 0.28728{5} | 0.30662{7} | 0.27246{4} | 0.29667{6} | 0.26808{3} | 0.32881{8} | 0.26286{1} | 0.26320{2} | |
ˆλ | 0.99362{4} | 0.99892{8} | 0.99265{3} | 0.99444{6} | 0.99435{5} | 0.96165{1} | 0.96509{2} | 0.99807{7} | ||
∑RANKS | 39.0{4} | 60.0{8} | 30.0{2.5} | 54.0{7} | 30.0{2.5} | 51.0{6} | 12.0{1} | 48.0{5} | ||
ˆδ | 0.25007{3} | 0.29937{5} | 0.24733{2} | 0.31057{6} | 0.22757{1} | 2.37250{8} | 0.25066{4} | 0.31836{7} | ||
BIAS | ˆβ | 0.08437{3} | 0.09749{7} | 0.08281{2} | 0.09732{6} | 0.07884{1} | 0.49530{8} | 0.08464{4} | 0.08707{5} | |
ˆλ | 0.51229{1} | 0.59472{6} | 0.52254{3} | 0.57940{5} | 0.51959{2} | 0.63231{8} | 0.53069{4} | 0.60133{7} | ||
ˆδ | 0.06254{3} | 0.08962{5} | 0.06117{2} | 0.09645{6} | 0.05179{1} | 5.62873{8} | 0.06283{4} | 0.10135{7} | ||
50 | MSE | ˆβ | 0.00712{3} | 0.00951{7} | 0.00686{2} | 0.00947{6} | 0.00622{1} | 0.24532{8} | 0.00716{4} | 0.00758{5} |
ˆλ | 0.26244{1} | 0.35369{6} | 0.27305{3} | 0.33571{5} | 0.26998{2} | 0.39982{8} | 0.28164{4} | 0.36160{7} | ||
ˆδ | 0.33343{3} | 0.39916{5} | 0.32978{2} | 0.41409{6} | 0.30342{1} | 0.86273{8} | 0.33422{4} | 0.42447{7} | ||
MRE | ˆβ | 0.16874{3} | 0.19499{7} | 0.16562{2} | 0.19465{6} | 0.15768{1} | 0.24765{8} | 0.16927{4} | 0.17413{5} | |
ˆλ | 0.76461{1} | 0.88764{6} | 0.77991{3} | 0.86478{5} | 0.77551{2} | 0.94375{8} | 0.79208{4} | 0.89751{7} | ||
∑RANKS | 21.0{2.5} | 54.0{6} | 21.0{2.5} | 51.0{5} | 12.0{1} | 72.0{8} | 36.0{4} | 57.0{7} | ||
ˆδ | 0.17337{3} | 0.21780{6} | 0.17020{2} | 0.22097{7} | 0.15701{1} | 2.39904{8} | 0.17686{4} | 0.21457{5} | ||
BIAS | ˆβ | 0.05580{3} | 0.06830{6} | 0.05577{2} | 0.06885{7} | 0.05374{1} | 0.41721{8} | 0.05725{4} | 0.06044{5} | |
ˆλ | 0.39296{2} | 0.46927{7} | 0.39857{3} | 0.45336{5} | 0.38016{1} | 0.62525{8} | 0.40082{4} | 0.46343{6} | ||
ˆδ | 0.03006{3} | 0.04744{6} | 0.02897{2} | 0.04883{7} | 0.02465{1} | 5.75540{8} | 0.03128{4} | 0.04604{5} | ||
100 | MSE | ˆβ | 0.00311{2.5} | 0.00466{6} | 0.00311{2.5} | 0.00474{7} | 0.00289{1} | 0.17406{8} | 0.00328{4} | 0.00365{5} |
ˆλ | 0.15441{2} | 0.22022{7} | 0.15886{3} | 0.20554{5} | 0.14452{1} | 0.39094{8} | 0.16066{4} | 0.21477{6} | ||
ˆδ | 0.23116{3} | 0.29040{6} | 0.22693{2} | 0.29462{7} | 0.20935{1} | 0.87238{8} | 0.23582{4} | 0.28610{5} | ||
MRE | ˆβ | 0.11161{3} | 0.13660{6} | 0.11155{2} | 0.13770{7} | 0.10749{1} | 0.20860{8} | 0.11449{4} | 0.12089{5} | |
ˆλ | 0.58650{2} | 0.70041{7} | 0.59488{3} | 0.67666{5} | 0.56741{1} | 0.93322{8} | 0.59824{4} | 0.69169{6} | ||
∑RANKS | 23.5{3} | 57.0{6.5} | 21.5{2} | 57.0{6.5} | 9.0{1} | 72.0{8} | 36.0{4} | 48.0{5} | ||
ˆδ | 0.11921{2} | 0.15274{6} | 0.12118{3} | 0.15801{7} | 0.11128{1} | 2.36301{8} | 0.12134{4} | 0.15004{5} | ||
BIAS | ˆβ | 0.03944{2} | 0.04894{6} | 0.03986{4} | 0.04966{7} | 0.03780{1} | 0.35089{8} | 0.03953{3} | 0.04230{5} | |
ˆλ | 0.28268{2} | 0.35098{6} | 0.28501{3} | 0.35253{7} | 0.27401{1} | 0.61586{8} | 0.29546{4} | 0.35009{5} | ||
ˆδ | 0.01421{2} | 0.02333{6} | 0.01469{3} | 0.02497{7} | 0.01238{1} | 5.58381{8} | 0.01472{4} | 0.02251{5} | ||
300 | MSE | ˆβ | 0.00156{2.5} | 0.00239{6} | 0.00159{4} | 0.00247{7} | 0.00143{1} | 0.12312{8} | 0.00156{2.5} | 0.00179{5} |
ˆλ | 0.07991{2} | 0.12319{6} | 0.08123{3} | 0.12428{7} | 0.07508{1} | 0.37928{8} | 0.08730{4} | 0.12256{5} | ||
ˆδ | 0.15895{2} | 0.20365{6} | 0.16158{3} | 0.21068{7} | 0.14838{1} | 0.85928{8} | 0.16179{4} | 0.20005{5} | ||
MRE | ˆβ | 0.07887{2} | 0.09787{6} | 0.07972{4} | 0.09932{7} | 0.07560{1} | 0.17545{8} | 0.07905{3} | 0.08460{5} | |
ˆλ | 0.42191{2} | 0.52386{6} | 0.42539{3} | 0.52616{7} | 0.40896{1} | 0.91919{8} | 0.44099{4} | 0.52252{5} | ||
∑RANKS | 18.5{2} | 54.0{6} | 30.0{3} | 63.0{7} | 9.0{1} | 72.0{8} | 32.5{4} | 45.0{5} | ||
ˆδ | 0.08419{2} | 0.10545{5} | 0.08572{3} | 0.10981{7} | 0.07707{1} | 2.51646{8} | 0.08962{4} | 0.10567{6} | ||
BIAS | ˆβ | 0.02771{2} | 0.03356{6} | 0.02858{3} | 0.03361{7} | 0.02586{1} | 0.30410{8} | 0.02884{4} | 0.03016{5} | |
ˆλ | 0.20338{1} | 0.25009{5} | 0.20668{3} | 0.25785{7} | 0.20635{2} | 0.60619{8} | 0.21717{4} | 0.25239{6} | ||
ˆδ | 0.00709{2} | 0.01112{5} | 0.00735{3} | 0.01206{7} | 0.00594{1} | 6.33269{8} | 0.00803{4} | 0.01117{6} | ||
500 | MSE | ˆβ | 0.00077{2} | 0.00113{6.5} | 0.00082{3} | 0.00113{6.5} | 0.00067{1} | 0.09247{8} | 0.00083{4} | 0.00091{5} |
ˆλ | 0.04136{1} | 0.06255{5} | 0.04272{3} | 0.06649{7} | 0.04258{2} | 0.36747{8} | 0.04716{4} | 0.06370{6} | ||
ˆδ | 0.11225{2} | 0.14061{5} | 0.11429{3} | 0.14641{7} | 0.10276{1} | 0.91508{8} | 0.11950{4} | 0.14089{6} | ||
MRE | ˆβ | 0.05542{2} | 0.06711{6} | 0.05716{3} | 0.06723{7} | 0.05173{1} | 0.15205{8} | 0.05768{4} | 0.06033{5} | |
ˆλ | 0.30355{1} | 0.37327{5} | 0.30848{3} | 0.38486{7} | 0.30798{2} | 0.90477{8} | 0.32413{4} | 0.37671{6} | ||
∑RANKS | 15.0{2} | 48.5{5} | 27.0{3} | 62.5{7} | 12.0{1} | 72.0{8} | 36.0{4} | 51.0{6} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 0.32426{3} | 0.36749{5} | 0.32579{4} | 0.37178{6} | 0.32305{2} | 0.48308{8} | 0.31426{1} | 0.38908{7} | ||
BIAS | ˆβ | 0.16279{6} | 0.16255{5} | 0.13270{3} | 0.16800{7} | 0.12181{1} | 0.17744{8} | 0.12182{2} | 0.14583{4} | |
ˆλ | 1.02635{2} | 1.49446{6} | 1.25347{4} | 1.89848{8} | 1.11158{3} | 0.98297{1} | 1.27708{5} | 1.62940{7} | ||
ˆδ | 0.10515{3} | 0.13505{5} | 0.10614{4} | 0.13822{6} | 0.10436{2} | 0.23336{8} | 0.09876{1} | 0.15138{7} | ||
20 | MSE | ˆβ | 0.02650{6} | 0.02642{5} | 0.01761{3} | 0.02822{7} | 0.01484{1.5} | 0.03148{8} | 0.01484{1.5} | 0.02127{4} |
ˆλ | 1.05340{2} | 2.23340{6} | 1.57119{4} | 3.60423{8} | 1.23560{3} | 0.96623{1} | 1.63094{5} | 2.65496{7} | ||
ˆδ | 0.64853{3} | 0.73498{5} | 0.65157{4} | 0.74356{6} | 0.64610{2} | 0.96616{8} | 0.62852{1} | 0.77815{7} | ||
MRE | ˆβ | 0.65115{6} | 0.65020{5} | 0.53081{3} | 0.67201{7} | 0.48723{1} | 0.70975{8} | 0.48728{2} | 0.58331{4} | |
ˆλ | 0.29324{2} | 0.42699{6} | 0.35813{4} | 0.54242{8} | 0.31759{3} | 0.28085{1} | 0.36488{5} | 0.46554{7} | ||
∑RANKS | 33.0{3.5} | 48.0{5} | 33.0{3.5} | 63.0{8} | 18.5{1} | 51.0{6} | 23.5{2} | 54.0{7} | ||
ˆδ | 0.26539{6} | 0.25563{5} | 0.20593{3} | 0.26669{7} | 0.18851{1} | 0.49483{8} | 0.20458{2} | 0.23977{4} | ||
BIAS | ˆβ | 0.12742{7} | 0.09473{5} | 0.07337{3} | 0.09606{6} | 0.06554{1} | 0.25000{8} | 0.07268{2} | 0.07792{4} | |
ˆλ | 0.31068{1} | 0.87506{6} | 0.65401{3} | 0.93368{7} | 0.63524{2} | 1.70896{8} | 0.70057{4} | 0.77199{5} | ||
ˆδ | 0.07043{6} | 0.06534{5} | 0.04241{3} | 0.07112{7} | 0.03554{1} | 0.24486{8} | 0.04185{2} | 0.05749{4} | ||
50 | MSE | ˆβ | 0.01624{7} | 0.00897{5} | 0.00538{3} | 0.00923{6} | 0.00429{1} | 0.06250{8} | 0.00528{2} | 0.00607{4} |
ˆλ | 0.09652{1} | 0.76574{6} | 0.42773{3} | 0.87176{7} | 0.40352{2} | 2.92055{8} | 0.49080{4} | 0.59596{5} | ||
ˆδ | 0.53078{6} | 0.51125{5} | 0.41186{3} | 0.53337{7} | 0.37702{1} | 0.98966{8} | 0.40915{2} | 0.47955{4} | ||
MRE | ˆβ | 0.50967{7} | 0.37893{5} | 0.29349{3} | 0.38424{6} | 0.26214{1} | 1.00000{8} | 0.29071{2} | 0.31167{4} | |
ˆλ | 0.08876{1} | 0.25002{6} | 0.18686{3} | 0.26677{7} | 0.18150{2} | 0.48827{8} | 0.20016{4} | 0.22057{5} | ||
∑RANKS | 42.0{5} | 48.0{6} | 27.0{3} | 60.0{7} | 12.0{1} | 72.0{8} | 24.0{2} | 39.0{4} | ||
ˆδ | 0.23814{7} | 0.19152{5} | 0.14325{2} | 0.19335{6} | 0.13433{1} | 0.50000{8} | 0.14782{3} | 0.17393{4} | ||
BIAS | ˆβ | 0.12253{7} | 0.06875{6} | 0.04895{2} | 0.06860{5} | 0.04607{1} | 0.25000{8} | 0.05166{3} | 0.05613{4} | |
ˆλ | 0.13396{1} | 0.59512{7} | 0.43461{2} | 0.59336{6} | 0.45566{3} | 2.33232{8} | 0.48957{4} | 0.49276{5} | ||
ˆδ | 0.05671{7} | 0.03668{5} | 0.02052{2} | 0.03739{6} | 0.01805{1} | 0.25000{8} | 0.02185{3} | 0.03025{4} | ||
100 | MSE | ˆβ | 0.01501{7} | 0.00473{6} | 0.00240{2} | 0.00471{5} | 0.00212{1} | 0.06250{8} | 0.00267{3} | 0.00315{4} |
ˆλ | 0.01795{1} | 0.35416{7} | 0.18889{2} | 0.35207{6} | 0.20762{3} | 5.43973{8} | 0.23968{4} | 0.24281{5} | ||
ˆδ | 0.47627{7} | 0.38303{5} | 0.28650{2} | 0.38671{6} | 0.26866{1} | 1.00000{8} | 0.29563{3} | 0.34787{4} | ||
MRE | ˆβ | 0.49013{7} | 0.27502{6} | 0.19579{2} | 0.27439{5} | 0.18427{1} | 1.00000{8} | 0.20663{3} | 0.22454{4} | |
ˆλ | 0.03827{1} | 0.17003{7} | 0.12417{2} | 0.16953{6} | 0.13019{3} | 0.66638{8} | 0.13988{4} | 0.14079{5} | ||
∑RANKS | 45.0{5} | 54.0{7} | 18.0{2} | 51.0{6} | 15.0{1} | 72.0{8} | 30.0{3} | 39.0{4} | ||
ˆδ | 0.16105{7} | 0.11059{5} | 0.08394{2} | 0.11359{6} | 0.07800{1} | 0.49787{8} | 0.08757{3} | 0.10016{4} | ||
BIAS | ˆβ | 0.06283{7} | 0.03817{5} | 0.02859{2} | 0.03946{6} | 0.02634{1} | 0.26436{8} | 0.03008{3} | 0.03194{4} | |
ˆλ | 0.09811{1} | 0.32542{6} | 0.26408{3} | 0.33776{7} | 0.26030{2} | 3.29688{8} | 0.27467{4} | 0.27699{5} | ||
ˆδ | 0.02594{7} | 0.01223{5} | 0.00705{2} | 0.0129{6} | 0.00608{1} | 0.24788{8} | 0.00767{3} | 0.01003{4} | ||
300 | MSE | ˆβ | 0.00395{7} | 0.00146{5} | 0.00082{2} | 0.00156{6} | 0.00069{1} | 0.06989{8} | 0.0009{3} | 0.00102{4} |
ˆλ | 0.00963{1} | 0.10590{6} | 0.06974{3} | 0.11408{7} | 0.06775{2} | 10.86939{8} | 0.07544{4} | 0.07673{5} | ||
ˆδ | 0.32211{7} | 0.22118{5} | 0.16788{2} | 0.22718{6} | 0.15600{1} | 0.99575{8} | 0.17513{3} | 0.20033{4} | ||
MRE | ˆβ | 0.25131{7} | 0.15269{5} | 0.11437{2} | 0.15786{6} | 0.10537{1} | 1.05746{8} | 0.12030{3} | 0.12777{4} | |
ˆλ | 0.02803{1} | 0.09298{6} | 0.07545{3} | 0.09650{7} | 0.07437{2} | 0.94196{8} | 0.07848{4} | 0.07914{5} | ||
∑RANKS | 45.0{5} | 48.0{6} | 21.0{2} | 57.0{7} | 12.0{1} | 72.0{8} | 30.0{3} | 39.0{4} | ||
ˆδ | 0.13682{7} | 0.08518{5} | 0.06806{2} | 0.08903{6} | 0.06143{1} | 0.49767{8} | 0.06854{3} | 0.07835{4} | ||
BIAS | ˆβ | 0.04912{7} | 0.02897{5} | 0.02309{2} | 0.03037{6} | 0.02041{1} | 0.19514{8} | 0.02314{3} | 0.02444{4} | |
ˆλ | 0.07977{1} | 0.25952{6} | 0.19725{2} | 0.26898{7} | 0.20086{3} | 3.31272{8} | 0.22096{5} | 0.21419{4} | ||
ˆδ | 0.01872{7} | 0.00726{5} | 0.00463{2} | 0.00793{6} | 0.00377{1} | 0.24768{8} | 0.00470{3} | 0.00614{4} | ||
500 | MSE | ˆβ | 0.00241{7} | 0.00084{5} | 0.00053{2} | 0.00092{6} | 0.00042{1} | 0.03808{8} | 0.00054{3} | 0.00060{4} |
ˆλ | 0.00636{1} | 0.06735{6} | 0.03891{2} | 0.07235{7} | 0.04034{3} | 10.97413{8} | 0.04883{5} | 0.04588{4} | ||
ˆδ | 0.27364{7} | 0.17036{5} | 0.13611{2} | 0.17807{6} | 0.12285{1} | 0.99535{8} | 0.13709{3} | 0.15669{4} | ||
MRE | ˆβ | 0.19649{7} | 0.11589{5} | 0.09236{2} | 0.12148{6} | 0.08166{1} | 0.78054{8} | 0.09258{3} | 0.09775{4} | |
ˆλ | 0.02279{1} | 0.07415{6} | 0.05636{2} | 0.07685{7} | 0.05739{3} | 0.94649{8} | 0.06313{5} | 0.06120{4} | ||
∑RANKS | 45.0{5} | 48.0{6} | 18.0{2} | 57.0{7} | 15.0{1} | 72.0{8} | 33.0{3} | 36.0{4} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 0.33176{3} | 0.36562{5} | 0.33913{4} | 0.37397{6} | 0.32582{2} | 0.38712{7} | 0.32087{1} | 0.38878{8} | ||
BIAS | ˆβ | 1.12766{4} | 1.27666{6} | 1.07109{3} | 1.35020{8} | 0.96289{2} | 1.28521{7} | 0.94279{1} | 1.17226{5} | |
ˆλ | 0.86191{4} | 0.88497{5} | 0.76644{3} | 0.99457{8} | 0.70889{1} | 0.90068{6} | 0.74792{2} | 0.95949{7} | ||
ˆδ | 0.11007{3} | 0.13368{5} | 0.11501{4} | 0.13985{6} | 0.10616{2} | 0.14986{7} | 0.10296{1} | 0.15115{8} | ||
20 | MSE | ˆβ | 1.27161{4} | 1.62986{6} | 1.14723{3} | 1.82303{8} | 0.92715{2} | 1.65176{7} | 0.88885{1} | 1.37420{5} |
ˆλ | 0.74288{4} | 0.78317{5} | 0.58742{3} | 0.98917{8} | 0.50252{1} | 0.81123{6} | 0.55939{2} | 0.92062{7} | ||
ˆδ | 0.66352{3} | 0.73125{5} | 0.67827{4} | 0.74793{6} | 0.65165{2} | 0.77425{7} | 0.64175{1} | 0.77755{8} | ||
MRE | ˆβ | 0.56383{4} | 0.63833{6} | 0.53555{3} | 0.67510{8} | 0.48144{2} | 0.64260{7} | 0.47140{1} | 0.58613{5} | |
ˆλ | 0.57461{4} | 0.58998{5} | 0.51096{3} | 0.66305{8} | 0.47259{1} | 0.60045{6} | 0.49861{2} | 0.63966{7} | ||
∑RANKS | 33.0{4} | 48.0{5} | 30.0{3} | 66.0{8} | 15.0{2} | 60.0{6.5} | 12.0{1} | 60.0{6.5} | ||
ˆδ | 0.21959{4} | 0.24961{6} | 0.21918{3} | 0.26981{7} | 0.19148{1} | 0.27897{8} | 0.20495{2} | 0.24813{5} | ||
BIAS | ˆβ | 0.62370{3} | 0.76053{7} | 0.62516{4} | 0.77811{8} | 0.54002{1} | 0.73260{6} | 0.57135{2} | 0.64916{5} | |
ˆλ | 0.45268{4} | 0.48195{5} | 0.42714{2} | 0.52178{7} | 0.39191{1} | 0.56415{8} | 0.43028{3} | 0.51147{6} | ||
ˆδ | 0.04822{4} | 0.06230{6} | 0.04804{3} | 0.07280{7} | 0.03666{1} | 0.07783{8} | 0.04200{2} | 0.06157{5} | ||
50 | MSE | ˆβ | 0.38900{3} | 0.57840{7} | 0.39083{4} | 0.60546{8} | 0.29162{1} | 0.53670{6} | 0.32644{2} | 0.42141{5} |
ˆλ | 0.20492{4} | 0.23227{5} | 0.18245{2} | 0.27226{7} | 0.15360{1} | 0.31827{8} | 0.18514{3} | 0.26160{6} | ||
ˆδ | 0.43918{4} | 0.49921{6} | 0.43837{3} | 0.53963{7} | 0.38295{1} | 0.55795{8} | 0.40990{2} | 0.49627{5} | ||
MRE | ˆβ | 0.31185{3} | 0.38026{7} | 0.31258{4} | 0.38906{8} | 0.27001{1} | 0.36630{6} | 0.28568{2} | 0.32458{5} | |
ˆλ | 0.30179{4} | 0.32130{5} | 0.28476{2} | 0.34786{7} | 0.26128{1} | 0.37610{8} | 0.28685{3} | 0.34098{6} | ||
∑RANKS | 33.0{4} | 54.0{6} | 27.0{3} | 66.0{7.5} | 9.0{1} | 66.0{7.5} | 21.0{2} | 48.0{5} | ||
ˆδ | 0.14671{2} | 0.18823{6} | 0.15343{4} | 0.19493{7} | 0.13279{1} | 0.21007{8} | 0.15276{3} | 0.17687{5} | ||
BIAS | ˆβ | 0.39391{2} | 0.53496{7} | 0.42885{4} | 0.55301{8} | 0.35810{1} | 0.52138{6} | 0.41247{3} | 0.44862{5} | |
ˆλ | 0.29759{3} | 0.32702{5} | 0.27960{2} | 0.34665{6} | 0.26772{1} | 0.39649{8} | 0.30125{4} | 0.35571{7} | ||
ˆδ | 0.02152{2} | 0.03543{6} | 0.02354{4} | 0.03800{7} | 0.01763{1} | 0.04413{8} | 0.02334{3} | 0.03128{5} | ||
100 | MSE | ˆβ | 0.15516{2} | 0.28618{7} | 0.18391{4} | 0.30582{8} | 0.12824{1} | 0.27184{6} | 0.17013{3} | 0.20126{5} |
ˆλ | 0.08856{3} | 0.10694{5} | 0.07818{2} | 0.12017{6} | 0.07167{1} | 0.15720{8} | 0.09075{4} | 0.12653{7} | ||
ˆδ | 0.29341{2} | 0.37646{6} | 0.30687{4} | 0.38987{7} | 0.26559{1} | 0.42015{8} | 0.30552{3} | 0.35375{5} | ||
MRE | ˆβ | 0.19695{2} | 0.26748{7} | 0.21443{4} | 0.27650{8} | 0.17905{1} | 0.26069{6} | 0.20623{3} | 0.22431{5} | |
ˆλ | 0.19839{3} | 0.21801{5} | 0.18640{2} | 0.23110{6} | 0.17848{1} | 0.26433{8} | 0.20083{4} | 0.23714{7} | ||
∑RANKS | 21.0{2} | 54.0{6} | 30.0{3.5} | 63.0{7} | 9.0{1} | 66.0{8} | 30.0{3.5} | 51.0{5} | ||
ˆδ | 0.08098{2} | 0.10961{6} | 0.08512{3} | 0.11525{7} | 0.07733{1} | 0.12222{8} | 0.08977{4} | 0.10159{5} | ||
BIAS | ˆβ | 0.21831{2} | 0.30112{7} | 0.23615{3} | 0.31930{8} | 0.20764{1} | 0.28937{6} | 0.24578{4} | 0.26022{5} | |
ˆλ | 0.15901{2} | 0.18217{5} | 0.16388{3} | 0.18257{6} | 0.15273{1} | 0.22463{8} | 0.16393{4} | 0.19128{7} | ||
ˆδ | 0.00656{2} | 0.01201{6} | 0.00725{3} | 0.01328{7} | 0.00598{1} | 0.01494{8} | 0.00806{4} | 0.01032{5} | ||
300 | MSE | ˆβ | 0.04766{2} | 0.09067{7} | 0.05576{3} | 0.10195{8} | 0.04312{1} | 0.08374{6} | 0.06041{4} | 0.06771{5} |
ˆλ | 0.02529{2} | 0.03319{5} | 0.02686{3} | 0.03333{6} | 0.02333{1} | 0.05046{8} | 0.02687{4} | 0.03659{7} | ||
ˆδ | 0.16196{2} | 0.21922{6} | 0.17024{3} | 0.23050{7} | 0.15466{1} | 0.24444{8} | 0.17953{4} | 0.20317{5} | ||
MRE | ˆβ | 0.10916{2} | 0.15056{7} | 0.11807{3} | 0.15965{8} | 0.10382{1} | 0.14469{6} | 0.12289{4} | 0.13011{5} | |
ˆλ | 0.10601{2} | 0.12145{5} | 0.10925{3} | 0.12171{6} | 0.10182{1} | 0.14975{8} | 0.10929{4} | 0.12752{7} | ||
∑RANKS | 18.0{2} | 54.0{6} | 27.0{3} | 63.0{7} | 9.0{1} | 66.0{8} | 36.0{4} | 51.0{5} | ||
ˆδ | 0.06133{2} | 0.08655{6} | 0.06579{3} | 0.08942{7} | 0.05873{1} | 0.09305{8} | 0.06982{4} | 0.07986{5} | ||
BIAS | ˆβ | 0.16505{2} | 0.23942{7} | 0.17980{3} | 0.24405{8} | 0.15115{1} | 0.21914{6} | 0.18812{4} | 0.20420{5} | |
ˆλ | 0.12258{3} | 0.14193{5} | 0.12071{2} | 0.14351{6} | 0.11629{1} | 0.17353{8} | 0.12581{4} | 0.14648{7} | ||
ˆδ | 0.00376{2} | 0.00749{6} | 0.00433{3} | 0.00800{7} | 0.00345{1} | 0.00866{8} | 0.00488{4} | 0.00638{5} | ||
500 | MSE | ˆβ | 0.02724{2} | 0.05732{7} | 0.03233{3} | 0.05956{8} | 0.02285{1} | 0.04802{6} | 0.03539{4} | 0.04170{5} |
ˆλ | 0.01503{3} | 0.02014{5} | 0.01457{2} | 0.02059{6} | 0.01352{1} | 0.03011{8} | 0.01583{4} | 0.02146{7} | ||
ˆδ | 0.12266{2} | 0.17311{6} | 0.13157{3} | 0.17883{7} | 0.11745{1} | 0.18610{8} | 0.13965{4} | 0.15972{5} | ||
MRE | ˆβ | 0.08253{2} | 0.11971{7} | 0.08990{3} | 0.12203{8} | 0.07557{1} | 0.10957{6} | 0.09406{4} | 0.10210{5} | |
ˆλ | 0.08172{3} | 0.09462{5} | 0.08047{2} | 0.09567{6} | 0.07753{1} | 0.11568{8} | 0.08387{4} | 0.09765{7} | ||
∑RANKS | 21.0{2} | 54.0{6} | 24.0{3} | 63.0{7} | 9.0{1} | 66.0{8} | 36.0{4} | 51.0{5} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 0.33110{3} | 0.36615{5} | 0.33585{4} | 0.37061{6} | 0.31868{1} | 0.39913{8} | 0.32453{2} | 0.38922{7} | ||
BIAS | ˆβ | 1.11460{4} | 1.27786{6} | 1.06641{3} | 1.32616{8} | 0.95015{2} | 1.28377{7} | 0.94504{1} | 1.17382{5} | |
ˆλ | 1.55737{5} | 1.59665{6} | 1.34503{3} | 1.91607{8} | 1.19054{1} | 1.53949{4} | 1.23604{2} | 1.70187{7} | ||
ˆδ | 0.10963{3} | 0.13407{5} | 0.11279{4} | 0.13735{6} | 0.10155{1} | 0.15930{8} | 0.10532{2} | 0.15149{7} | ||
20 | MSE | ˆβ | 1.24233{4} | 1.63291{6} | 1.13723{3} | 1.75870{8} | 0.90278{2} | 1.64808{7} | 0.89310{1} | 1.37786{5} |
ˆλ | 2.42540{5} | 2.54930{6} | 1.80910{3} | 3.67132{8} | 1.41739{1} | 2.37004{4} | 1.52779{2} | 2.89636{7} | ||
ˆδ | 0.66220{3} | 0.73230{5} | 0.67170{4} | 0.74122{6} | 0.63735{1} | 0.79825{8} | 0.64906{2} | 0.77844{7} | ||
MRE | ˆβ | 0.55730{4} | 0.63893{6} | 0.53320{3} | 0.66308{8} | 0.47507{2} | 0.64189{7} | 0.47252{1} | 0.58691{5} | |
ˆλ | 0.44496{5} | 0.45619{6} | 0.38429{3} | 0.54745{8} | 0.34016{1} | 0.43986{4} | 0.35315{2} | 0.48625{7} | ||
∑RANKS | 36.0{4} | 51.0{5} | 30.0{3} | 66.0{8} | 12.0{1} | 57.0{6.5} | 15.0{2} | 57.0{6.5} | ||
ˆδ | 0.21390{3} | 0.26182{6} | 0.22139{4} | 0.27439{7} | 0.19140{1} | 0.28679{8} | 0.20785{2} | 0.24663{5} | ||
BIAS | ˆβ | 0.61150{3} | 0.78181{7} | 0.64730{4} | 0.78486{8} | 0.53103{1} | 0.76841{6} | 0.59128{2} | 0.64931{5} | |
ˆλ | 0.78611{4} | 0.86510{7} | 0.76550{3} | 0.92676{8} | 0.68749{1} | 0.80892{5} | 0.73796{2} | 0.81282{6} | ||
ˆδ | 0.04575{3} | 0.06855{6} | 0.04901{4} | 0.07529{7} | 0.03664{1} | 0.08225{8} | 0.04320{2} | 0.06082{5} | ||
50 | MSE | ˆβ | 0.37393{3} | 0.61123{7} | 0.41900{4} | 0.61600{8} | 0.28200{1} | 0.59046{6} | 0.34961{2} | 0.42160{5} |
ˆλ | 0.61798{4} | 0.74840{7} | 0.58599{3} | 0.85888{8} | 0.47264{1} | 0.65435{5} | 0.54459{2} | 0.66068{6} | ||
ˆδ | 0.42780{3} | 0.52365{6} | 0.44278{4} | 0.54878{7} | 0.38281{1} | 0.57358{8} | 0.41571{2} | 0.49325{5} | ||
MRE | ˆβ | 0.30575{3} | 0.39091{7} | 0.32365{4} | 0.39243{8} | 0.26552{1} | 0.38421{6} | 0.29564{2} | 0.32465{5} | |
ˆλ | 0.22460{4} | 0.24717{7} | 0.21871{3} | 0.26479{8} | 0.19643{1} | 0.23112{5} | 0.21085{2} | 0.23223{6} | ||
∑RANKS | 30.0{3} | 60.0{7} | 33.0{4} | 69.0{8} | 9.0{1} | 57.0{6} | 18.0{2} | 48.0{5} | ||
ˆδ | 0.14038{2} | 0.19164{6} | 0.15667{4} | 0.19596{7} | 0.13391{1} | 0.20535{8} | 0.15291{3} | 0.17192{5} | ||
BIAS | ˆβ | 0.38434{2} | 0.54048{7} | 0.42196{4} | 0.56208{8} | 0.36139{1} | 0.51354{6} | 0.42009{3} | 0.45263{5} | |
ˆλ | 0.47694{2} | 0.58765{7} | 0.51182{4} | 0.60332{8} | 0.45658{1} | 0.51860{5} | 0.49143{3} | 0.53797{6} | ||
ˆδ | 0.01971{2} | 0.03672{6} | 0.02455{4} | 0.03840{7} | 0.01793{1} | 0.04217{8} | 0.02338{3} | 0.02956{5} | ||
100 | MSE | ˆβ | 0.14772{2} | 0.29211{7} | 0.17805{4} | 0.31594{8} | 0.13060{1} | 0.26372{6} | 0.17648{3} | 0.20488{5} |
ˆλ | 0.22747{2} | 0.34533{7} | 0.26196{4} | 0.36399{8} | 0.20847{1} | 0.26895{5} | 0.24150{3} | 0.28941{6} | ||
ˆδ | 0.28075{2} | 0.38327{6} | 0.31335{4} | 0.39192{7} | 0.26781{1} | 0.41070{8} | 0.30583{3} | 0.34385{5} | ||
MRE | ˆβ | 0.19217{2} | 0.27024{7} | 0.21098{4} | 0.28104{8} | 0.18069{1} | 0.25677{6} | 0.21004{3} | 0.22632{5} | |
ˆλ | 0.13627{2} | 0.16790{7} | 0.14623{4} | 0.17238{8} | 0.13045{1} | 0.14817{5} | 0.14041{3} | 0.15371{6} | ||
∑RANKS | 18.0{2} | 60.0{7} | 36.0{4} | 69.0{8} | 9.0{1} | 57.0{6} | 27.0{3} | 48.0{5} | ||
ˆδ | 0.07851{1} | 0.11388{6} | 0.08746{3} | 0.11416{7} | 0.08299{2} | 0.12225{8} | 0.09006{4} | 0.10489{5} | ||
BIAS | ˆβ | 0.20925{1} | 0.31575{7} | 0.23592{3} | 0.31907{8} | 0.22303{2} | 0.28419{6} | 0.24085{4} | 0.26648{5} | |
ˆλ | 0.26941{2} | 0.33461{8} | 0.27809{4} | 0.33184{7} | 0.24439{1} | 0.27271{3} | 0.28243{5} | 0.29963{6} | ||
ˆδ | 0.00616{1} | 0.01297{6} | 0.00765{3} | 0.01303{7} | 0.00689{2} | 0.01495{8} | 0.00811{4} | 0.01100{5} | ||
300 | MSE | ˆβ | 0.04379{1} | 0.09970{7} | 0.05566{3} | 0.10180{8} | 0.04974{2} | 0.08077{6} | 0.05801{4} | 0.07101{5} |
ˆλ | 0.07258{2} | 0.11196{8} | 0.07733{4} | 0.11012{7} | 0.05973{1} | 0.07437{3} | 0.07977{5} | 0.08978{6} | ||
ˆδ | 0.15702{1} | 0.22776{6} | 0.17492{3} | 0.22833{7} | 0.16597{2} | 0.24450{8} | 0.18013{4} | 0.20979{5} | ||
MRE | ˆβ | 0.10463{1} | 0.15787{7} | 0.11796{3} | 0.15953{8} | 0.11152{2} | 0.14210{6} | 0.12042{4} | 0.13324{5} | |
ˆλ | 0.07697{2} | 0.09560{8} | 0.07945{4} | 0.09481{7} | 0.06983{1} | 0.07792{3} | 0.08069{5} | 0.08561{6} | ||
∑RANKS | 12.0{1} | 63.0{7} | 30.0{3} | 66.0{8} | 15.0{2} | 51.0{6} | 39.0{4} | 48.0{5} | ||
ˆδ | 0.06024{1} | 0.08637{7} | 0.06664{3} | 0.08502{6} | 0.06628{2} | 0.09635{8} | 0.06819{4} | 0.07999{5} | ||
BIAS | ˆβ | 0.16078{1} | 0.24082{7} | 0.18266{3} | 0.24124{8} | 0.17382{2} | 0.22598{6} | 0.18545{4} | 0.20491{5} | |
ˆλ | 0.20606{2} | 0.26665{8} | 0.22231{5} | 0.26483{7} | 0.18095{1} | 0.21196{3} | 0.22040{4} | 0.22496{6} | ||
ˆδ | 0.00363{1} | 0.00746{7} | 0.00444{3} | 0.00723{6} | 0.00439{2} | 0.00928{8} | 0.00465{4} | 0.00640{5} | ||
500 | MSE | ˆβ | 0.02585{1} | 0.05800{7} | 0.03337{3} | 0.05820{8} | 0.03021{2} | 0.05107{6} | 0.03439{4} | 0.04199{5} |
ˆλ | 0.04246{2} | 0.07110{8} | 0.04942{5} | 0.07014{7} | 0.03274{1} | 0.04493{3} | 0.04858{4} | 0.05061{6} | ||
ˆδ | 0.12048{1} | 0.17273{7} | 0.13328{3} | 0.17003{6} | 0.13257{2} | 0.19270{8} | 0.13637{4} | 0.15997{5} | ||
MRE | ˆβ | 0.08039{1} | 0.12041{7} | 0.09133{3} | 0.12062{8} | 0.08691{2} | 0.11299{6} | 0.09272{4} | 0.10245{5} | |
ˆλ | 0.05887{2} | 0.07619{8} | 0.06352{5} | 0.07567{7} | 0.05170{1} | 0.06056{3} | 0.06297{4} | 0.06427{6} | ||
∑RANKS | 12.0{1} | 66.0{8} | 33.0{3} | 63.0{7} | 15.0{2} | 51.0{6} | 36.0{4} | 48.0{5} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 1.22185{4} | 1.30796{5} | 1.18799{3} | 1.33931{6} | 1.11412{1} | 1.45636{8} | 1.13362{2} | 1.36998{7} | ||
BIAS | ˆβ | 0.12675{1} | 0.17951{6} | 0.15149{4} | 0.18035{7} | 0.12973{3} | 0.19587{8} | 0.12793{2} | 0.16035{5} | |
ˆλ | 0.94495{3} | 1.13870{5} | 0.96082{4} | 1.15670{6} | 0.88794{1} | 1.49717{8} | 0.89346{2} | 1.21562{7} | ||
ˆδ | 1.49293{4} | 1.71077{5} | 1.41132{3} | 1.79374{6} | 1.24126{1} | 2.12099{8} | 1.28510{2} | 1.87684{7} | ||
20 | MSE | ˆβ | 0.01607{1} | 0.03223{6} | 0.02295{4} | 0.03253{7} | 0.01683{3} | 0.03837{8} | 0.01637{2} | 0.02571{5} |
ˆλ | 0.89294{3} | 1.29664{5} | 0.92317{4} | 1.33795{6} | 0.78844{1} | 2.24151{8} | 0.79826{2} | 1.47773{7} | ||
ˆδ | 0.81457{4} | 0.87198{5} | 0.79199{3} | 0.89287{6} | 0.74275{1} | 0.97091{8} | 0.75575{2} | 0.91332{7} | ||
MRE | ˆβ | 0.50700{1} | 0.71806{6} | 0.60596{4} | 0.72140{7} | 0.51892{3} | 0.78348{8} | 0.51172{2} | 0.64141{5} | |
ˆλ | 0.62997{3} | 0.75913{5} | 0.64055{4} | 0.77113{6} | 0.59196{1} | 0.99811{8} | 0.59564{2} | 0.81041{7} | ||
∑RANKS | 24.0{3} | 48.0{5} | 33.0{4} | 57.0{6.5} | 15.0{1} | 72.0{8} | 18.0{2} | 57.0{6.5} | ||
ˆδ | 0.79315{2} | 0.99146{5} | 0.84310{4} | 1.01743{7} | 0.72849{1} | 1.46287{8} | 0.80972{3} | 0.99359{6} | ||
BIAS | ˆβ | 0.07620{2} | 0.11078{6} | 0.08734{4} | 0.11296{7} | 0.06930{1} | 0.18453{8} | 0.07794{3} | 0.09839{5} | |
ˆλ | 0.54797{2} | 0.71063{6} | 0.57525{4} | 0.70987{5} | 0.50083{1} | 1.49746{8} | 0.55093{3} | 0.72034{7} | ||
ˆδ | 0.62908{2} | 0.98300{5} | 0.71082{4} | 1.03516{7} | 0.53070{1} | 2.13998{8} | 0.65565{3} | 0.98721{6} | ||
50 | MSE | ˆβ | 0.00581{2} | 0.01227{6} | 0.00763{4} | 0.01276{7} | 0.00480{1} | 0.03405{8} | 0.00607{3} | 0.00968{5} |
ˆλ | 0.30027{2} | 0.50499{6} | 0.33091{4} | 0.50392{5} | 0.25083{1} | 2.24238{8} | 0.30352{3} | 0.51889{7} | ||
ˆδ | 0.52876{2} | 0.66097{5} | 0.56207{4} | 0.67829{7} | 0.48566{1} | 0.97524{8} | 0.53982{3} | 0.66239{6} | ||
MRE | ˆβ | 0.30480{2} | 0.44310{6} | 0.34938{4} | 0.45185{7} | 0.27722{1} | 0.73812{8} | 0.31176{3} | 0.39356{5} | |
ˆλ | 0.36531{2} | 0.47375{6} | 0.38350{4} | 0.47325{5} | 0.33389{1} | 0.99831{8} | 0.36729{3} | 0.48022{7} | ||
∑RANKS | 18.0{2} | 51.0{5} | 36.0{4} | 57.0{7} | 9.0{1} | 72.0{8} | 27.0{3} | 54.0{6} | ||
ˆδ | 0.55352{2} | 0.79898{7} | 0.61847{4} | 0.79686{6} | 0.53296{1} | 1.46195{8} | 0.60399{3} | 0.77763{5} | ||
BIAS | ˆβ | 0.05036{2} | 0.07948{7} | 0.05744{4} | 0.07839{6} | 0.04670{1} | 0.18270{8} | 0.05485{3} | 0.06844{5} | |
ˆλ | 0.35861{2} | 0.51616{6} | 0.39537{4} | 0.52199{7} | 0.33928{1} | 1.49165{8} | 0.38740{3} | 0.51469{5} | ||
ˆδ | 0.30638{2} | 0.63837{7} | 0.38250{4} | 0.63499{6} | 0.28404{1} | 2.13729{8} | 0.36481{3} | 0.60470{5} | ||
100 | MSE | ˆβ | 0.00254{2} | 0.00632{7} | 0.00330{4} | 0.00615{6} | 0.00218{1} | 0.03338{8} | 0.00301{3} | 0.00468{5} |
ˆλ | 0.12860{2} | 0.26642{6} | 0.15632{4} | 0.27248{7} | 0.11511{1} | 2.22502{8} | 0.15008{3} | 0.26490{5} | ||
ˆδ | 0.36901{2} | 0.53266{7} | 0.41231{4} | 0.53124{6} | 0.35530{1} | 0.97463{8} | 0.40266{3} | 0.51842{5} | ||
MRE | ˆβ | 0.20143{2} | 0.31790{7} | 0.22975{4} | 0.31356{6} | 0.18681{1} | 0.73078{8} | 0.21941{3} | 0.27376{5} | |
ˆλ | 0.23907{2} | 0.34411{6} | 0.26358{4} | 0.34800{7} | 0.22619{1} | 0.99443{8} | 0.25827{3} | 0.34313{5} | ||
∑RANKS | 18.0{2} | 60.0{7} | 36.0{4} | 57.0{6} | 9.0{1} | 72.0{8} | 27.0{3} | 45.0{5} | ||
ˆδ | 0.29712{1} | 0.48781{7} | 0.35956{3} | 0.48497{6} | 0.30236{2} | 1.41996{8} | 0.36469{4} | 0.47766{5} | ||
BIAS | ˆβ | 0.02561{2} | 0.04395{7} | 0.03174{4} | 0.04365{6} | 0.02442{1} | 0.16410{8} | 0.03163{3} | 0.03873{5} | |
ˆλ | 0.18604{1} | 0.29854{6} | 0.22010{3} | 0.28985{5} | 0.18861{2} | 1.38022{8} | 0.22173{4} | 0.29943{7} | ||
ˆδ | 0.08828{1} | 0.23796{7} | 0.12929{3} | 0.23520{6} | 0.09142{2} | 2.01629{8} | 0.13300{4} | 0.22816{5} | ||
300 | MSE | ˆβ | 0.00066{2} | 0.00193{7} | 0.00101{4} | 0.00191{6} | 0.00060{1} | 0.02693{8} | 0.00100{3} | 0.00150{5} |
ˆλ | 0.03461{1} | 0.08912{6} | 0.04845{3} | 0.08401{5} | 0.03557{2} | 1.90500{8} | 0.04917{4} | 0.08966{7} | ||
ˆδ | 0.19808{1} | 0.32521{7} | 0.23971{3} | 0.32331{6} | 0.20157{2} | 0.94664{8} | 0.24313{4} | 0.31844{5} | ||
MRE | ˆβ | 0.10244{2} | 0.17578{7} | 0.12698{4} | 0.17461{6} | 0.09767{1} | 0.65638{8} | 0.12653{3} | 0.15491{5} | |
ˆλ | 0.12403{1} | 0.19902{6} | 0.14674{3} | 0.19323{5} | 0.12574{2} | 0.92015{8} | 0.14782{4} | 0.19962{7} | ||
∑RANKS | 12.0{1} | 60.0{7} | 30.0{3} | 51.0{5.5} | 15.0{2} | 72.0{8} | 33.0{4} | 51.0{5.5} | ||
ˆδ | 0.25086{2} | 0.38648{6} | 0.28600{3} | 0.38981{7} | 0.07680{1} | 1.39954{8} | 0.29130{4} | 0.36782{5} | ||
BIAS | ˆβ | 0.02112{2} | 0.03402{7} | 0.02419{3} | 0.03401{6} | 0.01531{1} | 0.15183{8} | 0.02464{4} | 0.02929{5} | |
ˆλ | 0.15715{2} | 0.22582{6} | 0.17344{3} | 0.22961{7} | 0.10142{1} | 1.32012{8} | 0.17784{4} | 0.22455{5} | ||
ˆδ | 0.06293{2} | 0.14937{6} | 0.08180{3} | 0.15195{7} | 0.00590{1} | 1.95872{8} | 0.08486{4} | 0.13529{5} | ||
500 | MSE | ˆβ | 0.00045{2} | 0.00116{6.5} | 0.00059{3} | 0.00116{6.5} | 0.00023{1} | 0.02305{8} | 0.00061{4} | 0.00086{5} |
ˆλ | 0.02470{2} | 0.05100{6} | 0.03008{3} | 0.05272{7} | 0.01029{1} | 1.74272{8} | 0.03163{4} | 0.05042{5} | ||
ˆδ | 0.16724{2} | 0.25766{6} | 0.19067{3} | 0.25987{7} | 0.05120{1} | 0.93303{8} | 0.19420{4} | 0.24521{5} | ||
MRE | ˆβ | 0.08448{2} | 0.13606{7} | 0.09677{3} | 0.13603{6} | 0.06123{1} | 0.60731{8} | 0.09858{4} | 0.11714{5} | |
ˆλ | 0.10477{2} | 0.15055{6} | 0.11562{3} | 0.15307{7} | 0.06761{1} | 0.88008{8} | 0.11856{4} | 0.14970{5} | ||
∑RANKS | 18.0{2} | 56.5{6} | 27.0{3} | 60.5{7} | 9.0{1} | 72.0{8} | 36.0{4} | 45.0{5} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 1.22894{4} | 1.28950{5} | 1.18086{3} | 1.33073{7} | 1.07161{1} | 1.46572{8} | 1.13889{2} | 1.32101{6} | ||
BIAS | ˆβ | 0.12828{2} | 0.17671{7} | 0.15224{4} | 0.17548{6} | 0.12637{1} | 0.25000{8} | 0.13350{3} | 0.15810{5} | |
ˆλ | 1.39638{4} | 1.74017{7} | 1.43119{5} | 1.95764{8} | 1.18946{1} | 1.36218{3} | 1.33183{2} | 1.70681{6} | ||
ˆδ | 1.51029{4} | 1.66282{5} | 1.39442{3} | 1.77085{7} | 1.14834{1} | 2.14833{8} | 1.29707{2} | 1.74507{6} | ||
20 | MSE | ˆβ | 0.01645{2} | 0.03123{7} | 0.02318{4} | 0.03079{6} | 0.01597{1} | 0.06250{8} | 0.01782{3} | 0.02500{5} |
ˆλ | 1.94988{4} | 3.02819{7} | 2.04831{5} | 3.83234{8} | 1.41481{1} | 1.85553{3} | 1.77378{2} | 2.91320{6} | ||
ˆδ | 0.81929{4} | 0.85967{5} | 0.78724{3} | 0.88716{7} | 0.71440{1} | 0.97715{8} | 0.75926{2} | 0.88067{6} | ||
MRE | ˆβ | 0.51311{2} | 0.70683{7} | 0.60895{4} | 0.70191{6} | 0.50547{1} | 1.00000{8} | 0.53399{3} | 0.63242{5} | |
ˆλ | 0.39897{4} | 0.49719{7} | 0.40891{5} | 0.55932{8} | 0.33985{1} | 0.38919{3} | 0.38052{2} | 0.48766{6} | ||
∑RANKS | 30.0{3} | 57.0{6.5} | 36.0{4} | 63.0{8} | 9.0{1} | 57.0{6.5} | 21.0{2} | 51.0{5} | ||
ˆδ | 0.77632{2} | 1.00262{6} | 0.83470{4} | 0.99986{5} | 0.74758{1} | 1.49055{8} | 0.80751{3} | 1.00385{7} | ||
BIAS | ˆβ | 0.07277{2} | 0.11010{6} | 0.08714{4} | 0.11377{7} | 0.06972{1} | 0.25000{8} | 0.07820{3} | 0.09997{5} | |
ˆλ | 0.64433{2} | 0.84802{5} | 0.70844{4} | 0.93484{7} | 0.61040{1} | 3.02012{8} | 0.67029{3} | 0.85822{6} | ||
ˆδ | 0.60268{2} | 1.00524{6} | 0.69673{4} | 0.99972{5} | 0.55887{1} | 2.22174{8} | 0.65208{3} | 1.00772{7} | ||
50 | MSE | ˆβ | 0.00530{2} | 0.01212{6} | 0.00759{4} | 0.01294{7} | 0.00486{1} | 0.06250{8} | 0.00612{3} | 0.00999{5} |
ˆλ | 0.41517{2} | 0.71914{5} | 0.50188{4} | 0.87393{7} | 0.37259{1} | 9.12110{8} | 0.44929{3} | 0.73654{6} | ||
ˆδ | 0.51755{2} | 0.66841{6} | 0.55647{4} | 0.66657{5} | 0.49838{1} | 0.99370{8} | 0.53834{3} | 0.66924{7} | ||
MRE | ˆβ | 0.29110{2} | 0.44040{6} | 0.34855{4} | 0.45506{7} | 0.27886{1} | 1.00000{8} | 0.31281{3} | 0.39987{5} | |
ˆλ | 0.18410{2} | 0.24229{5} | 0.20241{4} | 0.26710{7} | 0.17440{1} | 0.86289{8} | 0.19151{3} | 0.24521{6} | ||
∑RANKS | 18.0{2} | 51.0{5} | 36.0{4} | 57.0{7} | 9.0{1} | 72.0{8} | 27.0{3} | 54.0{6} | ||
ˆδ | 0.52877{2} | 0.75982{5} | 0.61324{4} | 0.79300{7} | 0.50211{1} | 1.49311{8} | 0.59239{3} | 0.76087{6} | ||
BIAS | ˆβ | 0.04745{2} | 0.07544{6} | 0.05512{4} | 0.07800{7} | 0.04411{1} | 0.24115{8} | 0.05318{3} | 0.06564{5} | |
ˆλ | 0.41302{2} | 0.54237{5} | 0.44237{4} | 0.55690{7} | 0.40469{1} | 3.40952{8} | 0.43465{3} | 0.54540{6} | ||
ˆδ | 0.27959{2} | 0.57732{5} | 0.37606{4} | 0.62885{7} | 0.25211{1} | 2.22937{8} | 0.35092{3} | 0.57892{6} | ||
100 | MSE | ˆβ | 0.00225{2} | 0.00569{6} | 0.00304{4} | 0.00608{7} | 0.00195{1} | 0.05816{8} | 0.00283{3} | 0.00431{5} |
ˆλ | 0.17058{2} | 0.29416{5} | 0.19569{4} | 0.31014{7} | 0.16378{1} | 11.62479{8} | 0.18892{3} | 0.29747{6} | ||
ˆδ | 0.35251{2} | 0.50654{5} | 0.40883{4} | 0.52867{7} | 0.33474{1} | 0.99540{8} | 0.39493{3} | 0.50724{6} | ||
MRE | ˆβ | 0.18979{2} | 0.30177{6} | 0.22048{4} | 0.31201{7} | 0.17643{1} | 0.96461{8} | 0.21274{3} | 0.26254{5} | |
ˆλ | 0.11800{2} | 0.15496{5} | 0.12639{4} | 0.15912{7} | 0.11563{1} | 0.97415{8} | 0.12419{3} | 0.15583{6} | ||
∑RANKS | 18.0{2} | 48.0{5} | 36.0{4} | 63.0{7} | 9.0{1} | 72.0{8} | 27.0{3} | 51.0{6} | ||
ˆδ | 0.30459{2} | 0.47883{6} | 0.34599{3} | 0.49318{7} | 0.26509{1} | 1.49412{8} | 0.36119{4} | 0.47006{5} | ||
BIAS | ˆβ | 0.02610{2} | 0.04267{6} | 0.03044{3} | 0.04300{7} | 0.02472{1} | 0.19207{8} | 0.03073{4} | 0.03788{5} | |
ˆλ | 0.22180{2} | 0.28352{5} | 0.23322{3} | 0.29399{6} | 0.21278{1} | 3.31702{8} | 0.24050{4} | 0.29989{7} | ||
ˆδ | 0.09277{2} | 0.22927{6} | 0.11971{3} | 0.24323{7} | 0.07027{1} | 2.23239{8} | 0.13046{4} | 0.22096{5} | ||
300 | MSE | ˆβ | 0.00068{2} | 0.00182{6} | 0.00093{3} | 0.00185{7} | 0.00061{1} | 0.03689{8} | 0.00094{4} | 0.00143{5} |
ˆλ | 0.04919{2} | 0.08038{5} | 0.05439{3} | 0.08643{6} | 0.04528{1} | 11.00263{8} | 0.05784{4} | 0.08994{7} | ||
ˆδ | 0.20306{2} | 0.31922{6} | 0.23066{3} | 0.32879{7} | 0.17673{1} | 0.99608{8} | 0.24079{4} | 0.31337{5} | ||
MRE | ˆβ | 0.10439{2} | 0.17067{6} | 0.12174{3} | 0.17200{7} | 0.09888{1} | 0.76827{8} | 0.12292{4} | 0.15151{5} | |
ˆλ | 0.06337{2} | 0.08101{5} | 0.06663{3} | 0.08400{6} | 0.06080{1} | 0.94772{8} | 0.06872{4} | 0.08568{7} | ||
∑RANKS | 18.0{2} | 51.0{5.5} | 27.0{3} | 60.0{7} | 9.0{1} | 72.0{8} | 36.0{4} | 51.0{5.5} | ||
ˆδ | 0.23897{2} | 0.38214{7} | 0.25570{3} | 0.37845{6} | 0.16914{1} | 1.48632{8} | 0.28414{4} | 0.37467{5} | ||
BIAS | ˆβ | 0.01978{2} | 0.03282{7} | 0.02240{3} | 0.03281{6} | 0.01819{1} | 0.18313{8} | 0.02426{4} | 0.03009{5} | |
ˆλ | 0.16576{2} | 0.21315{6} | 0.17902{3} | 0.20973{5} | 0.16236{1} | 3.09819{8} | 0.18473{4} | 0.23445{7} | ||
ˆδ | 0.05711{2} | 0.14603{7} | 0.06538{3} | 0.14322{6} | 0.02861{1} | 2.20913{8} | 0.08074{4} | 0.14037{5} | ||
500 | MSE | ˆβ | 0.00039{2} | 0.00108{6.5} | 0.00050{3} | 0.00108{6.5} | 0.00033{1} | 0.03354{8} | 0.00059{4} | 0.00091{5} |
ˆλ | 0.02748{2} | 0.04543{6} | 0.03205{3} | 0.04399{5} | 0.02636{1} | 9.59881{8} | 0.03413{4} | 0.05496{7} | ||
ˆδ | 0.15931{2} | 0.25476{7} | 0.17047{3} | 0.25230{6} | 0.11276{1} | 0.99088{8} | 0.18943{4} | 0.24978{5} | ||
MRE | ˆβ | 0.07914{2} | 0.13129{7} | 0.08961{3} | 0.13125{6} | 0.07275{1} | 0.73250{8} | 0.09705{4} | 0.12037{5} | |
ˆλ | 0.04736{2} | 0.06090{6} | 0.05115{3} | 0.05992{5} | 0.04639{1} | 0.88520{8} | 0.05278{4} | 0.06698{7} | ||
∑RANKS | 18.0{2} | 59.5{7} | 27.0{3} | 51.5{6} | 9.0{1} | 72.0{8} | 36.0{4} | 51.0{5} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 1.21790{4} | 1.30887{6} | 1.21865{5} | 1.34306{7} | 1.11438{1} | 1.21283{3} | 1.17647{2} | 1.35914{8} | ||
BIAS | ˆβ | 1.05826{2} | 1.39100{7} | 1.23608{5} | 1.44930{8} | 1.03052{1} | 1.18538{4} | 1.06741{3} | 1.27677{6} | |
ˆλ | 0.93963{2} | 1.12156{6} | 0.98145{4} | 1.15279{7} | 0.87281{1} | 1.02784{5} | 0.94055{3} | 1.17198{8} | ||
ˆδ | 1.48329{4} | 1.71313{6} | 1.48511{5} | 1.80380{7} | 1.24185{1} | 1.47095{3} | 1.38408{2} | 1.84725{8} | ||
20 | MSE | ˆβ | 1.11992{2} | 1.93489{7} | 1.52788{5} | 2.10047{8} | 1.06198{1} | 1.40512{4} | 1.13937{3} | 1.63014{6} |
ˆλ | 0.88290{2} | 1.25789{6} | 0.96325{4} | 1.32892{7} | 0.76181{1} | 1.05646{5} | 0.88463{3} | 1.37353{8} | ||
ˆδ | 0.81194{4} | 0.87258{6} | 0.81243{5} | 0.89537{7} | 0.74292{1} | 0.80855{3} | 0.78431{2} | 0.90609{8} | ||
MRE | ˆβ | 0.52913{2} | 0.69550{7} | 0.61804{5} | 0.72465{8} | 0.51526{1} | 0.59269{4} | 0.53371{3} | 0.63839{6} | |
ˆλ | 0.62642{2} | 0.74771{6} | 0.65430{4} | 0.76853{7} | 0.58188{1} | 0.68523{5} | 0.62703{3} | 0.78132{8} | ||
∑RANKS | 24.0{2.5} | 57.0{6} | 42.0{5} | 66.0{7.5} | 9.0{1} | 36.0{4} | 24.0{2.5} | 66.0{7.5} | ||
ˆδ | 0.79539{3} | 1.00353{6} | 0.85786{4} | 1.01445{7} | 0.75478{1} | 0.91041{5} | 0.79011{2} | 1.01556{8} | ||
BIAS | ˆβ | 0.59966{2} | 0.90678{7} | 0.70921{4} | 0.91942{8} | 0.56750{1} | 0.72809{5} | 0.62593{3} | 0.77242{6} | |
ˆλ | 0.53020{2} | 0.72106{6} | 0.59163{4} | 0.72648{7} | 0.52005{1} | 0.64409{5} | 0.54187{3} | 0.75003{8} | ||
ˆδ | 0.63265{3} | 1.00707{6} | 0.73592{4} | 1.02910{7} | 0.56970{1} | 0.82884{5} | 0.62427{2} | 1.03136{8} | ||
50 | MSE | ˆβ | 0.35960{2} | 0.82226{7} | 0.50298{4} | 0.84533{8} | 0.32206{1} | 0.53012{5} | 0.39178{3} | 0.59663{6} |
ˆλ | 0.28111{2} | 0.51992{6} | 0.35002{4} | 0.52777{7} | 0.27045{1} | 0.41485{5} | 0.29363{3} | 0.56255{8} | ||
ˆδ | 0.53026{3} | 0.66902{6} | 0.57190{4} | 0.67630{7} | 0.50319{1} | 0.60694{5} | 0.52674{2} | 0.67704{8} | ||
MRE | ˆβ | 0.29983{2} | 0.45339{7} | 0.35461{4} | 0.45971{8} | 0.28375{1} | 0.36405{5} | 0.31296{3} | 0.38621{6} | |
ˆλ | 0.35347{2} | 0.48070{6} | 0.39442{4} | 0.48432{7} | 0.34670{1} | 0.42939{5} | 0.36125{3} | 0.50002{8} | ||
∑RANKS | 21.0{2} | 57.0{6} | 36.0{4} | 66.0{7.5} | 9.0{1} | 45.0{5} | 24.0{3} | 66.0{7.5} | ||
ˆδ | 0.56242{2} | 0.77628{6} | 0.61241{4} | 0.80807{8} | 0.54109{1} | 0.68672{5} | 0.59950{3} | 0.77986{7} | ||
BIAS | ˆβ | 0.39983{2} | 0.61330{7} | 0.43840{4} | 0.63189{8} | 0.38098{1} | 0.49069{5} | 0.43820{3} | 0.56198{6} | |
ˆλ | 0.36312{2} | 0.49911{6} | 0.38759{4} | 0.52894{8} | 0.35611{1} | 0.45134{5} | 0.38358{3} | 0.52830{7} | ||
ˆδ | 0.31631{2} | 0.60261{6} | 0.37505{4} | 0.65298{8} | 0.29278{1} | 0.47158{5} | 0.35940{3} | 0.60819{7} | ||
100 | MSE | ˆβ | 0.15986{2} | 0.37613{7} | 0.19220{4} | 0.39929{8} | 0.14515{1} | 0.24078{5} | 0.19202{3} | 0.31582{6} |
ˆλ | 0.13185{2} | 0.24911{6} | 0.15023{4} | 0.27978{8} | 0.12682{1} | 0.20370{5} | 0.14714{3} | 0.27910{7} | ||
ˆδ | 0.37494{2} | 0.51752{6} | 0.40827{4} | 0.53871{8} | 0.36073{1} | 0.45781{5} | 0.39966{3} | 0.51991{7} | ||
MRE | ˆβ | 0.19991{2} | 0.30665{7} | 0.21920{4} | 0.31595{8} | 0.19049{1} | 0.24535{5} | 0.21910{3} | 0.28099{6} | |
ˆλ | 0.24208{2} | 0.33274{6} | 0.25839{4} | 0.35263{8} | 0.23741{1} | 0.30089{5} | 0.25572{3} | 0.35220{7} | ||
∑RANKS | 18.0{2} | 57.0{6} | 36.0{4} | 72.0{8} | 9.0{1} | 45.0{5} | 27.0{3} | 60.0{7} | ||
ˆδ | 0.32323{2} | 0.49569{8} | 0.36255{4} | 0.48956{7} | 0.30782{1} | 0.41508{5} | 0.35994{3} | 0.48713{6} | ||
BIAS | ˆβ | 0.22461{2} | 0.35416{7} | 0.25156{3} | 0.35426{8} | 0.19092{1} | 0.27075{5} | 0.25279{4} | 0.31981{6} | |
ˆλ | 0.20246{2} | 0.30157{7} | 0.21812{3} | 0.29793{6} | 0.17845{1} | 0.25460{5} | 0.22575{4} | 0.30237{8} | ||
ˆδ | 0.10448{2} | 0.24571{8} | 0.13144{4} | 0.23967{7} | 0.09475{1} | 0.17229{5} | 0.12955{3} | 0.23729{6} | ||
300 | MSE | ˆβ | 0.05045{2} | 0.12543{7} | 0.06328{3} | 0.12550{8} | 0.03645{1} | 0.07331{5} | 0.06390{4} | 0.10228{6} |
ˆλ | 0.04099{2} | 0.09095{7} | 0.04757{3} | 0.08876{6} | 0.03184{1} | 0.06482{5} | 0.05096{4} | 0.09143{8} | ||
ˆδ | 0.21549{2} | 0.33046{8} | 0.24170{4} | 0.32637{7} | 0.20521{1} | 0.27672{5} | 0.23996{3} | 0.32475{6} | ||
MRE | ˆβ | 0.11231{2} | 0.17708{7} | 0.12578{3} | 0.17713{8} | 0.09546{1} | 0.13538{5} | 0.12640{4} | 0.15991{6} | |
ˆλ | 0.13497{2} | 0.20105{7} | 0.14541{3} | 0.19862{6} | 0.11897{1} | 0.16974{5} | 0.15050{4} | 0.20158{8} | ||
∑RANKS | 18.0{2} | 66.0{8} | 30.0{3} | 63.0{7} | 9.0{1} | 45.0{5} | 33.0{4} | 60.0{6} | ||
ˆδ | 0.24699{2} | 0.39408{8} | 0.27937{3} | 0.38856{7} | 0.06292{1} | 0.32464{5} | 0.29210{4} | 0.36675{6} | ||
BIAS | ˆβ | 0.16520{2} | 0.27112{8} | 0.18661{3} | 0.26750{7} | 0.10938{1} | 0.20723{5} | 0.20130{4} | 0.23228{6} | |
ˆλ | 0.15305{2} | 0.23378{8} | 0.16744{3} | 0.22923{7} | 0.10184{1} | 0.20077{5} | 0.17960{4} | 0.22513{6} | ||
ˆδ | 0.06100{2} | 0.15530{8} | 0.07805{3} | 0.15098{7} | 0.00396{1} | 0.10539{5} | 0.08532{4} | 0.13450{6} | ||
500 | MSE | ˆβ | 0.02729{2} | 0.07350{8} | 0.03482{3} | 0.07155{7} | 0.01196{1} | 0.04295{5} | 0.04052{4} | 0.05395{6} |
ˆλ | 0.02343{2} | 0.05465{8} | 0.02804{3} | 0.05255{7} | 0.01037{1} | 0.04031{5} | 0.03226{4} | 0.05068{6} | ||
ˆδ | 0.16466{2} | 0.26272{8} | 0.18625{3} | 0.25904{7} | 0.04195{1} | 0.21643{5} | 0.19473{4} | 0.24450{6} | ||
MRE | ˆβ | 0.08260{2} | 0.13556{8} | 0.09331{3} | 0.13375{7} | 0.05469{1} | 0.10362{5} | 0.10065{4} | 0.11614{6} | |
ˆλ | 0.10203{2} | 0.15585{8} | 0.11163{3} | 0.15282{7} | 0.06789{1} | 0.13385{5} | 0.11973{4} | 0.15008{6} | ||
∑RANKS | 18.0{2} | 72.0{8} | 27.0{3} | 63.0{7} | 9.0{1} | 45.0{5} | 36.0{4} | 54.0{6} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
ˆδ | 1.23462{5} | 1.31283{7} | 1.20528{3} | 1.31253{6} | 1.10360{1} | 1.22863{4} | 1.14760{2} | 1.36649{8} | ||
BIAS | ˆβ | 1.05009{3} | 1.40142{7} | 1.24705{5} | 1.42459{8} | 1.02087{1} | 1.20712{4} | 1.04620{2} | 1.28075{6} | |
ˆλ | 1.50774{5} | 1.68716{6} | 1.45155{4} | 2.02470{8} | 1.20515{1} | 1.41364{3} | 1.31014{2} | 1.72834{7} | ||
ˆδ | 1.52429{5} | 1.72353{7} | 1.45270{3} | 1.72274{6} | 1.21793{1} | 1.50952{4} | 1.31698{2} | 1.86730{8} | ||
20 | MSE | ˆβ | 1.10269{3} | 1.96399{7} | 1.55514{5} | 2.02944{8} | 1.04218{1} | 1.45713{4} | 1.09454{2} | 1.64033{6} |
ˆλ | 2.27328{5} | 2.84649{6} | 2.10700{4} | 4.09940{8} | 1.45239{1} | 1.99839{3} | 1.71647{2} | 2.98715{7} | ||
ˆδ | 0.82308{5} | 0.87522{7} | 0.80352{3} | 0.87502{6} | 0.73573{1} | 0.81908{4} | 0.76507{2} | 0.91099{8} | ||
MRE | ˆβ | 0.52504{3} | 0.70071{7} | 0.62353{5} | 0.71229{8} | 0.51044{1} | 0.60356{4} | 0.52310{2} | 0.64038{6} | |
ˆλ | 0.43078{5} | 0.48204{6} | 0.41473{4} | 0.57848{8} | 0.34433{1} | 0.40390{3} | 0.37433{2} | 0.49381{7} | ||
∑RANKS | 39.0{5} | 60.0{6} | 36.0{4} | 66.0{8} | 9.0{1} | 33.0{3} | 18.0{2} | 63.0{7} | ||
ˆδ | 0.80023{2} | 0.99949{7} | 0.86165{4} | 1.00938{8} | 0.75322{1} | 0.92477{5} | 0.80210{3} | 0.97979{6} | ||
BIAS | ˆβ | 0.60978{2} | 0.90738{8} | 0.71608{4} | 0.89419{7} | 0.56524{1} | 0.73706{5} | 0.62063{3} | 0.75250{6} | |
ˆλ | 0.68845{3} | 0.85525{7} | 0.71642{4} | 0.92531{8} | 0.62309{1} | 0.72238{5} | 0.66644{2} | 0.85091{6} | ||
ˆδ | 0.64037{2} | 0.99899{7} | 0.74245{4} | 1.01885{8} | 0.56734{1} | 0.85521{5} | 0.64336{3} | 0.95999{6} | ||
50 | MSE | ˆβ | 0.37183{2} | 0.82334{8} | 0.51277{4} | 0.79957{7} | 0.31950{1} | 0.54325{5} | 0.38519{3} | 0.56626{6} |
ˆλ | 0.47397{3} | 0.73146{7} | 0.51326{4} | 0.85620{8} | 0.38824{1} | 0.52183{5} | 0.44414{2} | 0.72404{6} | ||
ˆδ | 0.53349{2} | 0.66633{7} | 0.57444{4} | 0.67292{8} | 0.50215{1} | 0.61652{5} | 0.53473{3} | 0.65319{6} | ||
MRE | ˆβ | 0.30489{2} | 0.45369{8} | 0.35804{4} | 0.44709{7} | 0.28262{1} | 0.36853{5} | 0.31032{3} | 0.37625{6} | |
ˆλ | 0.19670{3} | 0.24436{7} | 0.20469{4} | 0.26437{8} | 0.17803{1} | 0.20639{5} | 0.19041{2} | 0.24312{6} | ||
∑RANKS | 21.0{2} | 66.0{7} | 36.0{4} | 69.0{8} | 9.0{1} | 45.0{5} | 24.0{3} | 54.0{6} | ||
ˆδ | 0.55451{2} | 0.78491{8} | 0.64174{4} | 0.77990{6} | 0.53134{1} | 0.70296{5} | 0.62483{3} | 0.78258{7} | ||
BIAS | ˆβ | 0.39869{2} | 0.61053{7} | 0.46633{4} | 0.61217{8} | 0.37452{1} | 0.50410{5} | 0.46542{3} | 0.55297{6} | |
ˆλ | 0.42451{2} | 0.53326{6} | 0.45485{3} | 0.57349{8} | 0.40630{1} | 0.49665{5} | 0.45643{4} | 0.56196{7} | ||
ˆδ | 0.30748{2} | 0.61608{8} | 0.41183{4} | 0.60824{6} | 0.28232{1} | 0.49416{5} | 0.39041{3} | 0.61243{7} | ||
100 | MSE | ˆβ | 0.15895{2} | 0.37274{7} | 0.21747{4} | 0.37475{8} | 0.14027{1} | 0.25412{5} | 0.21662{3} | 0.30578{6} |
ˆλ | 0.18021{2} | 0.28437{6} | 0.20689{3} | 0.32889{8} | 0.16508{1} | 0.24667{5} | 0.20833{4} | 0.31580{7} | ||
ˆδ | 0.36967{2} | 0.52327{8} | 0.42783{4} | 0.51993{6} | 0.35423{1} | 0.46864{5} | 0.41655{3} | 0.52172{7} | ||
MRE | ˆβ | 0.19934{2} | 0.30526{7} | 0.23317{4} | 0.30608{8} | 0.18726{1} | 0.25205{5} | 0.23271{3} | 0.27649{6} | |
ˆλ | 0.12129{2} | 0.15236{6} | 0.12996{3} | 0.16385{8} | 0.11609{1} | 0.14190{5} | 0.13041{4} | 0.16056{7} | ||
∑RANKS | 18.0{2} | 63.0{7} | 33.0{4} | 66.0{8} | 9.0{1} | 45.0{5} | 30.0{3} | 60.0{6} | ||
ˆδ | 0.31588{2} | 0.49339{7} | 0.36347{3} | 0.49549{8} | 0.30500{1} | 0.41165{5} | 0.38186{4} | 0.48256{6} | ||
BIAS | ˆβ | 0.21678{2} | 0.35354{8} | 0.25102{3} | 0.35267{7} | 0.19375{1} | 0.26734{5} | 0.26120{4} | 0.31289{6} | |
ˆλ | 0.21739{1} | 0.29760{7} | 0.23903{3} | 0.29268{6} | 0.22287{2} | 0.26049{5} | 0.24469{4} | 0.31120{8} | ||
ˆδ | 0.09978{2} | 0.24344{7} | 0.13211{3} | 0.24551{8} | 0.09302{1} | 0.16946{5} | 0.14581{4} | 0.23287{6} | ||
300 | MSE | ˆβ | 0.04700{2} | 0.12499{8} | 0.06301{3} | 0.12438{7} | 0.03754{1} | 0.07147{5} | 0.06823{4} | 0.09790{6} |
ˆλ | 0.04726{1} | 0.08857{7} | 0.05713{3} | 0.08566{6} | 0.04967{2} | 0.06786{5} | 0.05987{4} | 0.09684{8} | ||
ˆδ | 0.21059{2} | 0.32893{7} | 0.24231{3} | 0.33033{8} | 0.20333{1} | 0.27443{5} | 0.25457{4} | 0.32171{6} | ||
MRE | ˆβ | 0.10839{2} | 0.17677{8} | 0.12551{3} | 0.17633{7} | 0.09688{1} | 0.13367{5} | 0.13060{4} | 0.15645{6} | |
ˆλ | 0.06211{1} | 0.08503{7} | 0.06829{3} | 0.08362{6} | 0.06368{2} | 0.07443{5} | 0.06991{4} | 0.08891{8} | ||
∑RANKS | 15.0{2} | 66.0{8} | 27.0{3} | 63.0{7} | 12.0{1} | 45.0{5} | 36.0{4} | 60.0{6} | ||
ˆδ | 0.24597{2} | 0.38259{7} | 0.28932{3} | 0.38364{8} | 0.11464{1} | 0.32482{5} | 0.29036{4} | 0.37746{6} | ||
BIAS | ˆβ | 0.16657{2} | 0.26821{7} | 0.19443{3} | 0.26895{8} | 0.12803{1} | 0.21010{5} | 0.19701{4} | 0.24031{6} | |
ˆλ | 0.16887{1} | 0.21270{6} | 0.18628{4} | 0.22333{7} | 0.17062{2} | 0.20334{5} | 0.18523{3} | 0.22863{8} | ||
ˆδ | 0.06050{2} | 0.14637{7} | 0.08371{3} | 0.14718{8} | 0.01314{1} | 0.10551{5} | 0.08431{4} | 0.14247{6} | ||
500 | MSE | ˆβ | 0.02775{2} | 0.07194{7} | 0.03780{3} | 0.07233{8} | 0.01639{1} | 0.04414{5} | 0.03881{4} | 0.05775{6} |
ˆλ | 0.02852{1} | 0.04524{6} | 0.03470{4} | 0.04988{7} | 0.02911{2} | 0.04135{5} | 0.03431{3} | 0.05227{8} | ||
ˆδ | 0.16398{2} | 0.25506{7} | 0.19288{3} | 0.25576{8} | 0.07643{1} | 0.21655{5} | 0.19357{4} | 0.25164{6} | ||
MRE | ˆβ | 0.08329{2} | 0.13411{7} | 0.09722{3} | 0.13448{8} | 0.06401{1} | 0.10505{5} | 0.09851{4} | 0.12015{6} | |
ˆλ | 0.04825{1} | 0.06077{6} | 0.05322{4} | 0.06381{7} | 0.04875{2} | 0.05810{5} | 0.05292{3} | 0.06532{8} | ||
∑RANKS | 15.0{2} | 60.0{6.5} | 30.0{3} | 69.0{8} | 12.0{1} | 45.0{5} | 33.0{4} | 60.0{6.5} |
ηT | n | MLE | OLSE | WLSE | CRVME | MPS | PCE | ADE | RADE |
(δ=0.5,β=0.25,λ=1.5) | 20 | 4 | 8 | 2.5 | 7 | 2.5 | 6 | 1 | 5 |
50 | 2.5 | 6 | 2.5 | 5 | 1 | 8 | 4 | 7 | |
100 | 3 | 6.5 | 2 | 6.5 | 1 | 8 | 4 | 5 | |
300 | 2 | 6 | 3 | 7 | 1 | 8 | 4 | 5 | |
500 | 2 | 5 | 3 | 7 | 1 | 8 | 4 | 6 | |
(δ=0.5,β=0.25,λ=3.5) | 20 | 3.5 | 5 | 3.5 | 8 | 1 | 6 | 2 | 7 |
50 | 5 | 6 | 3 | 7 | 1 | 8 | 2 | 4 | |
100 | 5 | 7 | 2 | 6 | 1 | 8 | 3 | 4 | |
300 | 5 | 6 | 2 | 7 | 1 | 8 | 3 | 4 | |
500 | 5 | 6 | 2 | 7 | 1 | 8 | 3 | 4 | |
(δ=0.5,β=2,λ=1.5) | 20 | 4 | 5 | 3 | 8 | 2 | 6.5 | 1 | 6.5 |
50 | 4 | 6 | 3 | 7.5 | 1 | 7.5 | 2 | 5 | |
100 | 2 | 6 | 3.5 | 7 | 1 | 8 | 3.5 | 5 | |
300 | 2 | 6 | 3 | 7 | 1 | 8 | 4 | 5 | |
500 | 2 | 6 | 3 | 7 | 1 | 8 | 4 | 5 | |
(δ=0.5,β=2,λ=3.5) | 20 | 4 | 5 | 3 | 8 | 1 | 6.5 | 2 | 6.5 |
50 | 3 | 7 | 4 | 8 | 1 | 6 | 2 | 5 | |
100 | 2 | 7 | 4 | 8 | 1 | 6 | 3 | 5 | |
300 | 1 | 7 | 3 | 8 | 2 | 6 | 4 | 5 | |
500 | 1 | 8 | 3 | 7 | 2 | 6 | 4 | 5 | |
(δ=1.5,β=0.25,λ=1.5) | 20 | 3 | 5 | 4 | 6.5 | 1 | 8 | 2 | 6.5 |
50 | 2 | 5 | 4 | 7 | 1 | 8 | 3 | 6 | |
100 | 2 | 7 | 4 | 6 | 1 | 8 | 3 | 5 | |
300 | 1 | 7 | 3 | 5.5 | 2 | 8 | 4 | 5.5 | |
500 | 2 | 6 | 3 | 7 | 1 | 8 | 4 | 5 | |
(δ=1.5,β=0.25,λ=3.5) | 20 | 3 | 6.5 | 4 | 8 | 1 | 6.5 | 2 | 5 |
50 | 2 | 5 | 4 | 7 | 1 | 8 | 3 | 6 | |
100 | 2 | 5 | 4 | 7 | 1 | 8 | 3 | 6 | |
300 | 2 | 5.5 | 3 | 7 | 1 | 8 | 4 | 5.5 | |
500 | 2 | 7 | 3 | 6 | 1 | 8 | 4 | 5 | |
(δ=1.5,β=2,λ=1.5) | 20 | 2.5 | 6 | 5 | 7.5 | 1 | 4 | 2.5 | 7.5 |
50 | 2 | 6 | 4 | 7.5 | 1 | 5 | 3 | 7.5 | |
100 | 2 | 6 | 4 | 8 | 1 | 5 | 3 | 7 | |
300 | 2 | 8 | 3 | 7 | 1 | 5 | 4 | 6 | |
500 | 2 | 8 | 3 | 7 | 1 | 5 | 4 | 6 | |
(δ=1.5,β=2,λ=3.5) | 20 | 5 | 6 | 4 | 8 | 1 | 3 | 2 | 7 |
50 | 2 | 7 | 4 | 8 | 1 | 5 | 3 | 6 | |
100 | 2 | 7 | 4 | 8 | 1 | 5 | 3 | 6 | |
300 | 2 | 8 | 3 | 7 | 1 | 5 | 4 | 6 | |
500 | 2 | 6.5 | 3 | 8 | 1 | 5 | 4 | 6.5 | |
∑Ranks | 106.5 | 252 | 131 | 286 | 45.5 | 270 | 124 | 225 | |
Overall Rank | 2 | 6 | 4 | 8 | 1 | 7 | 3 | 5 |
Distribution | Abbreviation | Author |
Modified beta Weibull | MBW | Khan [7] |
Beta Weibull | BW | Lee and Famoye [1] |
Odd log-logistic exponentiated Weibull | OLLEW | Afify et al. [11] |
Exponentiated generalized Weibull | EGW | Cordeiro et al. [5] |
Lindley Weibull | LiW | Cordeiro et al. [12] |
Exponentiated Weibull | EW | Mudholkar and Srivastava [13] |
Transmuted Weibull | TW | Aryal and Tsokos [4] |
Distribution | ML estimates and SE | ||||
GKMW | ˆδ= 45.2721 | ˆβ= 1.5646 | ˆλ= 0.6627 | ||
(108.9500) | (0.9374) | (1.1158) | |||
MBW | ˆδ= 0.1328 | ˆβ= 0.5224 | ˆa= 236.8925 | ˆb= 3.9570 | ˆc= 0.4084 |
(0.2897) | (0.3417) | (1389.4352) | (7.5948) | (2.4858) | |
BW | ˆδ=1.5535 | ˆβ= 0.9162 | ˆa= 102.4980 | ˆb= 2.0925 | |
(5.6168) | (2.0369) | (517.5903) | (8.0543) | ||
OLLEW | ˆδ= 69.5586 | ˆβ=3.4425 | ˆγ= 0.0641 | ˆθ= 19.5547 | |
(306.6782) | (6.6654) | (0.0384) | (27.8608) | ||
EGW | ˆδ= 3.7852 | ˆa= 5.6583 | ˆb= 37.1571 | ˆc= 1.4540 | |
(181.1960) | (393.8165) | (79.3795) | (0.7599) | ||
LiW | ˆδ= 0.1238 | ˆβ= 5.0487 | ˆθ= 90.5958 | ||
(0.5147) | (0.4560) | (1882.5304) | |||
EW | ˆδ= 0.8180 | ˆβ= 1.4532 | ˆθ= 37.2311 | ||
(1.1200) | (0.7583) | (79.4533) | |||
TW | ˆδ= 3.6164 | ˆβ= 5.4807 | ˆλ=0.7453 | ||
(0.1515) | (0.5021) | (0.2633) |
Distribution | ML estimates and SE | ||||
GKMW | ˆδ= 0.4582 | ˆβ= 1.3987 | ˆλ= 0.0184 | ||
(0.1995) | (0.4033) | (0.0272) | |||
MBW | ˆδ=4.3285 | ˆβ=0.3702 | ˆa= 1.6702 | ˆb= 22.2114 | ˆc=0.0342 |
(54.3129) | (0.6122) | (1.1828) | (265.3049) | (0.1894) | |
BW | ˆδ= 0.0252 | ˆβ=1.663 | ˆa=0.5592 | ˆb= 3.5694 | |
(0.0813) | (0.4550) | (0.3169) | (12.7630) | ||
OLLEW | ˆδ= 72.9308 | ˆβ= 3.2596 | ˆγ= 0.0769 | ˆθ= 2.2419 | |
(0.3032) | (0.2568) | (0.0084) | (0.2703) | ||
EGW | ˆδ= 2.0863 | ˆa= 0.1545 | ˆb= 0.5983 | ˆc=1.1009 | |
(37.6697) | (3.0671) | (0.3183) | (0.3915) | ||
LiW | ˆδ= 0.2790 | ˆβ= 0.7193 | ˆθ= 0.9699 | ||
(0.7219) | (0.1332) | (1.4562) | |||
EW | ˆδ=0.0687 | ˆβ= 1.1011 | ˆθ= 0.5982 | ||
(0.0978) | (0.3874) | (0.3150) | |||
TW | ˆδ= 6.9739 | ˆβ= 0.8004 | ˆλ= 0.0010 | ||
(5.0869) | (0.1739) | (0.9657) |
Distribution | ML estimates and SE | ||||
GKMW | ˆδ= 0.4596 | ˆβ= 2.1497 | ˆλ= 0.0055 | ||
(0.0924) | (0.2449) | (0.0038) | |||
MBW | ˆδ= 22.8768 | ˆβ= 1.3294 | ˆa= 0.7716 | ˆb= 26.1991 | ˆc=0.1360 |
(52.4569) | (2.0900) | (1.3573) | (169.7519) | (0.9503) | |
BW | ˆδ=0.0948 | ˆβ=1.7636 | ˆa=0.5664 | ˆb= 1.3142 | |
(0.2660) | (0.7832) | (0.3403) | (5.5844) | ||
OLLEW | ˆδ=20.1065 | ˆβ= 5.3078 | ˆγ= 0.0921 | ˆθ=1.6927 | |
(0.3340) | (0.2855) | (0.0099) | (0.1816) | ||
EGW | ˆδ= 2.3954 | ˆa= 0.1067 | ˆb= 0.5795 | ˆc=1.7274 | |
(16.6021) | (1.2706) | (0.3050) | (0.6189) | ||
LiW | ˆδ= 0.2309 | ˆβ=1.1040 | ˆθ= 1.0343 | ||
(0.4284) | (0.2085) | (1.7142) | |||
EW | ˆδ= 0.0237 | ˆβ= 1.7264 | ˆθ=0.5797 | ||
(0.0359) | (0.5159) | (0.2574) | |||
TW | ˆδ= 6.2398 | ˆβ= 1.2250 | ˆλ=0.0010 | ||
(2.4596) | (0.2312) | (0.7996) |
Distribution | AIC | CAIC | BIC | HQIC | W∗ | A∗ | −L | KS | p−value |
GKMW | 118.5520 | 118.9588 | 124.9814 | 121.0807 | 0.0601 | 0.3216 | 56.2760 | 0.0795 | 0.821305 |
MBW | 122.6182 | 123.6708 | 133.3338 | 126.8327 | 0.0615 | 0.3272 | 56.3091 | 0.0800 | 0.815108 |
BW | 120.6346 | 121.3242 | 129.2071 | 124.0062 | 0.0612 | 0.3268 | 56.3173 | 0.0796 | 0.820005 |
OLLEW | 123.9248 | 124.6144 | 132.4973 | 127.2964 | 0.0866 | 0.5041 | 57.9624 | 0.0916 | 0.665628 |
EGW | 120.6216 | 121.3112 | 129.1941 | 123.9932 | 0.0619 | 0.3287 | 56.3108 | 0.0813 | 0.799515 |
LiW | 129.9178 | 130.3246 | 136.3472 | 132.4465 | 0.1285 | 0.8922 | 61.9589 | 0.0876 | 0.718911 |
EW | 118.6216 | 119.0284 | 125.0510 | 121.1503 | 0.0619 | 0.3288 | 56.3108 | 0.0813 | 0.799320 |
TW | 127.1226 | 127.5294 | 133.5520 | 129.6513 | 0.1100 | 0.7623 | 60.5613 | 0.0835 | 0.772281 |
Distribution | AIC | CAIC | BIC | HQIC | W∗ | A∗ | −L | KS | p−value |
GKMW | 306.4025 | 306.9242 | 312.1386 | 308.5868 | 0.0575 | 0.2948 | 150.2012 | 0.0934 | 0.775179 |
MBW | 310.5294 | 311.8931 | 320.0895 | 314.1700 | 0.0582 | 0.2974 | 150.2647 | 0.0948 | 0.759432 |
BW | 308.4788 | 309.3677 | 316.1269 | 311.3913 | 0.0587 | 0.2990 | 150.2394 | 0.0957 | 0.750141 |
OLLEW | 309.0636 | 309.9525 | 316.7117 | 311.9760 | 0.0757 | 0.3810 | 150.5318 | 0.0999 | 0.700003 |
EGW | 308.5187 | 309.4076 | 316.1668 | 311.4311 | 0.0599 | 0.3044 | 150.2593 | 0.0965 | 0.740273 |
LiW | 306.7964 | 307.3181 | 312.5325 | 308.9807 | 0.0709 | 0.3539 | 150.3982 | 0.1018 | 0.677787 |
EW | 306.5187 | 307.0404 | 312.2548 | 308.7030 | 0.0599 | 0.3044 | 150.2593 | 0.0965 | 0.740475 |
TW | 307.3553 | 307.8771 | 313.0914 | 309.5396 | 0.0857 | 0.4275 | 150.6777 | 0.1119 | 0.558858 |
Distribution | AIC | CAIC | BIC | HQIC | W∗ | A∗ | −L | KS | p−value |
GKMW | 377.1478 | 377.5228 | 383.8063 | 379.7861 | 0.0385 | 0.2474 | 185.5739 | 0.0804 | 0.771339 |
MBW | 381.2396 | 382.2073 | 392.3371 | 385.6368 | 0.0420 | 0.2673 | 185.6198 | 0.0843 | 0.719002 |
BW | 379.3222 | 379.9571 | 388.2002 | 382.8399 | 0.0398 | 0.2547 | 185.6611 | 0.0818 | 0.753500 |
OLLEW | 379.0712 | 379.7061 | 387.9492 | 382.5890 | 0.0421 | 0.2739 | 185.5356 | 0.0807 | 0.767901 |
EGW | 379.3276 | 379.9625 | 388.2057 | 382.8454 | 0.0399 | 0.2553 | 185.6638 | 0.0820 | 0.751070 |
LiW | 377.8265 | 378.2015 | 384.4850 | 380.4648 | 0.0402 | 0.2658 | 185.9133 | 0.0820 | 0.749931 |
EW | 377.3276 | 377.7026 | 383.9862 | 379.9659 | 0.0399 | 0.2553 | 185.6638 | 0.0821 | 0.749379 |
TW | 378.3411 | 378.7161 | 384.9997 | 380.9794 | 0.0487 | 0.3192 | 186.1706 | 0.0887 | 0.659154 |
Gauge lengths dataset | |||||||||
1.901 | 2.132 | 2.203 | 2.228 | 2.257 | 2.350 | 2.361 | 2.396 | 2.397 | 2.445 |
2.454 | 2.474 | 2.518 | 2.522 | 2.525 | 2.532 | 2.575 | 2.614 | 2.616 | 2.618 |
2.624 | 2.659 | 2.675 | 2.738 | 2.740 | 2.856 | 2.917 | 2.928 | 2.937 | 2.937 |
2.996 | 3.125 | 2.977 | 3.030 | 3.139 | 3.145 | 3.220 | 3.223 | 3.235 | 3.243 |
3.264 | 3.272 | 3.294 | 3.332 | 3.346 | 3.377 | 3.408 | 3.435 | 3.493 | 3.501 |
3.537 | 3.554 | 3.562 | 3.628 | 3.852 | 3.871 | 3.886 | 3.971 | 4.024 | 4.027 |
4.225 | 4.395 | 5.020 | |||||||
Failure times dataset | |||||||||
0.013 | 0.065 | 0.111 | 0.111 | 0.163 | 0.309 | 0.426 | 0.535 | 0.684 | 0.747 |
0.997 | 1.284 | 1.304 | 1.647 | 1.829 | 2.336 | 2.838 | 3.269 | 3.977 | 3.981 |
4.520 | 4.789 | 4.849 | 5.202 | 5.291 | 5.349 | 5.911 | 6.018 | 6.427 | 6.456 |
6.572 | 7.023 | 7.087 | 7.291 | 7.787 | 8.596 | 9.388 | 10.261 | 10.713 | 11.658 |
13.006 | 13.388 | 13.842 | 17.152 | 17.283 | 19.418 | 23.471 | 24.777 | 32.795 | 48.105 |
Distance dataset | |||||||||
2.0 | 0.5 | 10.4 | 3.6 | 0.9 | 1.0 | 3.4 | 2.9 | 8.2 | 6.5 |
5.7 | 3.0 | 4.0 | 0.1 | 11.8 | 14.2 | 2.4 | 1.6 | 13.3 | 6.5 |
8.3 | 4.9 | 1.5 | 18.6 | 0.4 | 0.4 | 0.2 | 11.6 | 3.2 | 7.1 |
10.7 | 3.9 | 6.1 | 6.4 | 3.8 | 15.2 | 3.5 | 3.1 | 7.9 | 18.2 |
10.1 | 4.4 | 1.3 | 13.7 | 6.3 | 3.6 | 9.0 | 7.7 | 4.9 | 9.1 |
3.3 | 8.5 | 6.1 | 0.4 | 9.3 | 0.5 | 1.2 | 1.7 | 4.5 | 3.1 |
3.1 | 6.6 | 4.4 | 5.0 | 3.2 | 7.7 | 18.2 | 4.1 |