A photovoltaic (PV)-based generator is a crucial component of modern electricity grids. Most PV systems utilize various maximum power point tracking (MPPT) algorithms to inject the maximum available power into the utility. However, on sunny days, consistently obtaining maximum power can lead to increased thermal stress and a reduced reliability of the power electronic-based DC-DC converter. This paper presents a thermal model for the DC-DC converter that evaluates the accumulated temperature based on power losses and ambient temperature sensed by the thermal sensor. A thermal control strategy is suggested to maintain the temperature of the converter's main components within allowable limits. The thermal control includes two stages: a primary stage that adjusts the switching frequency of the IGBT switches to decrease the accumulated temperature and a secondary stage that adjusts the current-based MPPT algorithm to reduce the maximum current through the main switch. This approach aims to extend the lifespan of the utilized DC-DC converter and lower its operational cost. Furthermore, the allowable range for switching frequency variation is determined through a stability analysis of the frequency response, which is evaluated using a Bode plot for the closed-loop system. The proposed thermal control was implemented in a MATLAB/Simulink environment. The associated results demonstrate the effectiveness of the proposed control in maintaining temperature within acceptable limits and thereby improving the reliability of the system.
Citation: Rasool M. Imran, Kadhim Hamzah Chalok, Siraj A. M. Nasrallah. Innovative two-stage thermal control of DC-DC converter for hybrid PV-battery system[J]. AIMS Electronics and Electrical Engineering, 2025, 9(1): 26-45. doi: 10.3934/electreng.2025002
[1] | Mengjun Yu, Kun Li . A data-driven reduced-order modeling approach for parameterized time-domain Maxwell's equations. Networks and Heterogeneous Media, 2024, 19(3): 1309-1335. doi: 10.3934/nhm.2024056 |
[2] | Andreas Hiltebrand, Siddhartha Mishra . Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Networks and Heterogeneous Media, 2016, 11(1): 145-162. doi: 10.3934/nhm.2016.11.145 |
[3] | Leqiang Zou, Yanzi Zhang . Efficient numerical schemes for variable-order mobile-immobile advection-dispersion equation. Networks and Heterogeneous Media, 2025, 20(2): 387-405. doi: 10.3934/nhm.2025018 |
[4] | Patrick Henning, Mario Ohlberger . The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks and Heterogeneous Media, 2010, 5(4): 711-744. doi: 10.3934/nhm.2010.5.711 |
[5] | JinJun Yong, Changlun Ye, Xianbing Luo . A fully discrete HDG ensemble Monte Carlo algorithm for a heat equation under uncertainty. Networks and Heterogeneous Media, 2025, 20(1): 65-88. doi: 10.3934/nhm.2025005 |
[6] | Liuchao Xiao, Wenbo Li, Leilei Wei, Xindong Zhang . A fully discrete local discontinuous Galerkin method for variable-order fourth-order equation with Caputo-Fabrizio derivative based on generalized numerical fluxes. Networks and Heterogeneous Media, 2023, 18(2): 532-546. doi: 10.3934/nhm.2023022 |
[7] | Salim Meddahi, Ricardo Ruiz-Baier . A new DG method for a pure–stress formulation of the Brinkman problem with strong symmetry. Networks and Heterogeneous Media, 2022, 17(6): 893-916. doi: 10.3934/nhm.2022031 |
[8] | Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye . A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks and Heterogeneous Media, 2017, 12(4): 619-642. doi: 10.3934/nhm.2017025 |
[9] | Timothy Blass, Rafael de la Llave . Perturbation and numerical methods for computing the minimal average energy. Networks and Heterogeneous Media, 2011, 6(2): 241-255. doi: 10.3934/nhm.2011.6.241 |
[10] | Yue Tai, Xiuli Wang, Weishi Yin, Pinchao Meng . Weak Galerkin method for the Navier-Stokes equation with nonlinear damping term. Networks and Heterogeneous Media, 2024, 19(2): 475-499. doi: 10.3934/nhm.2024021 |
A photovoltaic (PV)-based generator is a crucial component of modern electricity grids. Most PV systems utilize various maximum power point tracking (MPPT) algorithms to inject the maximum available power into the utility. However, on sunny days, consistently obtaining maximum power can lead to increased thermal stress and a reduced reliability of the power electronic-based DC-DC converter. This paper presents a thermal model for the DC-DC converter that evaluates the accumulated temperature based on power losses and ambient temperature sensed by the thermal sensor. A thermal control strategy is suggested to maintain the temperature of the converter's main components within allowable limits. The thermal control includes two stages: a primary stage that adjusts the switching frequency of the IGBT switches to decrease the accumulated temperature and a secondary stage that adjusts the current-based MPPT algorithm to reduce the maximum current through the main switch. This approach aims to extend the lifespan of the utilized DC-DC converter and lower its operational cost. Furthermore, the allowable range for switching frequency variation is determined through a stability analysis of the frequency response, which is evaluated using a Bode plot for the closed-loop system. The proposed thermal control was implemented in a MATLAB/Simulink environment. The associated results demonstrate the effectiveness of the proposed control in maintaining temperature within acceptable limits and thereby improving the reliability of the system.
In this article, we prove the non-existence of solutions to the following quasilinear elliptic problem which has degenerate coercivity in their principal part by approximation,
{−div(a(x,u,∇u))+|u|q−1u=λ,x∈Ω,u=0,x∈∂Ω, | (1) |
where
a(x,t,ξ)⋅ξ≥c|ξ|p(1+|t|)θ(p−1), | (2) |
|a(x,t,ξ)|≤c0(|ξ|p−1+b(x)), | (3) |
[a(x,t,ξ)−a(x,t,ξ′)]⋅[ξ−ξ′]>0, | (4) |
for almost every
It is well-known that[3,9], problem
{−Δu+|u|q−1u=δ0,x∈Ω,u=0,x∈∂Ω. |
In the famous work [9], Brezis proved that if
{−Δun+|un|q−1un=fn,x∈Ω,un=0,x∈∂Ω, | (5) |
with
limn→∞∫Ω∖Bϱ(0)|fn−f|=0. |
Then
{−Δu+|u|q−1u=f,x∈Ω,u=0,x∈∂Ω. |
This fact shows that
The main goal of this paper is to study the non-existence of solutions to problem (1). More precisely, consider the limit of approximating equation (9)(see Theorem 1.2 below), our main task is to understand which is the limit of solutions to (9) and what equation it satisfies. A point worth emphasizing is that, even if
In order to state the main results of this paper, we need some definitions.
Let
capr(K,Ω)=inf{‖u‖rW1,r0:u∈C∞c(Ω),u≥χK}, |
where
Let
If
Let
limn→+∞∫Ωf+nφdx=∫Ωφdλ+,limn→+∞∫Ωf−nφdx=∫Ωφdλ−, | (6) |
for every function
‖f+n‖L1(Ω)≤C,‖f−n‖L1(Ω)≤C. | (7) |
For all
Tk(s)=max{−k,min{k,s}},Gk(s)=s−Tk(s). |
Firstly we stale the existence result.
Theorem 1.1. Let
{−div(a(x,u,∇u))+|u|q−1u=g,x∈Ω,u=0,x∈∂Ω. | (8) |
if
q<N(1−θ)N−(1+θ(p−1)). |
Moreover,
u∈Mp1(Ω),|∇u|∈Mp2(Ω), |
where
p1=N(p−1)(1−θ)N−p,p2=N(p−1)(1−θ)N−(1+θ(p−1)). |
Remark 1. The previous result gives existence and uniqueness of the entropy solution
Our main results are following:
Theorem 1.2. Let
{−div(a(x,un,∇un))+|un|q−1un=fn+gn,x∈Ω,un=0,x∈∂Ω. | (9) |
Then
σ<pq(q+1+θ(p−1))(p−1), |
if
q>r(p−1)[1+θ(p−1)]r−p, | (10) |
where
limn→+∞∫Ω|un|q−1unφdx=∫Ω|u|q−1uφdx+∫Ωφdλ,∀φ∈C(Ω). | (11) |
Remark 2. The above theorem shows that there is not a solution to problem (1) can be obtained by approximation, if
Remark 3. Boccardo et.al [7] considered the non-existence result to the following problem
{−div(a(x,∇u)(1+u)γ)+u=μ,x∈Ω,u=0,x∈∂Ω, | (12) |
where
The structure of this paper is as follows: Section 2 mainly gives some lemmas which play a important role in the process of proof of the main theorem. The proof of theorem 1.1 and 1.2 are given in Section 3.
In the following,
In order to prove Theorem 1.1 and 1.2, the following basic lemmas and definitions are required.
Lemma 2.1. (see Lemma 2.1 of [22]) Let
0≤ψ+δ≤1,0≤ψ−δ≤1,∫Ω|∇ψ+δ|rdx≤δ,∫Ω|∇ψ−δ|rdx≤δ,0≤∫Ω(1−ψ+δ)dλ+≤δ,0≤∫Ω(1−ψ−δ)dλ−≤δ,0≤∫Ωψ−δdλ+≤δ,0≤∫Ωψ+δ)dλ−≤δ,ψ+δ≡1,x∈K+,ψ+δ≤1,x∈K−, | (13) |
for every
Definition 2.2. Let
∇Tk(u)=vχ{|u|≤k},a.einΩandforeveryk>0. |
Define the gradient of
Definition 2.3. Let
∫Ωa(x,u,∇u)⋅∇Tk(u−φ)dx+∫Ω|u|q−1uTk(u−φ)dx≤∫ΩgTk(u−φ)dx, |
for every
Definition 2.4. Marcinkiewicz space
|{|υ|≥k}|≤Cks, |
for any
If
Ls(Ω)⊂Ms(Ω)⊂Ls−ε(Ω). |
Lemma 2.5. Let
∫Ω|∇Tk(u)|pdx≤Ckρ, |
for some positive constant
|∇u|∈Mpss+ρ(Ω). |
Proof. Let
|{|∇u|>σ}|=|{|∇u|>σ,|u|≤k}|+|{|∇u|>σ,|u|>k}|≤|{|∇Tk(u)|>σ}|+|{|u|>k}|. | (14) |
Moreover,
|{|∇Tk(u)|>σ}|≤1σp∫Ω|∇Tk(u)|pdx≤Ckρσp. | (15) |
Since
|{|u|>k}|≤Cks. | (16) |
Combining (14)-(16), we have
|{|∇u|>σ}|≤Ckρσp+Cks≤Ckpss+ρ. |
Therefore, by Definition 2.4, we get
Lemma 2.6. Let
∫Ω|∇Tk(un)|pdx≤Ckρ, |
for any
Lemma 2.7. Let
∫{k<|u|<k+h}|∇u|pdx≤Ckθ(p−1). |
Proof. For any given
Tk,h(s)=Th(s−Tk(s))={s−ksgn(s),k≤|s|<k+h,h,|s|≥k+h,0,|s|≤k. |
Take
∫{k<|u|<k+h}(a(x,u,∇u)⋅∇u)dx+∫Ω|u|q−1uTk,h(u)dx=∫ΩgTk,h(u)dx. | (17) |
Since
∫{k<|u|<k+h}(a(x,u,∇u)⋅∇u)dx≤∫ΩgTk,h(u)dx, | (18) |
and
∫ΩgTk,h(u)dx≤h∫{|u|>k}|g|dx≤C. | (19) |
According to the assumption (2) and (17)-(19), we get,
∫{k<|u|<k+h}|∇u|pdx≤Ckθ(p−1). |
Proposition 1. Let
∫{|u|<k}|∇u|pdx≤Ckρ | (20) |
for every
|{|u|>k}|≤Ck−p1. |
Proof. For every
‖Tk(u)‖p∗≤C(N,p,θ)‖∇Tk(u)‖p≤Ckρp, |
where
{|u|≥η}={|Tk(u)≥η|}. |
Hence
|{|u|>η}|≤‖Tk(u)‖p∗p∗ηp∗≤C(kρ)p∗pη−p∗. |
Setting
|{|u|>k}|≤Ck−N(p−ρ)N−p. |
This fact shows that
Proposition 2. Assume that
|{|∇u|>h}|≤Ch−p2, |
for every
Proof. For
ψ(k,λ)=|{|∇u|p>λ,|u|>k}|. |
Using the fact that the function
ψ(0,λ)=|{|∇u|p>λ}|≤1λ∫λ0ψ(0,s)ds≤ψ(k,0)+1λ∫λ0ψ(0,s)−ψ(k,s)ds. | (21) |
By Proposition 1,
ψ(k,0)≤Ck−p1, | (22) |
where
∫∞0ψ(0,s)−ψ(k,s)ds=∫{|u|<k}|∇u|pdx≤Ckρ. | (23) |
Combining (21)-(23), we arrive at
ψ(0,λ)≤Ckρλ+Ck−p1. | (24) |
Let
|{|∇u|>h}|≤Ch−N(p−ρ)N−ρ. |
That is
In this section we prove Theorem 1.1 and 1.2 combining the results of Sections 2.
In the proofs of Theorem 1.1 and 1.2,
limδ→0+limm→+∞limn→+∞ω(n,m,δ)=0. |
If the quantity does not depend on one or more of the three parameters
limδ→0+limn→+∞ω(n,δ)=0. |
The proof of Theorem 1.1 will be divided in several steps.
Proof. (1)Uniqueness: Let
Step 1. Assume that
I:=∫Ωa(x,u1,∇u1)⋅∇Tk(u1−Thu2)dx+∫Ωa(x,u2,∇u2)⋅∇Tk(u2−Thu1)dx=−∫Ω|u1|q−1u1Tk(u1−Thu2)dx−∫Ω|u2|q−1u2Tk(u2−Thu1)dx+∫Ωg1Tk(u1−Thu2)dx+∫Ωg2Tk(u2−Thu1)dx. | (25) |
Step 2. Denote
A0={x∈Ω:|u1−u2|<k,|u1|<h,|u2|<h},A1={x∈Ω:|u1−Thu2|<k,|u2|≥h},A2={x∈Ω:|u1−Thu2|<k,|u2|<h,|u1|≥h}. |
For
∇Tk(u1−Thu2)=∇(u1−u2) |
and
∇Tk(u2−Thu1)=∇Tk(u2−u1). |
Thus, for every
∫Ωa(x,u1,∇u1)⋅∇Tk(u1−Thu2)dx+∫Ωa(x,u2,∇u2)⋅∇Tk(u2−Thu1)dx=∫A0[a(x,u1,∇u1)−a(x,u2,∇u2)]⋅∇(u1−u2)dx:=I0. | (26) |
For
∫Ωa(x,u1,∇u1)⋅∇Tk(u1−Thu2)dx=∫A1a(x,u1,∇u1)⋅∇u1dx≥0. | (27) |
For
∫Ωa(x,u1,∇u1)⋅∇Tk(u1−Thu2)dx≥−∫A2a(x,u1,∇u1)⋅∇u2dx. | (28) |
Similarly, denote
A∗1={x∈Ω:|u2−Thu1|<k,|u1|≥h},A∗2={x∈Ω:|u2−Thu1|<k,|u1|<h,|u2|≥h}. |
Then for
∫Ωa(x,u2,∇u2)⋅∇Tk(u2−Thu1)dx=∫A∗1a(x,u2,∇u2)⋅∇u2dx≥0. | (29) |
For
∫Ωa(x,u2,∇u2)⋅∇Tk(u2−Thu1)dx≥−∫A∗2a(x,u2,∇u2)⋅∇u1dx. | (30) |
Summing up (26)-(30) in the form
I1=∫A2a(x,u1,∇u1)⋅∇u2dx+∫A∗2a(x,u2,∇u2)⋅∇u1dx:=I11+I12. |
Now, we estimate
I11≤‖a(x,u1,∇u1)‖Lp′({h≤|u1|≤h+k})‖∇u2‖Lp({h−k≤|u2|≤h})≤c0(‖∇u1‖p−1Lp′({h≤|u1|≤h+k})+‖b(x)‖Lp′({|u1|≥h}))‖∇u2‖Lp({h−k≤|u2|≤h}). |
Therefore, by Lemma 2.7 and Proposition 2,
Hence, we find
∫Ωa(x,u1,∇u1)⋅∇Tk(u1−Thu2)dx+∫Ωa(x,u2,∇u2)⋅∇Tk(u2−Thu1)dx=∫A0[a(x,u1,∇u1)−a(x,u2,∇u2)]⋅∇(u1−u2)dx+ε(h). | (31) |
Step 3. Now estimate the terms on the right hand side of (25). Denote
B0={x∈Ω:|u1|<h,|u2|<h},B1={x∈Ω:|u1|≥h},B2={x∈Ω:|u2|≥h}. |
For
∫Ω|u1|q−1u1Tk(u1−Thu2)dx+∫Ω|u2|q−1u2Tk(u2−Thu1)dx=∫B0(|u1|q−1u1−|u2|q−1u2)Tk(u1−u2)dx≥0, | (32) |
and
∫Ωg1Tk(u1−Thu2)dx+∫Ωg2Tk(u2−Thu1)dx=∫B0(g1−g2)Tk(u1−u2)dx≤0. | (33) |
For
∫Ω|u1|q−1u1Tk(u1−Thu2)dx+∫Ω|u2|q−1u2Tk(u2−Thu1)dx≤k∫B1(|u1|q−1u1+|u2|q−1u2)dx:=J1, |
and
∫Ωg1Tk(u1−Thu2)dx+∫Ωg2Tk(u2−Thu1)dx≤k∫B1(|g1|+|g2|)dx:=J2. |
For
∫Ω|u1|q−1u1Tk(u1−Thu2)dx+∫Ω|u2|q−1u2Tk(u2−Thu1)dx≤k∫B2(|u1|q−1u1+|u2|q−1u2)dx:=J∗1, |
and
∫Ωg1Tk(u1−Thu2)dx+∫Ωg2Tk(u2−Thu1)dx≤k∫B2(|g1|+|g2|)dx:=J∗2. |
According to
J1+J2+J∗1+J∗2→0ash→∞. | (34) |
Step 4. Combining (25) and (31)-(34), we have
∫A0[a(x,u1,∇u1)−a(x,u2,∇u2)]⋅∇(u1−u2)dx≤ε(h), |
where
∫{|u1−u2|<k}[a(x,u1,∇u1)−a(x,u2,∇u2)]⋅∇(u1−u2)dx≤0, |
for all
(2) Existence:
Step 1. Let
F(x,u)=g(x)−β(u), |
where
Let
γn(s)=βn(s)+1n|s|p−2s. |
Then by [20], there exists
{−diva(x,un,∇un)+γn(x,un)=gn,x∈Ω,un=0,x∈∂Ω, | (35) |
holds in the sense of distributions in
By density arguments, we can take
∫{k≤|un|<k+h}a(x,un,∇un)⋅∇undx+∫{|un|>k}γnTh(un−Tk(un))dx=∫{|un|>k}gnTh(un−Tk(un))dx, | (36) |
and
∫{|un|>k}a(x,un,∇un)⋅∇undx+∫ΩγnTk(un)dx=∫ΩgnTk(un)dx. | (37) |
Combine (36) with (2) (fix the ellipticity constant
∫{k<|un|<k+h}|∇un|pdx≤hkθ(p−1)∫{|un|>k}gndx≤hkθ(p−1)‖gn‖L1(Ω)=Ckθ(p−1). | (38) |
Since
∫{|un|>k}|γn(un)|dx≤∫{|un|>k}|gn|dx≤‖gn‖L1(Ω)≤C. | (39) |
Combine (37) with
∫{|un|<k}|∇un|pdx≤Ck1+θ(p−1). | (40) |
Step 2. Convergence. Using (38) and Proposition 1, we have
Next we prove that
For
{|un−um|>t}⊂{|un|>k}∪{|um|>k}∪{|Tk(un)−Tk(um)|>t}. |
Thus
|{|un−um|>t}|≤|{|un|>k}|+|{|um|>k}|+|{|Tk(un)−Tk(um)|>t}|. |
Choosing
Tk(un)→Tk(u)inLploc(Ω)anda.einΩ. |
Then
|{|Tk(un)−Tk(um)|>t}∩BR|≤t−q∫Ω∩BR|Tk(un)−Tk(um)|qdx≤ϵ, |
for all
Now to prove that
{|∇un−∇um|>t}∩BR⊂{|un−um|≤k,|∇un|≤l,|∇um|≤l,|∇un−∇um|>t}∪{|∇un|>l}∪{|∇um|>l}∪({|un−um|>k}∩BR). |
Choose
[a(x,t,ξ)−a(x,t,ξ′)]⋅[ξ−ξ′]≥μ. |
This is a consequence of continuity and strict monotonicity of
dn=gn−γn(x,un). | (41) |
Taking
∫{|un−um|<k}[a(x,un,∇un)−a(x,um,∇um)]⋅∇(un−um)dx=∫Ω(dn−dm)Tk(un−um)dx≤Ck1+θ(p−1). |
Then
{|un−um|≤k,|∇un|≤l,|∇um|≤l,|∇un−∇um|>t}≤1μ∫{|un−um|<k}[a(x,un,∇un)−a(x,um,∇um)]⋅∇(un−um)dx≤1μCk1+θ(p−1)≤ϵ, |
if
Since
Finally, since
Step 3. In order to prove the existence of the solution completely, we still need to prove that sequence
q∈(1,N(1−θ)N−(1+θ(p−1))). |
Indeed, by Proposition 2,
a(x,un,∇un)→a(x,u,∇u). |
It follows that
a(x,u,∇u)∈MN(1−θ)N−(1+θ(p−1))⊂Lqloc(Ω), |
for all
In this subsection, we give the proof of Theorem 1.2 following some ideas in [11,22].
Proof. Step 1 (A priori estimates). Firstly, choosing
∫Ωa(x,un,∇un)⋅∇Tk(un)(1−φδ)sdx+∫Ω|un|q−1unTk(un)(1−φδ)sdx=s∫Ωa(x,un,∇un)⋅∇φδTk(un)(1−φδ)s−1dx+∫ΩgnTk(un)(1−φδ)sdx+∫Ωf+nTk(un)(1−φδ)sdx+∫Ωf−nTk(un)(1−φδ)sdx. | (42) |
By (2), we get
∫Ωa(x,un,∇un)⋅∇Tk(un)dμ≥c∫Ω|∇Tk(un)|p(1+|Tk(un)|)θ(p−1)dμ, | (43) |
here
Since
∫Ω|un|q−1unTk(un)(1−φδ)sdx≥∫{|un|≥k}|un|q−1unTk(un)dμ≥kq+1μ({|un|≥k}). | (44) |
Using (3) and the Young inequality, we find
∫Ω|a(x,un,∇un)⋅∇φδTk(un)(1−φδ)s−1|dx≤c0k∫Ω(|∇un|p−1+b(x))(|∇φ+δ|+|∇φ+δ|)(1−φδ)s−1dx≤Ck∫Ω(|∇un|(p−1)r′+|b(x)|r′)(1−φδ)(s−1)r′dx+Ck∫Ω(|∇φ+δ|r+|∇φ+δ|r)dx≤Ck(∫Ω(|∇un|(p−1)r′+|b(x)|r′)(1−φδ)(s−1)r′dx+δ). | (45) |
Combine (42)-(45), by (7) and
\begin{align} &\int_{\Omega} \frac{|\nabla T_k(u_n)|^p}{(1+|T_k(u_n)|)^{\theta(p-1)}}d\mu+k^{q+1}\mu(\{|u_n|\geq k\})\\ \leq& Ck(\int_{\Omega}|\nabla u_n|^{(p-1)r'}(1-\varphi_\delta)^{(s-1)r'}dx+\delta +\mu(\Omega). \end{align} | (46) |
For a fixed
\begin{align*} &\mu(\{|\nabla u_n| > \sigma\})\nonumber\\ = &\mu(\{|\nabla u_n| > \sigma, |u_n| < k\})+\mu(\{|\nabla u_n| > \sigma, |u_n|\geq k\})\nonumber\\ \leq&\frac{1}{\sigma^p}\int_{\Omega}|\nabla T_k(u_n)|^pd\mu+\mu(\{|u| > k\})\nonumber\\ \leq&\frac{(1+k)^{\theta(p-1)}}{\sigma^p}\int_{\Omega} \frac{|\nabla T_k(u_n)|^p}{(1+|T_k(u_n)|)^{\theta(p-1)}}d\mu+\mu(\{|u| > k\})\nonumber\\ \leq&C\left(\int_{\Omega}|\nabla u_n|^{(p-1)r'}(1-\varphi_\delta)^{(s-1)r'}dx+\delta +\mu(\Omega)\right)\left(\frac{(1+k)^{1+\theta(p-1)}}{\sigma^p}+\frac{1}{k^q}\right), \end{align*} |
which implies
\begin{align} &\mu|\{|\nabla u_n| > \sigma\}|\\ \leq& C\sigma^{-\frac{pq}{q+1+\theta(p-1)}}\left(\int_{\Omega}|\nabla u_n|^{(p-1)r'}(1-\varphi_\delta)^{(s-1)r'}dx+\delta+\mu|\Omega|\right). \end{align} | (47) |
Let
\begin{align} (p-1)r' < \eta < \frac{pq}{q+1+\theta(p-1)}. \end{align} | (48) |
Clearly, such
\begin{align*} \int_{\Omega}|\nabla u_n|^\eta d\mu \leq C\left(\int_{\Omega}|\nabla u_n|^{(p-1)r'}(1-\varphi_\delta)^{(s-1)r'}dx+\delta+\mu(\Omega)\right). \end{align*} |
By the Holder's inequality,
\begin{align*} &\int_{\Omega}|\nabla u_n|^{(p-1)r'}(1-\varphi_\delta)^{(s-1)r'}dx\nonumber\\ \leq& C\left(\int_{\Omega}|\nabla u_n|^\eta d\mu\right)^{\frac{(p-1)r'}{\eta}}\nonumber\\ \leq &C\left(\int_{\Omega}|\nabla u_n|^{(p-1)r'}(1-\varphi_\delta)^{(s-1)r'}dx+\delta+\mu|\Omega|\right)^{\frac{(p-1)r'}{\eta}}. \end{align*} |
By Lemma 2.1,
\begin{align} \int_{\Omega}|\nabla u_n|^{(p-1)r'}(1-\varphi_\delta)^{(s-1)r'}dx \leq C(\delta+\mu|\Omega|)\leq C(\delta). \end{align} | (49) |
Using (46) and (49), we conclude that
\begin{align} \int_\Omega|\nabla T_k(u_n)|^p dx\leq Ck^{1+\theta(p-1)}. \end{align} | (50) |
According to Lemma 2.5, we have
By (50) and Lemma 2.6, there exists a subsequence, still denoted by
Since
\begin{align} a(x, u_n, \nabla u_n)\rightarrow a(x, u, \nabla u)\; \; \; \; \; strongly\; \; in\; \; (L^s(\Omega))^N, \end{align} | (51) |
for every
Step 2 (Energy estimates). Let
\begin{align} \int_{\{u_n > 2m\}}u_n^q(1-\psi_\delta)dx = \omega(n, m, \delta), \end{align} | (52) |
and
\begin{align} \int_{\{u_n < -2m\}}|u_n|^q(1-\psi_\delta)dx = \omega(n, m, \delta). \end{align} | (53) |
Choose
\begin{align*} \beta_m(s) = \left \{ \begin{array}{rl} \frac{s}{m}-1, &m < s\leq2m, \\ 1, &s > 2m, \\ 0, &s\leq m. \end{array} \right. \end{align*} |
We obtain
\begin{align*} \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; &\frac{1}{m}\int_{\{m < u_n < 2m\}}a(x, u_n, \nabla u_n)\cdot\nabla u_n(1-\psi_\delta)dx\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; &(A)\nonumber\\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; &-\int_{\Omega}a(x, u_n, \nabla u_n)\cdot\nabla \psi_\delta \beta_m(u_n)dx\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; &(B)\nonumber\\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; &+\int_{\Omega}|u_n|^{q-1}u_n\beta_m(u_n)(1-\psi_\delta)dx\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; &(C)\nonumber\\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; = &\int_{\Omega}f_n^+\beta_m(u_n)(1-\psi_\delta)dx\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; &(D)\nonumber\\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; &-\int_{\Omega}f_n^-\beta_m(u_n)(1-\psi_\delta)dx\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; &(E)\nonumber\\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; &+\int_{\Omega}g_n\beta_m(u_n)(1-\psi_\delta)dx.\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; &(F) \end{align*} |
Since
\begin{align*} -(B) = \int_{\Omega}a(x, u, \nabla u)\cdot\nabla \psi_\delta \beta_m(u)dx+\omega(n) = \omega(n, m), \end{align*} |
and
\begin{align*} (C)\geq\int_{\{u_n > 2m\}}u_n^q(1-\psi_\delta)dx. \end{align*} |
By
\begin{align*} (D)\leq\int_{\Omega}f_n^+(1-\psi_\delta)dx = \int_{\Omega}(1-\psi_\delta^+)d\lambda^+-\int_{\Omega}\psi_\delta^-d\lambda^-+\omega(n) = \omega(n, \delta), \end{align*} |
and
\begin{align*} (F) = \omega(n, m). \end{align*} |
We get (52), the proof of (53) is identical.
Step 3 (Passing to the limit). Now we show that
\begin{align*} \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; &\int_{\Omega}a(x, u_n, \nabla u_n)\cdot\nabla T_k(u_n-\varphi)(1-\psi_\delta)dx\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; &(A)\nonumber\\ &-\int_{\Omega}a(x, u_n, \nabla u_n)\cdot\nabla \psi_\delta T_k(u_n-\varphi)dx\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; &(B)\nonumber\\ &+\int_{\Omega}|u_n|^{q-1}u_nT_k(u_n-\varphi)(1-\psi_\delta)dx\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; &(C)\nonumber\\ = &\int_{\Omega}f_n^+T_k(u_n-\varphi)(1-\psi_\delta)dx\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; &(D)\nonumber \end{align*} |
\begin{align*} &-\int_{\Omega}f_n^-T_k(u_n-\varphi)(1-\psi_\delta)dx\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; &(E)\nonumber\\ &+\int_{\Omega}g_nT_k(u_n-\varphi)(1-\psi_\delta)dx.\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; &(F) \end{align*} |
By (13),
\begin{align*} (A) = &\int_{\{|u_n-\varphi| < k\}}a(x, u_n, \nabla u_n)\cdot\nabla u_n(1-\psi_\delta)dx\\ &-\int_{\{|u_n-\varphi| < k\}}a(x, u_n, \nabla u_n)\cdot\nabla \varphi(1-\psi_\delta)dx, \end{align*} |
while
\begin{align*} &\int_{\{|u_n-\varphi| < k\}}a(x, u_n, \nabla u_n)\cdot\nabla \varphi(1-\psi_\delta)dx\\ = &\int_{\{|u-\varphi| < k\}}a(x, u_, \nabla u)\cdot\nabla \varphi dx+\omega(n, \delta). \end{align*} |
The Fatou lemma implies
\begin{align*} &\int_{\{|u-\varphi| < k\}}a(x, u, \nabla u)\cdot\nabla udx\nonumber\\ \leq&\lim\limits_{n\rightarrow\infty}\inf\int_{\{|u_n-\varphi| < k\}}a(x, u_n, \nabla u_n)\cdot\nabla u_ndx. \end{align*} |
Using (13), (51), we have
\begin{align*} -(B) = \int_{\Omega}a(x, u, \nabla u)\cdot\nabla \psi_\delta T_k(u-\varphi)dx+\omega(n) = \omega(n, \delta). \end{align*} |
While
\begin{align*} (F) = \int_{\Omega}gT_k(u-\varphi)dx+\omega(n, \delta), \end{align*} |
and
\begin{align*} |(D)|+|(E)| = &\int_{\Omega}(f_n^++f_n^-)T_k(u_n-\varphi)(1-\psi_\delta)dx\\ \leq& k\int_{\Omega}(f_n^++f_n^-)(1-\psi_\delta)dx = \omega(n, \delta). \end{align*} |
So that we only need to deal with
\begin{align*} \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; (C) = &\int_{\{-2m\leq u_n\leq2m\}}|u_n|^{q-1}u_nT_k(u_n-\varphi)(1-\psi_\delta)dx\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; &(G)\nonumber\\ &+k\int_{\{u_n > 2m\}}u_n^q(1-\psi_\delta)dx+k\int_{\{u_n < -2m\}}|u_n|^q(1-\psi_\delta)dx.\; \; \; \; \; \; \; \; \; \; &(H) \end{align*} |
By (52) and (53), we get
\begin{align*} (H) = \omega(n, m, \delta), \end{align*} |
and
\begin{align*} (G) = &\int_{\Omega}|u|^{q-1}u T_k(u-\varphi)(1-\psi_\delta)dx+\omega(n, m)\\ = &\int_{\Omega}|u|^{q-1}uT_k(u-\varphi)dx+\omega(n, m, \delta). \end{align*} |
Summing up the result of (A)-(H), we have
\begin{align*} \int_\Omega a(x, u, \nabla u)\cdot\nabla T_k(u-\varphi)dx+\int_\Omega |u|^{q-1}uT_k(u-\varphi)dx\leq\int_\Omega gT_k(u-\varphi)dx. \end{align*} |
Thus
Finally we prove (10). Choose
\begin{align*} \int_\Omega a(x, u_n, \nabla u_n)\cdot\nabla \varphi dx+\int_\Omega|u_n|^{q-1}u_n\varphi dx = \int_\Omega (f_n+g_n)\varphi dx. \end{align*} |
Thanks to the assumptions of
\begin{align} \lim\limits_{n\rightarrow+\infty}\int_\Omega |u_n|^{q-1}u_n\varphi dx = -\int_\Omega a(x, u, \nabla u)\cdot\nabla \varphi dx+\int_\Omega g\varphi dx+\int_\Omega \varphi d\lambda. \end{align} | (54) |
Since the entropy solution of (8) is also a distributional solution of the same problem, for the same
\begin{align} \int_\Omega a(x, u, \nabla u)\cdot\nabla \varphi dx+\int_\Omega |u|^{q-1}u\varphi dx = \int_\Omega g\varphi dx. \end{align} | (55) |
Together with (54) and (55), we find
\begin{align*} \lim\limits_{n\rightarrow+\infty}\int_\Omega |u_n|^{q-1}u_n\varphi dx = \int_\Omega |u|^{q-1}u\varphi dx+\int_\Omega \varphi d\lambda. \end{align*} |
Thus (11) holds for every
The authors also would like to thank the anonymous referees for their valuable comments which has helped to improve the paper.
[1] |
Naidu IES, Srikanth S, Rao A, Venkatanarayana (2023) A novel mine blast optimization algorithm (MBOA) based MPPT controlling for grid-PV systems. AIMS Electron Electr Eng 7: 135‒155. https://doi.org/10.3934/electreng.2023008 doi: 10.3934/electreng.2023008
![]() |
[2] |
Moon SY, Chandrarathna SC, Shafique A, Lee JW (2024) A compact DC-DC converter with pulse-counting MPPT and fast one-path self-startup for thermal energy harvesting. IEEE Trans Circuits Syst I Reg Papers 71: 2457‒2470. https://doi.org/10.1109/TCSI.2024.3377003 doi: 10.1109/TCSI.2024.3377003
![]() |
[3] |
Gabriel OE, Huitink DR (2023) Failure mechanisms driven reliability models for power electronics: A review. J Electron Packag 145: 020801. https://doi.org/10.1115/1.4055774 doi: 10.1115/1.4055774
![]() |
[4] |
Shen J, Zhang J, Huang X, Qiu L, Fang Y (2023) Active thermal management method for output-parallel DAB DC–DC converters under parameter mismatches and asymmetrical modulation. IEEE Trans Power Electron 38: 8237‒8248. https://doi.org/10.1109/TPEL.2023.3266287 doi: 10.1109/TPEL.2023.3266287
![]() |
[5] |
Van der Broeck CH, De Doncker RW (2019) Thermal monitoring of power electronic modules with minimal sensing effort. IEEE Energy Conversion Congress and Exposition (ECCE), 5989‒5996. https://doi.org/10.1109/ECCE.2019.8912612 doi: 10.1109/ECCE.2019.8912612
![]() |
[6] | Li J, Hu G, Ma F, Qiu R, Chen J (2023) Research on IGBT junction temperature prediction method based on Extended Kalman Filtering. International Conference on Wireless Power Transfer, 181‒188. https://doi.org/10.1007/978-981-97-0869-7_19 |
[7] |
Dou Y (2021) An improved prediction model of IGBT junction temperature based on backpropagation neural network and Kalman filter. Complexity 2021: 5542889. https://doi.org/10.1155/2021/5542889 doi: 10.1155/2021/5542889
![]() |
[8] | Marquez A, Leon JI, Vazquez S, Franquelo LG (2018) Closed-loop active thermal control via power routing of parallel DC-DC converters. IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018), 1‒6. https://doi.org/10.1109/CPE.2018.8372586 |
[9] |
Ozkan G, Papari B, Hoang PH, Deb N, Edrington CS (2019) An active thermal control method for AC-DC power converter with sequence-based control approach. IEEE Electric Ship Technologies Symposium (ESTS), 263‒267. https://doi.org/10.1109/ESTS.2019.8847886 doi: 10.1109/ESTS.2019.8847886
![]() |
[10] |
Vitale G, Lullo G, Scirè D (2020) Thermal stability of a DC/DC converter with inductor in partial saturation. IEEE Trans Ind Electron 68: 7985‒7995. https://doi.org/10.1109/TIE.2020.3014580 doi: 10.1109/TIE.2020.3014580
![]() |
[11] |
Prasobhu PK, Buticchi G, Brueske S, Liserre M (2016) Gate driver for the active thermal control of a DC/DC GaN-based converter. IEEE Energy Conversion Congress and Exposition (ECCE), 1‒8. https://doi.org/10.1109/ECCE.2016.7855131 doi: 10.1109/ECCE.2016.7855131
![]() |
[12] |
Imran RM, Chalok KH (2024) Innovative mode selective control and parameterization for charging Li-ion batteries in a PV system. AIMS Energy 12: 822‒839. https://doi.org/10.3934/energy.2024039 doi: 10.3934/energy.2024039
![]() |
[13] |
Alavi O, Rajabloo T, De Ceuninck W, Daenen M (2022) Non-isolated DC-DC converters in fuel cell applications: Thermal analysis and reliability comparison. Applied Sciences 12: 5026. https://doi.org/10.3390/app12105026 doi: 10.3390/app12105026
![]() |
[14] |
Kalker S, Ruppert LA, Van Der Broeck CH, Kuprat J, Andresen M, Polom TA, et al. (2021) Reviewing thermal-monitoring techniques for smart power modules. IEEE J Emerg Sel Topics Power Electron 10: 1326‒1341. https://doi.org/10.1109/JESTPE.2021.3063305 doi: 10.1109/JESTPE.2021.3063305
![]() |
[15] | Andresen M, Buticchi G, Liserre M (2016) Active thermal control of isolated soft switching DC/DC converters. IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, 6818‒6823. https://doi.org/10.1109/IECON.2016.7793676 |
[16] |
Kadandani NB, Dahidah M, Ethni S, Muhammad M (2021) Lifetime and reliability improvements in modular multilevel converters using controlled circulating current. J Power Electron 21: 1611‒1620. https://doi.org/10.1007/s43236-021-00297-7 doi: 10.1007/s43236-021-00297-7
![]() |
[17] |
Wang Q, Liu J, Wu P, Qin X (2023) A lifetime improvement active thermal control strategy for wind turbine parallel converters based on reactive circulating current. Electronics 12: 3125. https://doi.org/10.3390/electronics12143125 doi: 10.3390/electronics12143125
![]() |
[18] |
Gonzalez JO, Alatise O (2017) Impact of the gate driver voltage on temperature sensitive electrical parameters for condition monitoring of SiC power MOSFETs. Microelectronics Reliability 76: 470‒474. https://doi.org/10.1016/j.microrel.2017.06.082 doi: 10.1016/j.microrel.2017.06.082
![]() |
[19] |
Andresen M, Ma K, Buticchi G, Falck J, Blaabjerg F, Liserre M (2018) Junction temperature control for more reliable power electronics. IEEE Trans Power Electron 33: 765‒776. http://dx.doi.org/10.1109/TPEL.2017.2665697 doi: 10.1109/TPEL.2017.2665697
![]() |
[20] | Peyghami S, Davari P, Blaabjerg F (2018) System-level lifetime-oriented power sharing control of paralleled DC/DC converters. IEEE Applied Power Electronics Conference and Exposition (APEC), 1890‒1895. https://doi.org/10.1109/APEC.2018.8341275 |
[21] |
Wang R, Huang X, Li J (2021) Active thermal management for SiC MOSFETs based on equivalent adjustment of buffer capacitor. IEEE Trans Circuits Syst. Ⅱ Express Briefs 69: 1502‒1506. https://doi.org/10.1109/TCSⅡ.2021.3135273 doi: 10.1109/TCSⅡ.2021.3135273
![]() |
[22] |
Wang B, Zhou L, Zhang Y, Wang K, Du X, Sun P (2017) Active junction temperature control of IGBT based on adjusting the turn-off trajectory. IEEE Trans Power Electron 33: 5811‒5823. https://doi.org/10.1109/TPEL.2017.2749383 doi: 10.1109/TPEL.2017.2749383
![]() |
[23] |
Prasobhu PK, Raveendran V, Buticchi G, Liserre M (2018) Active thermal control of GaN-based DC/DC converter. IEEE Trans Ind Appl 54: 3529‒3540. http://dx.doi.org/10.1109/TIA.2018.2809543 doi: 10.1109/TIA.2018.2809543
![]() |
[24] | Falck J, Andresen M, Liserre M (2015) Active thermal control of IGBT power electronic converters. IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society, 1‒6. http://dx.doi.org/10.1109/IECON.2015.7392925 |
[25] | Ahsan S, Mughal A, Rapiz M (2022) Controlling temperature of DC-DC converter using switching frequency adjustment, Electrical Engineering Department at California Polytechnic State University. Available from: https://digitalcommons.calpoly.edu/eesp/554 |
[26] |
Hanini W, Ayadi M (2021) Electrothermal modeling of the Insulated Gate Bipolar Transistor (IGBT) using PSpice: Application to DC–DC converter. J Control Autom Electr Syst 32: 507‒521. https://doi.org/10.1007/s40313-020-00672-y doi: 10.1007/s40313-020-00672-y
![]() |
[27] | Cao R, Li Y, Zhang Y, Liu X, Lv C, Zhang J (2020) Thermal modeling of power semiconductor devices with heat sink considering ambient temperature dynamics. IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), 290‒295. https://doi.org/10.1109/IPEMC-ECCEAsia48364.2020.9367773 |
[28] |
Ma K, He N, Liserre M, Blaabjerg F (2015) Frequency-domain thermal modeling and characterization of power semiconductor devices. IEEE Trans Power Electron 31: 7183‒7193. http://dx.doi.org/10.1109/TPEL.2015.2509506 doi: 10.1109/TPEL.2015.2509506
![]() |
[29] | Erickson RW, Maksimovic D (2020) Fundamentals of power electronics, 3rd Ed., Cham, Switzerland. http://dx.doi.org/10.1007/978-3-030-43881-4 |
[30] | Lee J (2015) Basic calculation of a buck converter's power stage. Richtek Technol Corp AN041: 1‒8. Available from: http://acots.info/pdf/an041_en.pdf |
[31] | Ciappa M, Fichtner W (2000) Lifetime prediction of IGBT modules for traction applications. IEEE 38th Annual International Reliability Physics Symposium (Cat. No. 00CH37059), 210‒216. https://doi.org/10.1109/RELPHY.2000.843917 |
1. | A.M. Elaiw, A.J. Alsaedi, A.D. Hobiny, S. Aly, Stability of a delayed SARS-CoV-2 reactivation model with logistic growth and adaptive immune response, 2023, 616, 03784371, 128604, 10.1016/j.physa.2023.128604 | |
2. | D. Burini, N. Chouhad, Virus models in complex frameworks: Towards modeling space patterns of SARS-CoV-2 epidemics, 2022, 32, 0218-2025, 2017, 10.1142/S0218202522500476 | |
3. | N. Bellomo, F. Brezzi, M. A. J. Chaplain, New trends of mathematical sciences towards modeling virus pandemics in a globally connected world, 2022, 32, 0218-2025, 1923, 10.1142/S0218202522010011 | |
4. | A. M. Elaiw, A. S. Shflot, A. D. Hobiny, Stability analysis of SARS-CoV-2/HTLV-I coinfection dynamics model, 2022, 8, 2473-6988, 6136, 10.3934/math.2023310 | |
5. | A. M. Elaiw, N. H. AlShamrani, E. Dahy, A. A. Abdellatif, Aeshah A. Raezah, Effect of Macrophages and Latent Reservoirs on the Dynamics of HTLV-I and HIV-1 Coinfection, 2023, 11, 2227-7390, 592, 10.3390/math11030592 | |
6. | Ahmed M. Elaiw, Abdullah J. Alsaedi, Afnan Diyab Al Agha, Aatef D. Hobiny, Global Stability of a Humoral Immunity COVID-19 Model with Logistic Growth and Delays, 2022, 10, 2227-7390, 1857, 10.3390/math10111857 | |
7. | Giulia Bertaglia, Chuan Lu, Lorenzo Pareschi, Xueyu Zhu, Asymptotic-Preserving Neural Networks for multiscale hyperbolic models of epidemic spread, 2022, 32, 0218-2025, 1949, 10.1142/S0218202522500452 | |
8. | Ahmed M. Elaiw, Raghad S. Alsulami, Aatef D. Hobiny, Modeling and Stability Analysis of Within-Host IAV/SARS-CoV-2 Coinfection with Antibody Immunity, 2022, 10, 2227-7390, 4382, 10.3390/math10224382 | |
9. | Ryan Weightman, Anthony Sbarra, Benedetto Piccoli, Coupling compartmental models with Markov chains and measure evolution equations to capture virus mutability, 2022, 32, 0218-2025, 2099, 10.1142/S0218202522500506 | |
10. | Jiying Ma, Shasha Ma, Dynamics of a stochastic hepatitis B virus transmission model with media coverage and a case study of China, 2022, 20, 1551-0018, 3070, 10.3934/mbe.2023145 | |
11. | Marcelo Bongarti, Luke Diego Galvan, Lawford Hatcher, Michael R. Lindstrom, Christian Parkinson, Chuntian Wang, Andrea L. Bertozzi, Alternative SIAR models for infectious diseases and applications in the study of non-compliance, 2022, 32, 0218-2025, 1987, 10.1142/S0218202522500464 | |
12. | N. Bellomo, M. Esfahanian, V. Secchini, P. Terna, What is life? Active particles tools towards behavioral dynamics in social-biology and economics, 2022, 43, 15710645, 189, 10.1016/j.plrev.2022.10.001 | |
13. | Ahmed M. Elaiw, Abdulsalam S. Shflot, Aatef D. Hobiny, Global Stability of Delayed SARS-CoV-2 and HTLV-I Coinfection Models within a Host, 2022, 10, 2227-7390, 4756, 10.3390/math10244756 | |
14. | Henrique A. Tórtura, José F. Fontanari, The synergy between two threats: Disinformation and COVID-19, 2022, 32, 0218-2025, 2077, 10.1142/S021820252250049X | |
15. | Juan Pablo Agnelli, Bruno Buffa, Damián Knopoff, Germán Torres, A Spatial Kinetic Model of Crowd Evacuation Dynamics with Infectious Disease Contagion, 2023, 85, 0092-8240, 10.1007/s11538-023-01127-6 | |
16. | A.M. Elaiw, A.J. Alsaedi, A.D. Hobiny, Global stability of a delayed SARS-CoV-2 reactivation model with logistic growth, antibody immunity and general incidence rate, 2022, 61, 11100168, 12475, 10.1016/j.aej.2022.05.034 | |
17. | A. D. Al Agha, A. M. Elaiw, Global dynamics of SARS-CoV-2/malaria model with antibody immune response, 2022, 19, 1551-0018, 8380, 10.3934/mbe.2022390 | |
18. | Diletta Burini, Nadia Chouhad, Nicola Bellomo, Waiting for a Mathematical Theory of Living Systems from a Critical Review to Research Perspectives, 2023, 15, 2073-8994, 351, 10.3390/sym15020351 | |
19. | Ahmed M. Elaiw, Afnan D. Al Agha, Global Stability of a Reaction–Diffusion Malaria/COVID-19 Coinfection Dynamics Model, 2022, 10, 2227-7390, 4390, 10.3390/math10224390 | |
20. | A. M. Elaiw, Raghad S. Alsulami, A. D. Hobiny, Global dynamics of IAV/SARS-CoV-2 coinfection model with eclipse phase and antibody immunity, 2022, 20, 1551-0018, 3873, 10.3934/mbe.2023182 | |
21. | Ali Algarni, Afnan D. Al Agha, Aisha Fayomi, Hakim Al Garalleh, Kinetics of a Reaction-Diffusion Mtb/SARS-CoV-2 Coinfection Model with Immunity, 2023, 11, 2227-7390, 1715, 10.3390/math11071715 | |
22. | Matthew O. Adewole, Farah A. Abdullah, Majid K. M. Ali, 2024, 3203, 0094-243X, 030007, 10.1063/5.0225272 | |
23. | Elsayed Dahy, Ahmed M. Elaiw, Aeshah A. Raezah, Hamdy Z. Zidan, Abd Elsattar A. Abdellatif, Global Properties of Cytokine-Enhanced HIV-1 Dynamics Model with Adaptive Immunity and Distributed Delays, 2023, 11, 2079-3197, 217, 10.3390/computation11110217 | |
24. | Nicola Bellomo, Jie Liao, Annalisa Quaini, Lucia Russo, Constantinos Siettos, Human behavioral crowds review, critical analysis and research perspectives, 2023, 33, 0218-2025, 1611, 10.1142/S0218202523500379 | |
25. | Diletta Burini, Damian A. Knopoff, Epidemics and society — A multiscale vision from the small world to the globally interconnected world, 2024, 34, 0218-2025, 1567, 10.1142/S0218202524500295 | |
26. | Ahmed M. Elaiw, Aeshah A. Raezah, Matuka A. Alshaikh, Global Dynamics of Viral Infection with Two Distinct Populations of Antibodies, 2023, 11, 2227-7390, 3138, 10.3390/math11143138 | |
27. | Nicola Bellomo, Massimo Egidi, From Herbert A. Simon’s legacy to the evolutionary artificial world with heterogeneous collective behaviors, 2024, 34, 0218-2025, 145, 10.1142/S0218202524400049 | |
28. | Ryan Weightman, Benedetto Piccoli, 2024, Chapter 7, 978-3-031-56793-3, 157, 10.1007/978-3-031-56794-0_7 | |
29. | Luca Serena, 2023, Methodological Aspects of Multilevel Modeling and Simulation, 979-8-3503-3784-6, 111, 10.1109/DS-RT58998.2023.00025 | |
30. | Aeshah A. Raezah, A.M. Elaiw, M.A. Alshaikh, Global stability of secondary DENV infection models with non-specific and strain-specific CTLs, 2024, 10, 24058440, e25391, 10.1016/j.heliyon.2024.e25391 | |
31. | Nicola Bellomo, Raluca Eftimie, Guido Forni, What is the in-host dynamics of the SARS-CoV-2 virus? A challenge within a multiscale vision of living systems, 2024, 19, 1556-1801, 655, 10.3934/nhm.2024029 | |
32. | A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Stability of HHV-8 and HIV-1 co-infection model with latent reservoirs and multiple distributed delays, 2024, 9, 2473-6988, 19195, 10.3934/math.2024936 | |
33. | Yunfeng Xiong, Chuntian Wang, Yuan Zhang, Tom Britton, Interacting particle models on the impact of spatially heterogeneous human behavioral factors on dynamics of infectious diseases, 2024, 20, 1553-7358, e1012345, 10.1371/journal.pcbi.1012345 | |
34. | Ahmed M. Elaiw, Ghadeer S. Alsaadi, Aatef D. Hobiny, Global co-dynamics of viral infections with saturated incidence, 2024, 9, 2473-6988, 13770, 10.3934/math.2024671 | |
35. | Matthew O. Adewole, Taye Samuel Faniran, Farah A. Abdullah, Majid K.M. Ali, COVID-19 dynamics and immune response: Linking within-host and between-host dynamics, 2023, 173, 09600779, 113722, 10.1016/j.chaos.2023.113722 | |
36. | Giulia Bertaglia, Andrea Bondesan, Diletta Burini, Raluca Eftimie, Lorenzo Pareschi, Giuseppe Toscani, New trends on the systems approach to modeling SARS-CoV-2 pandemics in a globally connected planet, 2024, 34, 0218-2025, 1995, 10.1142/S0218202524500301 | |
37. | Nicola Bellomo, Seung-Yeal Ha, Jie Liao, Wook Yoon, Behavioral swarms: A mathematical theory toward swarm intelligence, 2024, 34, 0218-2025, 2305, 10.1142/S0218202524500490 | |
38. | Mohamed Zagour, 2024, Chapter 6, 978-3-031-56793-3, 127, 10.1007/978-3-031-56794-0_6 | |
39. | Nisrine Outada, A forward look to perspectives, 2023, 47, 15710645, 133, 10.1016/j.plrev.2023.10.011 | |
40. | Luca Serena, Moreno Marzolla, Gabriele D’Angelo, Stefano Ferretti, A review of multilevel modeling and simulation for human mobility and behavior, 2023, 127, 1569190X, 102780, 10.1016/j.simpat.2023.102780 | |
41. | Christian Parkinson, Weinan Wang, Analysis of a Reaction-Diffusion SIR Epidemic Model with Noncompliant Behavior, 2023, 83, 0036-1399, 1969, 10.1137/23M1556691 | |
42. | D. Burini, N. Chouhad, Cross-diffusion models in complex frameworks from microscopic to macroscopic, 2023, 33, 0218-2025, 1909, 10.1142/S0218202523500458 | |
43. | Ahmed M. Elaiw, Raghad S. Alsulami, Aatef D. Hobiny, Global properties of SARS‐CoV‐2 and IAV coinfection model with distributed‐time delays and humoral immunity, 2024, 47, 0170-4214, 9340, 10.1002/mma.10074 | |
44. | B. Bellomo, M. Esfahanian, V. Secchini, P. Terna, From a mathematical science of living systems to biology and economics, 2023, 47, 15710645, 264, 10.1016/j.plrev.2023.11.002 | |
45. | Ahmed M. Elaiw, Amani S. Alsulami, Aatef D. Hobiny, Global properties of delayed models for SARS-CoV-2 infection mediated by ACE2 receptor with humoral immunity, 2024, 9, 2473-6988, 1046, 10.3934/math.2024052 | |
46. | Bishal Chhetri, Krishna Kiran Vamsi Dasu, Stability and bifurcation analysis of a nested multi-scale model for COVID-19 viral infection, 2024, 12, 2544-7297, 10.1515/cmb-2024-0006 | |
47. | Vinicius V. L. Albani, Jorge P. Zubelli, Stochastic transmission in epidemiological models, 2024, 88, 0303-6812, 10.1007/s00285-023-02042-z | |
48. | Hyeong-Ohk Bae, Seung Yeon Cho, Jane Yoo, Seok-Bae Yun, Mathematical modeling of trend cycle: Fad, fashion and classic, 2024, 01672789, 134500, 10.1016/j.physd.2024.134500 | |
49. | Juan Pablo Agnelli, Claudio Armas, Damián A. Knopoff, Spatial Kinetic Modeling of Crowd Evacuation: Coupling Social Behavior and Infectious Disease Contagion, 2025, 17, 2073-8994, 123, 10.3390/sym17010123 | |
50. | Gabriel Benedetti, Ryan Weightman, Benedetto Piccoli, Optimizing overlapping non-pharmaceutical interventions with a socio-demographic model, 2025, 1972-6724, 10.1007/s40574-025-00477-4 | |
51. | Jorge P Zubelli, Jennifer Loria, Vinicius V L Albani, On the estimation of the time-dependent transmission rate in epidemiological models, 2025, 41, 0266-5611, 065001, 10.1088/1361-6420/add55b |