Special Issues

Integrating evolution equations using Fredholm determinants

  • Received: 01 January 2020 Revised: 01 August 2020 Published: 19 October 2020
  • Primary:35M13, 35C15;Secondary:37K10

  • We outline the construction of special functions in terms of Fredholm determinants to solve boundary value problems of the string spectral problem. Our motivation is that the string spectral problem is related to the spectral equations in Lax pairs of at least three nonlinear evolution equations from mathematical physics.

    Citation: Feride Tığlay. Integrating evolution equations using Fredholm determinants[J]. Electronic Research Archive, 2021, 29(2): 2141-2147. doi: 10.3934/era.2020109

    Related Papers:

  • We outline the construction of special functions in terms of Fredholm determinants to solve boundary value problems of the string spectral problem. Our motivation is that the string spectral problem is related to the spectral equations in Lax pairs of at least three nonlinear evolution equations from mathematical physics.



    加载中


    [1] Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses application à l'hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) (1966) 16: 319-361.
    [2] An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. (1993) 71: 1661-1664.
    [3] On isospectral deformations of an inhomogeneous string. Comm. Math. Phys. (2016) 348: 771-802.
    [4] A sufficient condition for the convergence of an infinite determinant. SIAM J. Appl. Math. (1970) 18: 652-657.
    [5] Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. D (1981/82) 4: 47-66.
    [6] Dynamics of director fields. SIAM J. Appl. Math. (1991) 51: 1498-1521.
    [7] On the spectral functions of the string. Amer. Math. Soc. Transl. (1974) 103: 19-102.
    [8] Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms. Math. Ann. (2008) 342: 617-656.
    [9] Euler equations on homogeneous spaces and Virasoro orbits. Adv. Math. (2003) 176: 116-144.
    [10] B. Khesin and R. Wendt, The Geometry of Infinite-Dimensional Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 51, Springer-Verlag, Berlin, 2009.
    [11] A. A. Kirillov, Infinite-dimensional Lie groups: Their orbits, invariants and representations. The geometry of moments, Lect. Notes in Math., Springer-Verlag, New York, 970 (1982), 101–123. doi: 10.1007/BFb0066026
    [12] Kähler geometry of the infinite-dimensional homogeneous space \begin{document}$M = {\rm{Diff}}_+ (S^1)/{\rm{Rot}}(S^1)$\end{document}. Funktsional. Anal. i Prilozhen. (1987) 21: 35-46.
    [13] S. Lang, Differential Manifolds, Second edition. Springer-Verlag, New York, 1985. doi: 10.1007/978-1-4684-0265-0
    [14] Integrable evolution equations on spaces of tensor densities and their peakon solutions. Comm. Math. Phys. (2010) 299: 129-161.
    [15] Fredholm determinants and the Camassa-Holm hierarchy. Comm. Pure Appl. Math. (2003) 56: 638-680.
    [16] Breakdown of the Camassa-Holm equation. Comm. Pure Appl. Math. (2004) 57: 416-418.
    [17] M. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser Boston, Inc., Boston, MA, 1991. doi: 10.1007/978-1-4612-0431-2
    [18] Generalized Euler-Poincaré equations on Lie groups and homogeneous spaces, orbit invariants and applications. Lett. Math. Phys. (2011) 97: 45-60.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(932) PDF downloads(192) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog