Research article Topical Sections

Very low-grade metamorphism of the Dezadeash Formation (Jura-Cretaceous): Constraints on the tectonometamorphic history of the Dezadeash flysch basin and implications regarding the tectonic evolution of the Northern Cordillera of Alaska and Yukon

  • Received: 07 July 2021 Accepted: 19 August 2021 Published: 23 August 2021
  • Mesozoic convergence of the Wrangellia composite terrane with the western margin of North America resulted in the collapse of intervening flysch basins. One of these basins, the Jurassic-Cretaceous Gravina-Nuzotin belt, comprises from south to north, the Gravina sequence and Gravina belt in southeastern Alaska, the Dezadeash Formation in Yukon, and the Nutzotin Mountains sequence in eastern Alaska. Previous work shows that the Gravina sequence and Gravina belt were underthrust > 20 km beneath the margin of North America in mid-Cretaceous time, culminating in amphibolite facies metamorphism. This tectonometamorphic scenario was subsequently applied to the entire Gravina-Nutzotin belt, despite any detailed studies pertaining to the tectonometamorphic evolution of the Dezadeash Formation. The present analysis of the Dezadeash Formation reveals that metamorphic mineral assemblages in sandstone and tuff document subgreenschist, high temperature zeolite facies metamorphism; Kübler indices of illite and Árkai indices of chlorite in mudstone record diagenetic to high anchizone metapelitic conditions; and the color of organic matter (i.e., the Thermal Alteration Index of palynomorphs and the Conodont Alteration Index) and pyrolysis of organic matter in mudstone and hemipelagite beds document thermal maturation at catagenesis to mesogenesis stages. Collectively, the mineralogic and organic thermal indicators in the Dezadeash Formation suggest that strata experienced maximum pressure-temperature conditions of 2.5 ± 0.5 kbar and 250 ± 25 ℃ in the Early Cretaceous. The inferred tectonometamorphic evolution of the Dezadeash Formation does not support the northern part of the Gravina-Nutzotin belt being underthrust > 20 km beneath the western margin of North America in mid-Cretaceous time, thus contrasting sharply with the Gravina sequence and Gravina belt in the southern part of the Gravina-Nutzotin belt. The diverse tectonometamorphic histories recorded by the southern and northern parts of the Gravina-Nutzotin belt may be a manifestation of oblique collision and diachronous south-to-north accretion of the Wrangellia composite terrane to North America.

    Citation: Grant W Lowey. Very low-grade metamorphism of the Dezadeash Formation (Jura-Cretaceous): Constraints on the tectonometamorphic history of the Dezadeash flysch basin and implications regarding the tectonic evolution of the Northern Cordillera of Alaska and Yukon[J]. AIMS Geosciences, 2021, 7(3): 355-389. doi: 10.3934/geosci.2021022

    Related Papers:

  • Mesozoic convergence of the Wrangellia composite terrane with the western margin of North America resulted in the collapse of intervening flysch basins. One of these basins, the Jurassic-Cretaceous Gravina-Nuzotin belt, comprises from south to north, the Gravina sequence and Gravina belt in southeastern Alaska, the Dezadeash Formation in Yukon, and the Nutzotin Mountains sequence in eastern Alaska. Previous work shows that the Gravina sequence and Gravina belt were underthrust > 20 km beneath the margin of North America in mid-Cretaceous time, culminating in amphibolite facies metamorphism. This tectonometamorphic scenario was subsequently applied to the entire Gravina-Nutzotin belt, despite any detailed studies pertaining to the tectonometamorphic evolution of the Dezadeash Formation. The present analysis of the Dezadeash Formation reveals that metamorphic mineral assemblages in sandstone and tuff document subgreenschist, high temperature zeolite facies metamorphism; Kübler indices of illite and Árkai indices of chlorite in mudstone record diagenetic to high anchizone metapelitic conditions; and the color of organic matter (i.e., the Thermal Alteration Index of palynomorphs and the Conodont Alteration Index) and pyrolysis of organic matter in mudstone and hemipelagite beds document thermal maturation at catagenesis to mesogenesis stages. Collectively, the mineralogic and organic thermal indicators in the Dezadeash Formation suggest that strata experienced maximum pressure-temperature conditions of 2.5 ± 0.5 kbar and 250 ± 25 ℃ in the Early Cretaceous. The inferred tectonometamorphic evolution of the Dezadeash Formation does not support the northern part of the Gravina-Nutzotin belt being underthrust > 20 km beneath the western margin of North America in mid-Cretaceous time, thus contrasting sharply with the Gravina sequence and Gravina belt in the southern part of the Gravina-Nutzotin belt. The diverse tectonometamorphic histories recorded by the southern and northern parts of the Gravina-Nutzotin belt may be a manifestation of oblique collision and diachronous south-to-north accretion of the Wrangellia composite terrane to North America.



    加载中


    [1] Tipper HW, Wheeler JO, McFeely P (1991) Tectonic assemblage map of the Canadian Cordillera and adjacent parts of the United States of America. Geol Surv Can Map.
    [2] Nelson JL, Colpron N, Israel D (2013) The cordillera of British Columbia, Yukon, and Alaska: tectonics and metallogeny. Spec Publ Soc Econ Geol 17: 53-110.
    [3] Monger JWH (2014) Logan medallist 1. Seeking the suture: The Coast-Cascade conundrum. Geosci Can 41: 379-398.
    [4] Berg HC, Jones DL, Richter DH (1972) Gravina-Nutzotin belt—tectonic significance of an Upper Mesozoic sedimentary and volcanic sequence in southern and southeastern Alaska. U S Geol Surv Prof Pap 800D: D1-D24.
    [5] Crawford ML, Hollister LS, Woodsworth GJ (1987) Crustal deformation and regional metamorphism across a terrane boundary, Coast Plutonic complex, British Columbia. Tectonics 6: 343-361. doi: 10.1029/TC006i003p00343
    [6] Gehrels GE, McClelland WC, Samson SD, et al. (1990) Ancient continental margin assemblage in the northern Coast Mountains, southeast Alaska and northwest Canada. Geology 18: 208-211. doi: 10.1130/0091-7613(1990)018<0208:ACMAIT>2.3.CO;2
    [7] Rubin CM, Saleeby JB, Cowan DS, et al. (1990) Regionally extensive mid-Cretaceous west-vergent thrust system in the northwestern Cordillera: implications for continent-margin tectonism. Geology 18: 276-280. doi: 10.1130/0091-7613(1990)018<0276:REMCWV>2.3.CO;2
    [8] Rubin CM, Saleeby JB (1992) Thrust tectonics and Cretaceous intracontinental shortening in southeast Alaska. Thrust Tectonics, Springer, Dordrecht.
    [9] Stanley WD, Labson VF, Nokleberg WJ, et al. (1990) The Denali fault system and Alaska Range of Alaska: Evidence for underplated Mesozoic flysch from magnetotelluric surveys. Geol Soc Am Bull 102: 160-173. doi: 10.1130/0016-7606(1990)102<0160:TDFSAA>2.3.CO;2
    [10] Beaudoin BC, Fuis GS, Mooney WD, et al. (1992) Thin, low-velocity crust beneath the southern Yukon-Tanana terrane, east-central Alaska: Results from Trans-Alaska crustal transect refraction/wide-angle reflection survey. J Geophys Res 97: 1921-1941. doi: 10.1029/91JB02881
    [11] McClelland WC, Gehrels GE, Saleeby JB (1992) Upper Jurassic-Lower Cretaceous basinal strata along the Cordilleran margin: implications for the accretionary history of the Alexander-Wrangellia-Peninsular terrane. Tectonics 11: 823-835. doi: 10.1029/92TC00241
    [12] Mathez EA, Duba AG, Peach CL, et al. (1995) Electrical conductivity and carbon in metamorphic rocks of the Yukon-Tanana Terrane, Alaska. J Geophys Res 100: 187-196. doi: 10.1029/95JB00615
    [13] Fisher MA, Pellerin L, Nokleberg WJ, et al. (2007) Crustal structure of the Alaska Range orogen and Denali fault along the Richardson Highway. Geol Soc Am Spec Pap 431: 43-53.
    [14] Aleinkoff JN, Farmer GL, Rye RO, et al. (2000) Isotopic evidence for the sources of Cretaceous and Tertiary granitic rocks, east-central Alaska: Implications for the tectonic evolution of the Yukon-Tanana terrane. Can J Earth Sci 37: 945-956. doi: 10.1139/e00-006
    [15] Johnston ST, Canil D (2007) Crustal structure of SW Yukon, northern Cordillera: implications for crustal growth in a convergent margin orogen. Tectonics 26: 1-18.
    [16] Trop JM, Ridgway KD (2007) Mesozoic and Cenozoic tectonic growth of southern Alaska: a sedimentary basin perspective. Geol Soc Am Spec Pap 421: 55-94.
    [17] Stanley B (2012) Structural geology and geochronology of the Kluane Schist, southwest Yukon Territory. Waterloo, Ontario: University of Waterloo. Available from: http://hdl.handle.net/10012/7096.
    [18] Hildebrand RS (2013) Mesozoic assembly of the North American Cordillera. Geol Soc Am Spec Pap 495.
    [19] Vice L (2017) Late Cretaceous to Paleocene evolution of the Blanchard River assemblage, southwest Yukon: implications for Mesozoic accretionary processes in the northwestern Cordillera. Burnaby, British Columbia: Simon Fraser University.
    [20] Monger JWH, Journeay JM (1994) Guide to the geology and tectonic evolution of the southern Coast Mountains. Geol Surv Can Open File 2490.
    [21] Plafker G, Berg HC (1994) Overview of the geology and tectonic evolution of Alaska. The Geology of Alaska. Geological Society of America, Geology of North America, 989-1021.
    [22] Nokleberg WJ, Plafke, G, Wilson FH (1994) Geology of south-central Alaska. The Geology of Alaska. Geological Society of America, Geology of North America, 311-366.
    [23] Clift PD, Draut AE, Kelemen PB, et al. (2005) Stratigraphic and geochemical evolution of an oceanic arc upper crustal section: The Jurassic Talkeetna Volcanic Formation, south-central Alaska. Geol Soc Am Bull 117: 902- 925. doi: 10.1130/B25638.1
    [24] Beranek LP, van Staal CR, McClelland WC, et al. (2014) Late Paleozoic assembly of the Alexander-Wrangellia-Peninsular composite terrane, Canadian and Alaskan Cordillera. Geol Soc Am Bull 126: 1531-1550. doi: 10.1130/31066.1
    [25] Greene AR, Scoates JS, Weis D, et al. (2010) The architecture of oceanic plateaus revealed by the volcanic stratigraphy of the accreted Wrangellia oceanic plateau. Geosphere 6: 47-73. doi: 10.1130/GES00212.1
    [26] Vice L, Gibson HD, Israel D (2020) Late Cretaceous to Paleocene tectonometamorphic evolution of Blanchard River assemblage, southwest Yukon: New insight into the terminal accretion of Insular terranes in the Northern Cordillera. Lithosphere.
    [27] Pavlis TL (1982) Origin and age of the Border ranges fault of southern Alaska and its bearing on the late Mesozoic tectonic evolution of Alaska. Tectonics 1: 343-368. doi: 10.1029/TC001i004p00343
    [28] Pavlis TL (1989) Middle Cretaceous orogenesis in the northern Cordillera: A Mediterranean analog of collision-related extensional tectonics. Geology 17: 947-950. doi: 10.1130/0091-7613(1989)017<0947:MCOITN>2.3.CO;2
    [29] Ridgway KD, Trop JM, Nokleberg WJ, et al. (2002) Mesozoic and Cenozoic tectonics of the eastern and central Alaska Range: Progressive basin development and deformation in a suture zone. Geol Soc Am Bull 114: 1480-1504. doi: 10.1130/0016-7606(2002)114<1480:MACTOT>2.0.CO;2
    [30] Pavlis TL, Amato JM, Trop JM, et al. (2019) Subduction polarity in ancient arcs: A call to integrate geology and geophysics to decipher the Mesozoic tectonic history of the northern Cordillera of North America. GSA Today 29: 4-10. doi: 10.1130/GSATG402A.1
    [31] Pavlis TL, Amato JM, Trop JM, et al. (2020) Subduction Polarity in Ancient Arcs: A Call to Integrate Geology and Geophysics to Decipher the Mesozoic Tectonic History of the Northern Cordillera of North America: REPLY. GSA Today 30: 51-58.
    [32] Clennett EJ, Sigloch K, Mihalynuk MG, et al. (2020) A quantitative tomotectonic plate reconstruction of western North America and the eastern Pacific Basin. Geochem Geophys Geosyst 21.
    [33] Sigloch K, Mihalynuk MG (2020) Comment on GSA Today article by Pavlis et al., 2019: "Subduction Polarity in Ancient Arcs: A Call to Integrate Geology and Geophysics to Decipher the Mesozoic Tectonic History of the Northern Cordillera of North America". GSA Today 30: 47-50.
    [34] Plafker G, Nokleberg WJ, Lull JS (1989) Bedrock geology and tectonic evolution of the Wrangellia, Peninsular, and Chugach terranes along the trans-Alaska crustal transect in the Chugach Mountains and southern Copper River basin, Alaska. J Geophys Res Solid Earth 94: 4255-4295. doi: 10.1029/JB094iB04p04255
    [35] Roeske SM, Pavlis TL, Snee LW, et al. (1991) 40Ar/39Ar isotopic ages from the combined Wrangellia-Alexander terrane along the Border Ranges fault system in the eastern Gugach Mountains and Glacier Bay, Alaska. Geologic Studies in Alaska by the United States Geological Survey 1990: 180-195.
    [36] Roeske SM, Snee LW, Pavlis TL (2003) Dextral-slip reactivation of an arc-forearc boundary during Late Cretaceous-Early Eocene oblique convergence in the northern Cordillera. Geol Soc Am Spec Pap 371: 141-170.
    [37] Dodds CJ, Campbell RB (1988) Potassium-argon ages of mainly intrusive rocks in the Saint Elias Mountains, Yukon and British Columbia. Geological Survey Canada Paper.
    [38] Short EJ, Snyder DC, Trop JM, et al. (2005) New findings on Early Cretaceous volcanism within the allochthonous Wrangellia terrane, south-central Alaska: Stratigraphic, geochronologic, and geochemical data from the Chisana Formation, Nutzotin Mountains. Geol Soc Am Abstr Programs 37: 81.
    [39] Sturrock DL, Armstrong RL, Maxwell RB (1980) Age and Sr isotope composition of the Pyroxenite Creek ultramafic complex, southwestern Yukon Territory: An Alaskan-type ultramafic intrusion. Geol Surv Can Curr Res Pap 80-1B: 185-188.
    [40] Nokleberg WJ, Parfenov WJ, Monger JWH, et al. (2000) Phanerozoic Tectonic Evolution of the Circum-North Pacific. U S Geol Surv Prof Pap 1626.
    [41] Amato JM, Rioux ME, Kelemen PB, et al. (2007) U-Pb geochronology of volcanic rocks from the Jurassic Talkeetna Formation and detrital zircons from prearc and postarc sequences: Implications for the age of magmatism and inheritance in the Talkeetna arc. Geol Soc Am Spec Pap 431: 253-271.
    [42] Armstrong RL (1988) Mesozoic and Early Cenozoic Magmatism of the Canadian Cordillera. Geol Soc Am Spec Pap 218: 55-92.
    [43] Gehrels GE, Rusmore M, Woodsworth G, et al. (2009) U-Th-Pb geochronology of the Coast Mountains batholith in north coastal British Columbia: Constraints on age and tectonic evolution. Geol Soc Am Bull 121: 1341-1361. doi: 10.1130/B26404.1
    [44] Eisbacher GH (1985) Pericollisional strike-slip faults and synorogenic basins, Canadian Cordillera. Spec Publ Soc Econ Paleontol Mineral 37: 265-282.
    [45] Eisbacher GH (1976) Sedimentology of the Dezadeash flysch and its implications for strike- slip faulting along the Denali fault, Yukon Territory and Alaska. Can J Earth Sci 13: 1495-1513. doi: 10.1139/e76-157
    [46] Lowey GW (1992) Variation in bed thickness in a turbidite succession, Dezadeash Formation (Jurassic-Cretaceous), Yukon, Canada: Evidence of thinning-upward and thickening-upward cycles. Sediment Geol 78: 217-232. doi: 10.1016/0037-0738(92)90021-I
    [47] Lowey GW (2007) Lithofacies analysis of the Dezadeash Formation (Jura-Cretaceous), Yukon, Canada: The depositional architecture of a mud/sand-rich turbidite system. Sediment Geol 198: 273-291. doi: 10.1016/j.sedgeo.2006.12.011
    [48] Lowey GW (2019) Provenance analysis of the Dezadeash Formation (Jurassic-Cretaceous), Yukon, Canada: Implications regarding a linkage between the Wrangellia composite terrane and the western margin of Laurasia. Can J Earth Sci 56.
    [49] Dodds CJ, Campbell RB (1992) Overview, legend and mineral deposit tabulations for Geology of southwest Kluane Lake map area (115G and F[E1/2]), Yukon Territory, Open File 2188; Geology of Mount St. Elias map area (115B and C[E1/2]), Yukon Territory, Open File 2189; Geology of southwest Dezadeash map area (115A), Yukon Territory, Open File 2190; and Geology of northeast Yakutat Map Area (114O) and Tatshenshini River (114 P) map areas. Geol Surv Can Open File 2191.
    [50] Ridgway KD, Sweet AR (1995) Climatically induced floristic changes across the Eocene-Oligocene transition in the northern high latitudes, Yukon Territory, Canada. Geol Soc Am Bull 107: 676-696. doi: 10.1130/0016-7606(1995)107<0676:CIFCAT>2.3.CO;2
    [51] Enkelmann E, Piestrzeniewicz A, Falkowski S, et al. (2017) Thermochronology in southeast Alaska and southwest Yukon: Implications for North American plate response to terrane accretion. Earth Planet Sci Lett 457: 348-358. doi: 10.1016/j.epsl.2016.10.032
    [52] Brandon MT, Vance JA (1998) Fission-track ages of detrital zircon grains: Implications for the tectonic evolution of the Cenozoic Olympic subduction complex. Am J Sci 292: 565-636. doi: 10.2475/ajs.292.8.565
    [53] Peyton LS, Carrapa B (2013) An introduction to low-temperature thermochronologic techniques, methodology, and applications. Am Assoc Pet Geol Stud Geol 65: 15-36.
    [54] McDermott RG, Ault AK, Caine JS, et al. (2019) Thermotectonic history of the Kluane Ranges and evolution of the eastern Denali fault zone in southwestern Yukon, Canada. Tectonics 38: 2983-3010. doi: 10.1029/2019TC005545
    [55] Richter DH (1976) Geologic map of the Nabesna Quadrangle, Alaska. U S Geol Surv Misc Invest Ser Map.
    [56] Kozinski J (1985) Sedimentology and tectonic significance of the Nutzotin mountains sequence, Alaska. Albany, New York: State University of New York.
    [57] Manuszak JD, Ridgway KD, Trop JM, et al. (2007) Sedimentary record of the tectonic growth of a collisional continental margin: Upper Jurassic-Lower Cretaceous Nutzotin Mountains sequence, eastern Alaska Range, Alaska. Geol Soc Am Spec Pap 431: 345-377.
    [58] Manuszak JD, Ridgway KD (2000) Stratigraphic architecture of the Upper Jurassic-Lower Cretaceous Nutzotin Mountains sequence, Nutzotin and Mentasta Mountains, Alaska. Alaska Div Geol Geophys Surv Prof Rep 119: 63-75.
    [59] Rubin CM, Saleeby JB (1991) The Gravina Sequence: Remnants of a Mid‐Mesozoic oceanic arc in southern southeast Alaska. J Geophys Res Solid Earth 96: 14551-14568. doi: 10.1029/91JB00591
    [60] McClelland WC, Anovitz LM, Gehrels G (1991) Thermobarometric constraints on the structural evolution of the Coast Mountains batholith, central southeastern Alaska. Can J Earth Sci 28: 912-928. doi: 10.1139/e91-083
    [61] McClelland WC, Gehrels GE, Samson SD, et al. (1992) Protolith relations of the Gravina Belt and Yukon-Tanana terrane in central southeastern Alaska. J Geol 100: 107-123. doi: 10.1086/629574
    [62] Gehrels GE (2000) Reconnaissance geology and U-Pb geochronology of the western flank of the Coast Mountains between Juneau and Skagway, southeastern Alaska. Geol Soc Am Spec Pap 343: 213-233.
    [63] Cohen HA, Lundberg N (1993) Detrital record of the Gravina arc, southeastern Alaska: petrology and provenance of Seymour Canal Formation sandstones. Geol Soc Am Bull 105: 1400-1414. doi: 10.1130/0016-7606(1993)105<1400:DROTGA>2.3.CO;2
    [64] Mezger JE, Chacko T, Erdmer P (2001) Metamorphism at a late Mesozoic accretionary margin: a study from the Coast Belt of the North American Cordillera. J Metamorp Geol 19: 121-137. doi: 10.1046/j.0263-4929.2000.00300.x
    [65] Tempelman-Kluit DJ (1976) The Yukon Crystalline terrane: Enigma in the Canadian Cordillera. Geol Soc Am Bull 87: 1343-1357. doi: 10.1130/0016-7606(1976)87<1343:TYCTEI>2.0.CO;2
    [66] Clague JJ (1979) The Denali fault system in southwest Yukon Territory—A geologic hazard? Geol Surv Can Pap 79-1A: 169-178.
    [67] Lowey GW (1998) A new estimate of the amount of displacement on the Denali Fault system based on the occurrence of carbonate megaboulders in the Dezadeash Formation (Jura- Cretaceous), Yukon, and the Nutzotin Mountains sequence (Jura-Cretaceous), Alaska. Bull Can Pet Geol 46: 379-386.
    [68] Andronicos CL, Hollister LS, Davidson C, et al. (1999) Kinematics and tectonic significance of transpressive structures within the Coast Plutonic Complex, British Columbia. J Struct Geol 21: 229-243. doi: 10.1016/S0191-8141(98)00117-5
    [69] Chardon D, Andronicos CL, Hollister LS (1999) Large-scale shear zone patterns and displacements within magmatic arcs: The Coast Plutonic Complex, British Columbia. Tectonics 18: 278-292. doi: 10.1029/1998TC900035
    [70] Stowell HH, Hooper RJ (1990) Structural development of the western metamorphic belt adjacent to the Coast Plutonic Complex: Evidence from Holkham Bay. Tectonics 9: 391-407. doi: 10.1029/TC009i003p00391
    [71] Ingram GM, Hutton DHW (1994) The Great Tonalite Sill: Emplacement into a contractional shear zone and implications for Late Cretaceous to early Eocene tectonics in southeastern Alaska and British Columbia. Geol Soc Am Bull 106: 715-728. doi: 10.1130/0016-7606(1994)106<0715:TGTSEI>2.3.CO;2
    [72] Klepeis KA, Crawford ML, Gehrels G (1998) Structural history of the crustal-scale Coast shear zone north of Portland, southeast Alaska and British Columbia. J Struct Geol 20: 883-904. doi: 10.1016/S0191-8141(98)00020-0
    [73] Lowey GW (2000) The Tatshenshini shear zone (new) in southwestern Yukon, Canada: Comparison with the Coast shear zone in British Columbia and southeastern Alaska and implications regarding the Shakwak suture. Tectonics 19: 512-528. doi: 10.1029/1999TC001119
    [74] Kisch HJ (1987) Correlation between indicators of very low-grade metamorphism. Low Temp Metamorph 227-300.
    [75] Árkai P (1991) Chlorite crystallinity: an empirical approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by Palaeozoic and Mesozoic rocks of northeast Hungary. J Metamorp Geol 9: 723-734. doi: 10.1111/j.1525-1314.1991.tb00561.x
    [76] Traverse A (1988) Paleopalynology, Unwin Hyman: New York.
    [77] Staplin FL (1969) Sedimentary organic matter, organic metamorphism, and oil and gas occurrence. Bull Can Pet Geol 17: 47-66.
    [78] Lowey GW (1980) Depositional themes in a turbidite succession, Dezadeash Formation (Jura-Cretaceous), Yukon. Calgary, Alberta: University of Calgary.
    [79] Hancock PL (1982) Distinction between cleavage and joint using fracture separation. Atlas of deformational and metamorphic rock fabrics, Springer-Verlag, New York, 186-187.
    [80] Passchier CW, Trouw RAJ (1996) Micro-tectonics. Springer-Verlag: New York.
    [81] Lowey GW (2011) Volcaniclastic gravity flow deposits in the Dezadeash Formation (Jura- Cretaceous), Yukon, Canada: Implications regarding the tectonomagmatic evolution of the Chitina arc in the northern Cordillera of North America. Lithos 125: 86-100. doi: 10.1016/j.lithos.2011.01.014
    [82] Folk RL (1974) Petrology of sedimentary rocks. Hemphill Publishing Company, Austin, Texas.
    [83] Liou JG, Maruyama S, Cho M (1987) Very low-grade metamorphism of volcanic and volcaniclastic rocks- mineral assemblages and mineral facies. Low Temp Metamorph 59-113.
    [84] Weber JC, Ferrill DA, Roden-Tice MK (2001) Calcite and quartz microstructural geothermometry of low-grade metasedimentary rocks, Northern Range, Trinidad. J Struct Geol 23: 93-112. doi: 10.1016/S0191-8141(00)00066-3
    [85] Huff WD (2016) K-bentonites: A review. Am Mineral 101: 43-70. doi: 10.2138/am-2016-5339
    [86] Blenkinsop TG (1988) Definition of low-grade metamorphic zones using illite crystallinity. J Metamorp Geol 6: 623-636. doi: 10.1111/j.1525-1314.1988.tb00444.x
    [87] Merriman RJ, Frey M (1999) Patterns of very low-grade metamorphism in metapelitic rocks. Low-grade metamorphism. Osney Mead, Oxford, 61-107.
    [88] Valín ML, García -López S, Brime C, et al. (2016) Tectonothermal evolution in the core of an arcuate fold and thrust belt: the south-eastern sector of the Cantabrian Zone (Variscan belt, north-western Spain). Solid Earth 7: 1003-1022. doi: 10.5194/se-7-1003-2016
    [89] García-López S, Bastida F, Aller J, et al. (2001) Geothermal palaeogradients and metamorphic zonation rom the conodont colour alteration index (CAI). Terra Nova 13: 79-83. doi: 10.1046/j.1365-3121.2001.00328.x
    [90] Peters KE, Casa MR (1994) Applied source rock geochemistry. Am Assoc Pet Geol Mem 60: 93-120.
    [91] Langford FF, Blanc-Valleron M (1990) Interpreting rock-eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon. AAPG Bull 74: 799-804.
    [92] Allen PA, Allen JR (2013) Basin Analysis: Principles and Application to Petroleum Play Assessment, New York: Wiley-Blackwell.
    [93] Tissot BP, Welte DH (1984) Petroleum Formation and Occurrence. Springer-Verlag, New York.
    [94] Hartkopf-Frö der C, Kö nigshof P, Littke R, et al. (2015) Optical thermal maturity parameters and organic geochemical alteration at low grade diagenesis to anchimetamorphism: A review. Int J Coal Geol 150-151: 74-119.
    [95] Barker CE, Pawlewicz MJ (1994) Calculation of vitrinite reflectance from thermal histories and peak temperatures. Am Chem Soc 570: 216-219.
    [96] Jarvie D (2018) Correlation of Tmax and measured vitrinite reflectance. Available from: https: //www.wildcattechnologies.com/application/files/9915/1689/1979/Dan_Jarvie_Correlati on_of_Tmax_and_measured_vitrinite_reflectance.pdf.
    [97] Héroux Y, Chagnon A, Bertrand R (1979) Compilation and correlation of major maturation indicators. Am Assoc Pet Geol Bull 63: 2128-2144.
    [98] Bird KJ, Burruss RC, Pawlewicz MJ (1999) Thermal maturity, Chapter VR. U S Geol Surv Open File Rep 98-34.
    [99] Kisch HJ (1991) Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, and interlaboratory samples. J Metamorp Geol 9: 665-670. doi: 10.1111/j.1525-1314.1991.tb00556.x
    [100] Merriman RJ, Peacor DR (1999) Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. Low-grade metamorphism, Osney Mead, Oxford, 10-60.
    [101] Essene EJ (1989) The current status of thermometry in metamorphic rocks. Geol Soc Am Spec Publ 43: 1-44. doi: 10.1144/GSL.SP.1989.043.01.02
    [102] Frey M, de Capitani C, Liou JG (1991) A new petrogenetic grid for low-grade metabasites. J Metamorp Geol 9: 497-509. doi: 10.1111/j.1525-1314.1991.tb00542.x
    [103] Bousquet R, Oberhä nsli R, Goffé B, et al. (2008) Metamorphism of metasediments at the scale of an orogen: a key to the Tertiary geodynamic evolution of the Alps. Geol Soc London Spec Publ 298: 393-411. doi: 10.1144/SP298.18
    [104] Liou JG (1971) Synthesis and stability relations of prehnite, Ca2Al2Si33O10(OH)2. Am Mineral 56: 507-531.
    [105] Boles JR, Coombs DS (1975) Mineral reactions in zeolite Triassic tuff, Hokonui Hills, New Zealand. Geol Soc Am Bull 86: 163-173. doi: 10.1130/0016-7606(1975)86<163:MRIZTT>2.0.CO;2
    [106] Wantanabe N, Numakura T, Sakaguchi K, et al. (2017) Potentially exploitable supercritical geothermal resources in the ductile crust. Nat Geosci 10: 140-144. doi: 10.1038/ngeo2879
    [107] Liou JG (1970) Synthesis and stability relations of wairakite, CaAl2Si4O12∙2H2O. Contrib Mineral Petrol 27: 259-282. doi: 10.1007/BF00389814
    [108] Thompson AB (1970) Laumontite equilibria and the zeolite facies. Am J Sci 269: 267-275. doi: 10.2475/ajs.269.3.267
    [109] Schmidt D, Schmidt STh, Mullis J, et al. (1997) Very low-grade metamorphism of the Taveyanne formation of western Switzerland. Contrib Mineral Petrol 129: 385-403. doi: 10.1007/s004100050344
    [110] McSween HY, Labotka TC, Viviano-Beck CE (2015) Metamorphism in the Martian crust. Meteorit Planet Sci 50: 590-603. doi: 10.1111/maps.12330
    [111] Weaver CE (1989) Clays, Muds and Shales. Developments in Sedimentology 44, Elsevier: Amsterdam.
    [112] Aldega L, Corrado S, Grasso M, Maniscalco R (2007) Correlation of diagenetic data from organic and inorganic studies in the Appeninic-Maghrebian fold-and-thrust belt: A case study from eastern Sicily. J Geol 115: 335-353. doi: 10.1086/512756
    [113] Frey M (1987) Very low-grade metamorphism of clastic sedimentary rocks. Bishopbriggs, Glasgow, 9-58.
    [114] Burkhard M (1993) Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonic regime: a review. J Struct Geol 15: 351-368. doi: 10.1016/0191-8141(93)90132-T
    [115] Mullis J, Mä hlmann RF, Wolf M (2017) Fluid inclusion microthermometry to calibrate vitrinite reflectance (between 50 and 270 ℃), illite Kübler-index data and the diagenesis/anchizone boundary in the external part of the Central Alps. Applied Clay Science 143: 307-319. doi: 10.1016/j.clay.2017.03.023
    [116] Bernet M, Garver JI (2005) Fission-track analysis of detrital zircon. Rev Mineral Geochem 58: 205-237. doi: 10.2138/rmg.2005.58.8
    [117] Sweeney JJ, Burnham AK (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. Am Assoc Pet Geol Bull 74: 1559-1570.
    [118] McMillan R, Golding M 92019) Thermal maturity of carbonaceous material in conodonts and the Color Alteration Index: independently identifying maximum temperature with Raman spectroscopy. Palaeogeogr Palaeoclimatol Palaeoecol 534: 1-11.
    [119] Coombs DS (1961) Some recent work on the lower grades of metamorphism. Aust J Sci 24: 203-215.
    [120] Sclater JG, Christie PAF (1980) Continental Stretching: An Explanation of the Post-Mid- Cretaceous Subsidence of the Central North Sea Basin. J Geophys Res 85: 3711-3739. doi: 10.1029/JB085iB07p03711
    [121] Angevine CL, Heller PL, Paola C (1990) Quantitative sedimentary basin modeling. Am Assoc Pet Geol.
    [122] Ernst WG (1996) Petrochemical study of regional/contact metamorphism in metaclastic strata of the central White-Inyo Range, eastern California. Geol Soc Am Bull 108: 1528-1548. doi: 10.1130/0016-7606(1996)108<1528:PSORCM>2.3.CO;2
    [123] Wang W, Clarke G, Daczko NR, et al, (2018) Modelling the partial melting of metasediments in a low-pressure regional contact aureole: the effect of water and whole-rock composition. Geol Mag 156.
    [124] Kays MA (1970) Mesozoic metamorphism, May Creek Schist Belt, Klamath Mountains, Oregon. Geol Soc Am Bull 81: 2743-2758. doi: 10.1130/0016-7606(1970)81[2743:MMMCSB]2.0.CO;2
    [125] Barton MD, Battles DA, Debout GE, et al. (1988) Mesozoic contact metamorphism in the western United States. Metamorphism and crustal evolution of the western United States, Prentice Hall, 110-178.
    [126] Shaw CA, Snee LW, Selverstone J, et al. (1999) 40Ar/39Ar Thermochronology of Mesoproterozoic Metamorphism in the Colorado Front Range J Geol 107: 49-67.
    [127] Ratschbacher L, Franz L, Enkelmann E, et al. (2006) The Sino-Korean-Yangtze suture, the Huwan detachment, and the Paleozoic-Tertiary exhumation of (ultra) high-pressure rocks along the Tongbai-Xinxian- Dabie Mountains. Geol Soc Am Spec Pap 403: 45-75.
    [128] Berman RG, Ryan JJ, Gordey SP, et al. (2007) Permian to Cretaceous polymetamorphic evolution of the Stewart River region, Yukon-Tanana terrane, Yukon, Canada: P-T evolution linked with in situ SHRIMP monazite geochronology. J Metamorp Geol 25: 803-827. doi: 10.1111/j.1525-1314.2007.00729.x
    [129] Wintsch RP, Yang HJ, Li XH, et al. (2011) Geochronologic evidence for a cold arc-continent collision: The Taiwan orogeny. Lithos 125: 236-248. doi: 10.1016/j.lithos.2011.02.009
    [130] Hamilton BM, Pattison DR, Sanborne-Barrie M, et al. (2012) Preliminary characterization of metamorphism on Cumberland Peninsula, Baffin Island, Nunavut. Geol Surv Can Curr Res.
    [131] Viete DR, Oliver GJH, Fraser GL, et al. (2013) Timing and heat sources for the Barrovian metamorphism, Scotland. Lithos 177: 148-163. doi: 10.1016/j.lithos.2013.06.009
    [132] McClelland WC, Mattinson JM (2000) Cretaceous-Tertiary evolution of the western Coast Mountains, central southeastern Alaska. Geol Soc Am Spec Pap 343: 159-182.
    [133] Stowell RR, Crawford ML (2000) Metamorphic history of the Coast Mountains orogen, western British Columbia and southeastern Alaska. Geol Soc Am Spec Pap 343: 257-283.
    [134] Trop JM, Benowitz JA, Koepp DO, et al. (2020) Stitch in the ditch: Nutzotin Mountains (Alaska) fluvial strata and a dike record ca. 117-114 Ma accretion of Wrangellia with western North America and initiation of the Totschunda fault. Geosphere 16: 82-110.
    [135] Shepard GE, Mülle r RD, Seton M (2013) The tectonic evolution of the Arctic since Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure. Earth-Sci Rev 124: 148-183. doi: 10.1016/j.earscirev.2013.05.012
    [136] Sigloch K, Mihalynuk MG (2017) Mantle and geological evidence for a Late Jurassic- Cretaceous suture spanning North America. Geol Soc Am Bull 129: 1489-1520.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1969) PDF downloads(91) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog