Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Blowup and MLUH stability of time-space fractional reaction-diffusion equations


  • In this paper, we consider a class of nonlinear time-space fractional reaction-diffusion equations by transforming the time-space fractional reaction-diffusion equations into an abstract evolution equations in a fractional Sobolev space. Based on operator semigroup theory, the local uniqueness of mild solutions to the reaction-diffusion equations is obtained under the assumption that nonlinear function is locally Lipschitz continuous. On this basis, a blowup alternative result for unique saturated mild solutions is obtained. We further verify the Mittag-Leffler-Ulam-Hyers stability of the nonlinear time-space fractional reaction-diffusion equations.

    Citation: Peng Gao, Pengyu Chen. Blowup and MLUH stability of time-space fractional reaction-diffusion equations[J]. Electronic Research Archive, 2022, 30(9): 3351-3361. doi: 10.3934/era.2022170

    Related Papers:

    [1] Ahmad Mohammed Alghamdi, Sadek Gala, Maria Alessandra Ragusa . A regularity criterion of weak solutions to the 3D Boussinesq equations. AIMS Mathematics, 2017, 2(3): 451-457. doi: 10.3934/Math.2017.2.451
    [2] Sadek Gala, Maria Alessandra Ragusa . A logarithmically improved regularity criterion for the 3D MHD equations in Morrey-Campanato space. AIMS Mathematics, 2017, 2(1): 16-23. doi: 10.3934/Math.2017.1.16
    [3] Li Lu . One new blow-up criterion for the two-dimensional full compressible magnetohydrodynamic equations. AIMS Mathematics, 2023, 8(7): 15876-15891. doi: 10.3934/math.2023810
    [4] Sadek Gala, Mohamed Mechdene, Maria Alessandra Ragusa . Logarithmically improved regularity criteria for the Boussinesq equations. AIMS Mathematics, 2017, 2(2): 336-347. doi: 10.3934/Math.2017.2.336
    [5] Jae-Myoung Kim . Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space. AIMS Mathematics, 2021, 6(3): 2440-2453. doi: 10.3934/math.2021148
    [6] Yanping Zhou, Xuemei Deng, Qunyi Bie, Lingping Kang . Energy conservation for the compressible ideal Hall-MHD equations. AIMS Mathematics, 2022, 7(9): 17150-17165. doi: 10.3934/math.2022944
    [7] Sadek Gala . A note on the Liouville type theorem for the smooth solutions of the stationary Hall-MHD system. AIMS Mathematics, 2016, 1(3): 282-287. doi: 10.3934/Math.2016.3.282
    [8] Qiang Li, Mianlu Zou . A regularity criterion via horizontal components of velocity and molecular orientations for the 3D nematic liquid crystal flows. AIMS Mathematics, 2022, 7(5): 9278-9287. doi: 10.3934/math.2022514
    [9] Tariq Mahmood, Zhaoyang Shang . Blow-up criterion for incompressible nematic type liquid crystal equations in three-dimensional space. AIMS Mathematics, 2020, 5(2): 746-765. doi: 10.3934/math.2020051
    [10] Zhaoyang Shang . Osgood type blow-up criterion for the 3D Boussinesq equations with partial viscosity. AIMS Mathematics, 2018, 3(1): 1-11. doi: 10.3934/Math.2018.1.1
  • In this paper, we consider a class of nonlinear time-space fractional reaction-diffusion equations by transforming the time-space fractional reaction-diffusion equations into an abstract evolution equations in a fractional Sobolev space. Based on operator semigroup theory, the local uniqueness of mild solutions to the reaction-diffusion equations is obtained under the assumption that nonlinear function is locally Lipschitz continuous. On this basis, a blowup alternative result for unique saturated mild solutions is obtained. We further verify the Mittag-Leffler-Ulam-Hyers stability of the nonlinear time-space fractional reaction-diffusion equations.



    We generalize the classical Halanay inequality to encompass fractional-order systems with both discrete and distributed neutral delays. This inequality, originally formulated for integer-order systems, is now generalized to non-integer orders.

    Lemma 1.1. Consider a nonnegative function w(t) that satisfies the inequality

    w(t)K1w(t)+K2suptτstw(s),ta,

    where 0<K2<K1. Under these conditions, positive constants K3 and K4 exist such that

    w(t)K3eK4(ta),ta.

    Halanay first introduced this inequality while studying the stability of a specific differential equation [10]

    υ(t)=Aυ(t)+Bυ(tτ),τ>0.

    Since then, the inequality has been generalized to include variable coefficients and delays of varying magnitude, both bounded and unbounded [1,25,26]. These generalizations have found applications in Hopfield neural networks and the analysis of Volterra functional equations, particularly in the context of problems described by the following system [12,16,27]:

    {xi(t)=cixi(t)+nj=1bijfj(xj(tτ))+nj=1aijfj(xj(t))+Ii,t>0,xi(t)=ϕi(t),τt0, i=1,...,n.

    Such problems arise in various fields, including parallel computing, cryptography, image processing, combinatorial optimization, signal theory, and geology [15,17,18].

    Additionally, a generalization of the Halanay inequality to systems with distributed delays is presented in [21]:

    w(x)B(x)w(x)+A(x)0k(s)w(xs)ds,x0.

    The solutions exhibit exponential decay if the kernels satisfy the conditions

    0eβsk(s)ds<,

    for some β>0, and

    A(x)0k(s)dsB(x)C,C>0,xR.

    See also [22] for further details.

    This study broadens the scope of Halanay's inequality to encompass fractional-order systems. The justification for using fractional derivatives is provided in [2,3]. We also consider neutral delays, where delays appear in the leading derivative. Specifically, we analyze the stability of the following problem:

    {Dφ,αC[w(t)pw(tυ)]qw(t)+taw(r)k(tr)dr, p>0, 0<α<1, υ,t>a,w(t)=ϖ(t),aυta. (1.1)

    We establish sufficient conditions on the kernel k to guarantee Mittag-Leffler stability, ensuring that the solutions satisfy

    w(t)AEα(q[φ(t)φ(a)]α),t>a.

    We provide examples of function families that satisfy our assumptions. As an application, we consider a fractional-order Cohen-Grossberg neural network system with neutral delays [9]. This system represents a more general form of the traditional Hopfield neural network.

    There is extensive research on the existence, stability, and long-term behavior of Cohen-Grossberg neural network systems. Our focus is on research that specifically addresses networks with time delays or fractional-order dynamics. For integer-order neutral Cohen-Grossberg systems, refer to [5,7,24]. The fractional case with discrete delays was explored in [14]. While the Halanay inequality has been adapted for fractional-order systems with discrete delays in [4,11,28], we are unaware of any work addressing our specific problem (1.1).

    The techniques used for integer-order systems are not directly applicable to the fractional-order case. For example, the Mittag-Leffler functions lack the semigroup property, and estimating the expression Eα(q(φ(tυ)φ(a))α)/Eα(q(φ(t)φ(a))α) is challenging for convergence analysis. The ideal decay rate would be Eα(q(φ(t)φ(a))α), but the neutral delay introduces new challenges, particularly near ν. Approximating with (φ(t)φ(a))α (using Mainardi's conjecture) does not fully resolve these issues.

    This paper is organized into eight sections, beginning with background information in Section 2. Section 3 presents our inequality for systems with discrete time delays, and Section 4 discusses two potential kernel functions. Section 5 investigates a fractional Halanay inequality in the presence of distributed neutral delays. Solutions of arbitrary signs for the problem in Section 3 are addressed in Section 6, and Section 7 applies our results to a Cohen-Grossberg system with neutral delays. Section 8 provides the conclusion, summarizing the findings and highlighting directions for future research.

    This section provides fundamental definitions and lemmas essential for the subsequent analysis. Throughout the paper, we consider [a,b] to be an infinite or finite interval, and φ to be an n- continuously differentiable function on [a,b] such that φ is increasing and φ(ϰ)0 on [a,b].

    Definition 2.1. The φ-Riemann-Liouville fractional integral of a function ω with respect to a function φ is defined as

    Iφ,αω(z)=1Γ(α)za[φ(z)φ(s)]α1ω(s)φ(s)ds,α>0,z>a

    provided that the right side exists.

    Definition 2.2. The φ-Caputo derivative of order α>0 is defined by

    Dφ,αCω(ϰ)=Iφ,nα(1φ(ϰ)ddϰ)nω(ϰ),

    which can be expressed equivalently as

    Dφ,αCω(ϰ)=1Γ(nα)ϰa[φ(ϰ)φ(τ)]nα1φ(τ)ω[n]φ(τ)dτ, ϰ>a,

    where

    ω[n]φ(ϰ)=(1φ(ϰ)ddϰ)nω(ϰ), n=[α].

    Particularly, when 0<α<1

    Dφ,αCω(ϰ)=Iφ,1α(1φ(ϰ)ddϰ)ω(ϰ)=1Γ(1α)ϰa[φ(ϰ)φ(τ)]αω(τ)dτ.

    The Mittag-Leffler functions used in this context are defined as follows:

    Eα(y):=n=0ynΓ(1+αn), Re(α)>0,

    and

    Eα,β(y):=n=0ynΓ(β+αn), Re(β)>0, Re(α)>0.

    Lemma 2.1. [13] The Cauchy problem

    {Dφ,αCy(ζ)=λy(ζ),0<α1ζ>a,λRy(a)=ya, (2.1)

    has the solution

    y(ζ)=yaEα(λ[φ(ζ)φ(a)]α),ζa.

    Lemma 2.2. [13] The Cauchy problem

    {Dφ,αCy(ζ)=λy(ζ)+h(ζ),0<α1λRζ>a,y(a)=yaR, (2.2)

    admits the solution for ζa

    y(ζ)=yaEα(λ[φ(ζ)φ(a)]α)+ζa[φ(ζ)φ(s)]α1Eα,α(λ[φ(ζ)φ(s)]α)φ(s)h(s)ds.

    Lemma 2.3. For λ,ν,ω>0, the following inequality is valid for all z>a:

    za[φ(s)φ(a)]λ1[φ(z)φ(s)]ν1eω[φ(s)φ(a)]φ(s)dsC[φ(z)φ(a)]ν1,

    where

    C=max{1,21ν}Γ(λ)[1+λ(λ+1)/ν]ωλ.

    Proof. For z>a, let

    I(z)=[φ(z)φ(a)]1νza[φ(s)φ(a)]λ1[φ(z)φ(s)]ν1eω[φ(s)φ(a)]φ(s)ds.

    Set ξ[φ(z)φ(a)]=φ(s)φ(a). Then, [φ(z)φ(a)]dξ=φ(s)ds and

    I(z)=[φ(z)φ(a)]λ10(1ξ)ν1ξλ1eωξ[φ(z)φ(a)]dξ, z>a.

    As for 0ξ<1/2, we have (1ξ)ν1max{1,21ν}, therefore

    I(z)max{1,21ν}[φ(z)φ(a)]λ1/20ξλ1eωξ[φ(z)φ(a)]dξ+[φ(z)φ(a)]λ11/2(1ξ)ν1ξλ1eωξ[φ(z)φ(a)]dξ. (2.3)

    Let u=ωξ[φ(z)φ(a)]. Then, dξ=[φ(z)φ(a)]1ω1du and

    [φ(z)φ(a)]λ1/20ξλ1eωξ[φ(z)φ(a)]dξωλ0uλ1eudu=ωλΓ(λ). (2.4)

    If 1ωξ[φ(z)φ(a)], then

    eωξ[φ(z)φ(a)][ωξ[φ(z)φ(a)]]1+[λ]Γ([λ]+2)[ωξ[φ(z)φ(a)]]λΓ(λ+2).

    Therefore, when 1/2<ξ1,

    ξλ1eωξ[φ(z)φ(a)]ξλ1Γ(2+λ)[ωξ[φ(z)φ(a)]]λ2ωλΓ(λ+2)[φ(z)φ(a)]λ,

    and consequently

    [φ(z)φ(a)]λ11/2(1ξ)ν1ξλ1eωξ[φ(z)φ(a)]dξ[φ(z)φ(a)]λ11/2(1ξ)ν12ωλΓ(2+λ)[φ(z)φ(a)]λdξ=2ωλΓ(2+λ)11/2(1ξ)ν1dξ=21νωλΓ(λ+2)ν.

    When ωξ[φ(z)φ(a)]<1, it implies that [ωξ[φ(z)φ(a)]]λ<1eωξ[φ(z)φ(a)]. Consequently,

    [φ(z)φ(a)]λ11/2ξλ1(1ξ)ν1eωξ[φ(z)φ(a)]dξ<[φ(z)φ(a)]λ11/2ξλ1(1ξ)ν1[ωξ[φ(z)φ(a)]]λdξ<2ωλ11/2(1ξ)ν1dξ=21νωλν. (2.5)

    Taking into account (2.3)–(2.5), we infer that

    I(z)max{1,21ν}ωλΓ(λ)+21νωλΓ(λ+2)νmax{1,21ν}ωλΓ(λ)(1+λ(λ+1)ν), z>a.

    The proof is complete.

    Lemma 2.4. [8, (4.4.10), (4.9.4)] For β>0, ν>0, and λ,λC, λλ, we have

    ϰ0zβ1Eα,β(λzα)(ϰz)ν1Eα,ν(λ(ϰz)α)dz=λEα,β+ν(λϰα)λEα,β+ν(λϰα)λλϰβ+ν1,

    and for σ>0, γ>0,

    Iσzγ1Eα,γ(pzα)(ϰ)=ϰσ+γ1Eα,σ+γ(pϰα).

    Lemma 2.5. For β>0, ν>0, and λ,λC, λλ, we have

    ϰaEα,β(λ[φ(z)φ(a)]α)[φ(ϰ)φ(z)]ν1[φ(z)φ(a)]β1×Eα,ν(λ[φ(ϰ)φ(z)]α)φ(z)dz=[φ(ϰ)φ(a)]β+ν1λEα,β+ν(λ[φ(ϰ)φ(a)]α)λEα,β+ν(λ[φ(ϰ)φ(a)]α)λλ,

    and for σ>0, γ>0,

    Iφ,σ[φ(z)φ(a)]γ1Eα,γ(p[φ(z)φ(a)]α)(ϰ)=[φ(ϰ)φ(a)]σ+γ1×Eα,σ+γ(p[φ(ϰ)φ(a)]α). (2.6)

    Proof. Let u=φ(ϰ)φ(z). Then,

    ϰaEα,β(λ[φ(z)φ(a)]α)[φ(ϰ)φ(z)]ν1[φ(z)φ(a)]β1×Eα,ν(λ[φ(ϰ)φ(z)]α)φ(z)dz=φ(ϰ)φ(a)0Eα,β(λ[φ(ϰ)φ(a)u]α)[φ(ϰ)φ(a)u]β1uν1Eα,ν(λuα)du.

    At this point, we can utilize Lemma 2.4 to derive the following:

    ϰaEα,β(λ[φ(z)φ(a)]α)[φ(ϰ)φ(z)]ν1[φ(z)φ(a)]β1×Eα,ν(λ[φ(ϰ)φ(z)]α)φ(z)dz=[φ(ϰ)φ(a)]β+ν1λEα,β+ν(λ[φ(ϰ)φ(a)]α)λEα,β+ν(λ[φ(ϰ)φ(a)]α)λλ.

    To prove the second formula in the lemma, we have

    Iφ,σ[φ(z)φ(a)]γ1Eα,γ(p[φ(z)φ(a)]α)(ϰ)=1Γ(σ)ϰaEα,γ(p[φ(z)φ(a)]α)[φ(ϰ)φ(z)]σ1[φ(z)φ(a)]γ1φ(z)dz.

    From the first formula in the lemma, with β=γ, ν=σ, λ=p, λ=0, we obtain

    Iφ,σ[φ(z)φ(a)]γ1Eα,γ(p[φ(z)φ(a)]α)(ϰ)=1Γ(σ)ϰa[φ(z)φ(a)]γ1Eα,γ(p[φ(z)φ(a)]α)[φ(ϰ)φ(z)]σ1φ(z)dz=[φ(ϰ)φ(a)]γ+σ1Eα,γ+σ(p[φ(ϰ)φ(a)]α),

    where we have used

    Eα,σ(λ[φ(ϰ)φ(z)]α)=1Γ(σ).

    Mainardi's conjecture. [19] For fixed γ with 0<γ<1, the following holds:

    11+qΓ(1γ)tγEγ(qtγ)1qΓ(1+γ)1tγ+1,q, t0. (2.7)

    This result was later established in [6,23].

    To start, we will introduce the concept of Mittag-Leffler stability.

    Definition 3.1. For 0<α<1, a solution v(z) is defined as α -Mittag-Leffler stable if there exist positive constants A and γ such that

    v(z)AEα(γ[φ(z)φ(a)]α),z>a,

    where . represents a specific norm.

    Theorem 3.1. Let u(t) be a nonnegative function fulfilling the conditions

    Dφ,αC[u(t)pu(tυ)]qu(t)+tau(s)k(ts)ds,0<α<1,t>a, (3.1)

    with the initial condition

    u(t)=ϖ(t)0,aυta, (3.2)

    where k is a nonnegative function integrable over its domain, and q>0. Assume p>0, and that k satisfies the following inequality for some M>0:

    taEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1×(saEα(q[φ(σ)φ(a)]α)k(sσ)dσ)φ(s)dsMEα(q[φ(t)φ(a)]α),t>a. (3.3)

    Further, assume that the constant M satisfies

    M<11(φ(a+υ)φ(a))α(1q+Γ(1α)[φ(a+3υ)φ(a)]α)p, (3.4)

    with the additional condition

    1(φ(a+υ)φ(a))α(1q+Γ(1α)[φ(a+3υ)φ(a)]α)p<1. (3.5)

    Then, u(t) exhibits Mittag-Leffler decay, i.e.,

    u(t)CEα(q[φ(t)φ(a)]α),t>a

    for some constant C>0.

    Proof. Solutions of (3.1) and (3.2) will be compared to those of

    {Dφ,αC[w(t)pw(tυ)]=qw(t)+taw(s)k(ts)ds,0<α<1,t>a,w(t)=ϖ(t)0,aυta. (3.6)

    The equation presented in (3.6) can be expressed equivalently as

    Dφ,αC[w(t)pw(tυ)]=q[w(t)pw(tυ)]+tak(ts)w(s)dsqpw(tυ),t>a.

    This permits to profit from the form

    w(t)pw(tυ)=[ϖ(a)pϖ(aυ)]Eα(q[φ(t)φ(a)]α)+ta[φ(t)φ(s)]α1Eα,α(q[φ(t)φ(s)]α)×(qpw(sυ)+sak(sσ)w(σ)dσ)φ(s)ds.

    Capitalizing on the nonnegativity of the solution, we find for t>a,

    w(t)ϖ(a)Eα(q(φ(t)φ(a))α)+pw(tυ)+taEα,α(q[φ(t)φ(s)]α)×[φ(t)φ(s)]α1(sak(sσ)w(σ)dσ)φ(s)ds. (3.7)

    Therefore, for t>a,

    w(t)Eα(q(φ(t)φ(a))α)ϖ(a)+pEα(q(φ(t)φ(a))α)w(tυ)+1Eα(q(φ(t)φ(a))α)ta[φ(t)φ(s)]α1Eα,α(q[φ(t)φ(s)]α)×(sak(sσ)Eα(q(φ(σ)φ(a))α)w(σ)Eα(q(φ(σ)φ(a))α)dσ)φ(s)ds,

    and

    w(t)Eα(q(φ(t)φ(a))α)ϖ(a)+pEα(q(φ(t)φ(a))α)w(tυ)+1Eα(q(φ(t)φ(a))α)ta[φ(t)φ(s)]α1×Eα,α(q[φ(t)φ(s)]α)×(sak(sσ)Eα(q(φ(σ)φ(a))α)dσ)φ(s)ds×supaσtw(σ)Eα(q(φ(σ)φ(a))α)ϖ(a)+pEα(q(φ(t)φ(a))α)w(tν)+Msupaσtw(σ)Eα(q(φ(σ)φ(a))α).

    We will repeatedly utilize the following estimation:

    1Eα(q(φ(t)φ(a))α)taEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1×(sak(sσ)w(σ)dσ)φ(s)ds=1Eα(q(φ(t)φ(a))α)taEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1×(saEα(q[φ(σ)φ(a)]α)k(sσ)w(σ)Eα(q[φ(σ)φ(a)]α)dσ)φ(s)dsMsupaσtw(σ)Eα(q(φ(σ)φ(a))α),t>a. (3.8)

    Then, for t>a, the following inequality holds:

    w(t)Eα(q[φ(t)φ(a)]α)ϖ(a)+pEα(q[φ(t)φ(a)]α)w(tυ)+Msupaσtw(σ)Eα(q[φ(σ)φ(a)]α). (3.9)

    This inequality will serve as our initial reference.

    For t[a,a+υ], since Eα(q[φ(t)φ(a)]α) is decreasing, it follows that

    Eα(q[φ(t)φ(a)]α)Eα(q[φ(a+υ)φ(a)]α),

    and hence

    w(t)Eα(q[φ(t)φ(a)]α)(1+pEα(q[φ(a+υ)φ(a)]α)supaυσaϖ(σ)+Msupaσtw(σ)Eα(q[φ(σ)φ(a)]α),

    or

    (1M)w(t)Eα(q(φ(t)φ(a))α)(1+pEα(q(φ(a+υ)φ(a))α)supaυσaϖ(σ). (3.10)

    If t[a+υ,a+2υ], owing to relations (3.9) and (3.10), we find

    w(t)Eα(q(φ(t)φ(a))α)supaυσaϖ(σ)+p1M(1+pEα(q(φ(a+υ)φ(a))α)×Eα(q(φ(tυ)φ(a))α)Eα(q(φ(t)φ(a))α)supaνσaϖ(σ)+Msupaσtw(σ)Eα(q(φ(σ)φ(a))α).

    Observe that

    Eα(q(φ(tυ)φ(a))α)Eα(q(φ(t)φ(a))α)1Eα(q(φ(t)φ(a))α)1Eα(q(φ(2υ+a)φ(a))α)1+qΓ(1α)(φ(2υ+a)φ(a))α=:A. (3.11)

    Therefore,

    w(t)Eα(q(φ(t)φ(a))α)[1+A(Eα(q(φ(υ+a)φ(a))α+p)pEα(q(φ(υ+a)φ(a))α(1M)]supaυσaϖ(σ)+Msupaσtw(σ)Eα(q(φ(σ)φ(a))α),

    and consequently,

    w(t)Eα(q(φ(t)φ(a))α)(1M)[1+A(1M)p+AEα(q[φ(a+υ)φ(a)]α)(1M)p2]supaυσaϖ(σ). (3.12)

    Notice that we will write (3.12) as

    w(t)Eα(q(φ(t)φ(a))α)(1M)AEα(q(φ(υ+a)φ(a))α)×[1+p1M+(p1M)2]supaυσaϖ(σ). (3.13)

    When t[a+2ν,a+3ν], the estimations

    φ(t)φ(a)φ(tυ)φ(a)φ(a+3υ)φ(a)φ(a+υ)φ(a),

    together with (2.7), imply for ta+2ν,

    Eα(q(φ(tυ)φ(a))α)Eα(q(φ(t)φ(a))α)1+q(φ(t)φ(a))αΓ(1α)1+q(φ(tυ)φ(a))αΓ(1+α)11+q(φ(t)φ(a))αΓ(1α)qΓ(1+α)1(φ(tυ)φ(a))αΓ(1+α)q(φ(tυ)φ(a))α+Γ(1+α)(φ(t)φ(a))αΓ(1α)(φ(tυ)φ(a))αΓ(1+α)q(φ(a+υ)φ(a))α+(φ(a+3υ)φ(a))αΓ(1+α)Γ(1α)(φ(a+υ)φ(a))αΓ(1+α)(φ(a+υ)φ(a))α×(1q+Γ(1α)(φ(a+3υ)φ(a))α),  (3.14)

    Notice that Γ(1+α) can be approximated by one.

    By virtue of relations (3.13) and (3.14), having in mind (3.9), we infer

    w(t)Eα(q(φ(t)φ(a))α)ϖ(a)+p1MEα(q(φ(tυ)φ(a))α)Eα(q(φ(t)φ(a))α)×AEα(q(φ(a+υ)φ(a))α)×[1+p1M+(p1M)2]supaυσaϖ(σ)+Msupaσtw(σ)Eα(q(φ(σ)φ(a))α),

    or

    w(t)Eα(q[φ(t)φ(a)]α)(1M)supaυσaϖ(σ){1+p1MAVEα(q[φ(υ+a)φ(a)]α)×[1+p1M+(p1M)2]}, (3.15)

    where

    V:=1(φ(a+υ)φ(a))α(1q+Γ(1α)[φ(a+3υ)φ(a)]α).

    As

    AVEα(q[φ(a+υ)φ(a)]α)>1,

    we can rewrite Eq (3.15) as follows:

    (1M)w(t)Eα(q[φ(t)φ(a)]α)supaυσaϖ(σ)AEα(q[φ(υ+a)φ(a)]α)×{1+pV1M+(pV1M)2+(pV1M)3}.

    We now make the following claim.

    Claim. For t[a+(n1)υ,a+nυ],

    (1M)w(t)Eα(q(φ(t)φ(a))α)AEα(q(φ(υ+a)φ(a))α)×nk=0(pV1M)ksupaνσaϖ(σ).

    It is evident that the assertion is valid for the cases n=1, 2, and 3. Assume that it holds for n, i.e., on [a+(n1)υ,a+nυ]. Now, let t[a+nυ,a+υ(n+1)]. Utilizing (3.9), we derive

    w(t)Eα(q[φ(t)φ(a)]α)supaυσaϖ(σ)+pEα(q[φ(tυ)φ(a)]α)(1M)Eα(q[φ(t)φ(a)]α)×AEα(q[φ(a+υ)φ(a)]α)nk=0(pV1M)ksupaυσaϖ(σ)+Msupaσtw(σ)Eα(q[φ(σ)φ(a)]α).

    and by (3.14)

    w(t)Eα(q(φ(t)φ(a))α)(1M)[1+Vp1MAEα(q(φ(a+υ)φ(a))α)nk=0(Vp1M)k]supaυσaϖ(σ)AEα(q(φ(a+υ)φ(a))α)[1+n+1k=1(Vp1M)k]supaυσaϖ(σ)=AEα(q[φ(a+υ)φ(a)]α)n+1k=0(Vp1M)ksupaυσaϖ(σ).

    Therefore, the claim holds true. Then, for t>a,

    w(t)[AEα(q[φ(a+υ)φ(a)]α)(1M)k=0(pV1M)ksupaυσaϖ(σ)]×Eα(q(φ(t)φ(a))α). (3.16)

    The series in (3.16) converges due to (3.4) and (3.5). The proof is complete.

    In this section, we identify two classes of functions that satisfy the conditions of the theorem.

    First class: Consider the set of functions k that fulfill the following inequality for all sa:

    saEα(q[φ(σ)φ(a)]α)k(sσ)dσC1[φ(s)φ(a)]λ1,C1,λ>0. (4.1)

    The family of functions k(ts) defined as

    k(ts)C2[φ(t)φ(s)]αeb[φ(s)φ(a)]φ(s)

    satisfies the specified relation when the constants b and C2 are carefully chosen. Indeed, since

    Eα(qtα)11+qtαΓ(1+α)=Γ(1+α)Γ(1+α)+qtαΓ(1+α)qtα,t>0, (4.2)

    it follows that

    saEα(q[φ(σ)φ(a)]α)k(sσ)dσC2Γ(1+α)qsa[φ(σ)φ(a)]α[φ(s)φ(σ)]αeb[φ(σ)φ(a)]φ(σ)dσ2αC2Γ(1+α)Γ(1α)[3α]bα1q[φ(s)φ(a)]α,s>a.

    Therefore, (4.1) holds with

    C1:=2αC2Γ(1+α)Γ(1α)[3α]bα1q,λ:=1α.

    By applying formula (2.6), we obtain

    taEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1×(sak(sσ)Eα(q[φ(σ)φ(a)]α)dσ)φ(s)dsC1taEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1[φ(s)φ(a)]αφ(s)dsC1Γ(α)Eα,1(q[φ(t)φ(a)]α). (4.3)

    To ensure that assumption (3.4) is met, we can select C1 (or C2 for the specific example) such that

    C1Γ(α)<11(φ(a+υ)φ(a))α(1q+Γ(1α)[φ(a+3υ)φ(a)]α)p.

    Second class: Assume that k(ts)C3[φ(t)φ(s)]α1Eα,α(b[φ(t)φ(s)]α)φ(s) for some b>0 and C3>0 to be determined. A double use of (2.6) and (4.2) gives

    C3ta[φ(t)φ(s)]α1Eα,α(q[φ(t)φ(s)]α)×(sa[φ(s)φ(σ)]α1Eα,α(b[φ(s)φ(σ)]α)Eα(q[φ(σ)φ(a)]α)φ(σ)dσ)φ(s)dsC3Γ(1+α)qtaEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1×(sa[φ(s)φ(σ)]α1Eα,α(b[φ(s)φ(σ)]α)[φ(σ)φ(a)]αφ(σ)dσ)φ(s)dsC3Γ(α)Γ(1+α)qtaEα,α(q[φ(t)φ(s)]αEα,1(b[φ(s)φ(a)]α[φ(t)φ(s)]α1φ(s)dsC3Γ2(1+α)Γ(α)qbtaEα,α(q[φ(t)φ(s)]α[φ(t)φ(s)]α1[φ(s)φ(a)]αφ(s)dsC3Γ2(1+α)Γ2(α)qbEα,1(q[φ(t)φ(a)]α. (4.4)

    Clearly, M=C3Γ2(1+α)Γ2(α)qb. It suffices now to impose the condition on C3 and/or the constant b in order to fulfill the condition on M.

    In this section, we will examine the inequality that arises when the neutral delay is distributed,

    {Dφ,αC[u(t)ptau(s)g(ts)ds]qu(t)+tau(s)k(ts)ds, t,υ>a,0<α<1, p>0,u(t)=u00,t[aυ,a], (5.1)

    which we will contrast with

    {Dφ,αC[w(t)ptaw(s)g(ts)ds]=qw(t)+taw(s)k(ts)ds,t,υ>a,0<α<1, p>0,w(t)=w0=u00,t[aυ,a]. (5.2)

    We assume g is a continuous function (to be determined later) and that the solutions are nonnegative.

    Let us reformulate this as

    {Dφ,αC[w(t)ptaw(s)g(ts)ds]=q[w(t)ptaw(s)g(ts)ds]qptaw(s)g(ts)ds+taw(s)k(ts)ds,t,υ>a,0<α<1, p>0w(t)=w00,t[aυ,a].

    Therefore,

    w(t)ptaw(s)g(ts)ds=Eα(q[φ(t)φ(a)]α)w0+ta[φ(t)φ(s)]α1Eα,α(q[φ(t)φ(s)]α)×(qpsag(sσ)w(σ)dσ+sak(sσ)w(σ)dσ)φ(s)ds,

    and, for t>a,

    w(t)Eα(q[φ(t)φ(a)]α)w0+ptag(ts)w(s)ds+taEα,α(q[φ(t)φ(s)]α)×[φ(t)φ(s)]α1(sak(sσ)w(σ)dσ)φ(s)ds. (5.3)

    Dividing both sides of (5.3) by Eα(q[φ(t)φ(a)]α), we find

    w(t)Eα(q[φ(t)φ(a)]α)=w0+pEα(q[φ(t)φ(a)]α)taw(s)g(ts)ds+1Eα(q[φ(t)φ(a)]α)ta[φ(t)φ(s)]α1×Eα,α(q[φ(t)φ(s)]α)×(sak(sσ)Eα(q[φ(σ)φ(a)]α)dσ)φ(s)ds×supaσtw(σ)Eα(q[φ(σ)φ(a)]α),

    or, for t>a,

    w(t)Eα(q[φ(t)φ(a)]α)w0+pEα(q[φ(t)φ(a)]α)tag(ts)Eα(q[φ(s)φ(a)]α)×(w(s)Eα(q[φ(s)φ(a)]α))ds+Msupaσtw(σ)Eα(q[φ(σ)φ(a)]α).

    The relation

    pEα(q[φ(t)φ(a)]α)tag(ts)Eα(q[φ(s)φ(a)]α)dsM,

    is assumed for some M>0. Then,

    w(t)Eα(q[φ(t)φ(a)]α)w0+(M+M)supaσtw(σ)Eα(q[φ(σ)φ(a)]α),t>a,

    and

    w(t)w01MMEα(q[φ(t)φ(a)]α),t>a,

    in the case that

    M+M<1.

    Example. Take k as above, and select g fulfilling

    g(ts)C4[φ(t)φ(s)]α1Eα,α(c[φ(t)φ(s)]α)φ(s),

    for some C4,c>q. Then,

    taEα(q[φ(s)φ(a)]α)g(ts)dsΓ(1+α)qta[φ(s)φ(a)]αg(ts)dsC4Γ(1+α)qtaEα,α(c[φ(t)φ(s)]α)×[φ(t)φ(s)]α1[φ(s)φ(a)]αφ(s)dsC4Γ(1+α)Γ(α)qEα,1(q[φ(t)φ(a)]α),t>a.

    A value for M would be

    M=C4pΓ(1+α)Γ(α)q.

    Therefore, we have proved the following theorem.

    Theorem 5.1. Let u(t) be a nonnegative solution of (5.1), where q and p are positive and k and g are continuous functions with k(t), g(t)0 for all t such that

    taEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1×(saEα(q[φ(σ)φ(a)]α)k(sσ)dσ)φ(s)dsMEα(q[φ(t)φ(a)]α),t>a,
    ptag(ts)Eα(q[φ(s)φ(a)]α)dsMEα(q[φ(t)φ(a)]α),t>a,

    hold for some M, M>0 with

    M+M<1.

    Then, we can find a positive constant C such that

    w(t)CEα(q[φ(t)φ(a)]α),t>a.

    Before delving into applications, it is important to note that previous research on Halanay inequalities, including our earlier work, often assumes that solutions are non-negative. This supposition is sufficient for applications like neural networks without time delays. To determine the stability of the equilibrium solution, we can simplify the problem by shifting the equilibrium point to the origin using a variable transformation and then analyzing the magnitude of the solutions. However, when dealing with systems that have time delays, this approach becomes more complex. Directly proving stability for solutions that can be positive or negative presents new challenges, as time delays now appear within convolution integrals. The necessary estimations are more intricate and require careful analysis.

    Now, we return to

    {Dφ,αC[u(t)pu(tυ)]qu(t)+tak(ts)u(s)ds, p>0,0<α<1,t,υ>a,u(t)=ϖ(t)0,aυta,

    with |ϖ(s)|w0Eα(q(φ(s+υ)φ(a))α) for s[aυ,a], w0>0. To clarify these concepts, let us suppose that 1>p>0, and examine the following expression:

    w(t)pw(tυ)=[ϖ(a)pϖ(aυ)]Eα(q[φ(t)φ(a)]α)+ta[φ(t)φ(s)]α1Eα,α(q[φ(t)φ(s)]α)×(qpw(sυ)+sak(sσ)w(σ)dσ)φ(s)ds.

    Then, for t>a

    |w(t)|2w0Eα(q[φ(t)φ(a)]α)+p|w(tυ)|+qptaEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1|w(sυ)|φ(s)ds+taEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1×(sak(sσ)|w(σ)|dσ)φ(s)ds. (6.1)

    For t[a,a+υ],

    |w(t)|Eα(q[φ(t)φ(a)]α)3w0+qpw0Eα(q[φ(t)φ(a)]α)ta[φ(t)φ(s)]α1×Eα,α(q[φ(t)φ(s)]α)Eα(q[φ(s)φ(a)]α)φ(s)ds+Msupaσtw(σ)Eα(q[φ(σ)φ(a)]α),

    where M is defined as in Eq (3.3). Again, as

    taEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1Eα(q[φ(s)φ(a)]α)φ(s)dsΓ(1+α)qtaEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1[φ(s)φ(a)]αφ(s)dsΓ(1+α)Γ(α)qEα,1(q[φ(t)φ(a)]α), (6.2)

    we can write

    |w(t)|Eα(q[φ(t)φ(a)]α)3w0+w0Γ(1+α)Γ(α)p+Msupaσtw(σ)Eα(q[φ(σ)φ(a)]α),

    or

    (1M)|w(t)|Eα(q[φ(t)φ(a)]α)3w0+w0Γ(1+α)Γ(α)p. (6.3)

    If t[a+υ,a+2υ], we first observe that

    |w(tυ)|3w0+w0Γ(1+α)Γ(α)p(1M)×Eα(q[φ(tυ)φ(a)]α)Eα(q[φ(t)φ(a)]α)Eα(q[φ(t)φ(a)]α)A3w0+w0Γ(1+α)Γ(α)p(1M)Eα(q(φ(t)φ(a))α),

    where A is as in (3.11). Using the fact that

    w0A3w0+w0Γ(1+α)Γ(α)p1M,

    and relations (6.1) and (6.3), we get

    |w(t)|2w0Eα(q[φ(t)φ(a)]α)+pA3w0+w0Γ(1+α)Γ(α)p(1M)Eα(q(φ(t)φ(a))α)+qpA3w0+w0Γ(1+α)Γ(α)p(1M)×taEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1×Eα(q(φ(s)φ(a))α)φ(s)ds+taEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1×(sak(sσ)|w(σ)|dσ)φ(s)ds.

    Next, in view of (6.2), we find

    |w(t)|2w0Eα(q[φ(t)φ(a)]α)+pA3w0+w0Γ(α)Γ(α+1)p(1M)Eα(q(φ(t)φ(a))α)+qpA3w0+w0Γ(1+α)Γ(α)p(1M)×Γ(1+α)Γ(α)qEα(q[φ(t)φ(a)]α)+ta[φ(t)φ(s)]α1Eα,α(q[φ(t)φ(s)]α)×(sak(sσ)|w(σ)|dσ)φ(s)ds.

    or

    (1M)|w(t)|Eα(q[φ(t)φ(a)]α)2w0+pAw0[1+Γ(1+α)Γ(α)](1M)×(3+Γ(1+α)Γ(α)p)2w0+3Aw0[1+Γ(1+α)Γ(α)](1M)p+Aw0[1+Γ(1+α)Γ(α)]2(1M)p2. (6.4)

    For t[a+2υ,a+3υ], by virtue of (3.14),

    Eα(q(φ(tυ)φ(a))α)Eα(q(φ(t)φ(a))α)1(φ(a+υ)φ(a))α×(1q+Γ(1α)(φ(a+3υ)φ(a))α)=:V>1,

    and therefore

    |w(t)|2w0Eα(q[φ(t)φ(a)]α)+pV(1M)×[2w0+3Aw0[1+Γ(1+α)Γ(α)](1M)p+Aw0[1+Γ(1+α)Γ(α)]2(1M)p2]×Eα(q(φ(t)φ(a))+pVΓ(1+α)Γ(α)(1M)×[2w0+3Aw0[1+Γ(1+α)Γ(α)](1M)p+Aw0[1+Γ(1+α)Γ(α)]2(1M)p2]×Eα(q(φ(t)φ(a))+ta[φ(t)φ(s)]α1Eα,α(q[φ(t)φ(s)]α)(sak(sσ)|w(σ)|dσ)φ(s)ds.

    So,

    (1M)|w(t)|Eα(q[φ(t)φ(a)]α)2w0+pV(1M)[2w0+3Aw0[1+Γ(1+α)Γ(α)](1M)p+Aw0[1+Γ(1+α)Γ(α)]2(1M)p2]+pVΓ(1+α)Γ(α)(1M)×[2w0+3Aw0[1+Γ(1+α)Γ(α)](1M)p+Aw0[1+Γ(1+α)Γ(α)]2(1M)p2],

    or

    (1M)|w(t)|Eα(q[φ(t)φ(a)]α)2w0+2w0pV[1+Γ(1+α)Γ(α)]1M+3w0Ap2V[1+Γ(1+α)Γ(α)]2(1M)2+Aw0V[1+Γ(1+α)Γ(α)]3(1M)2p3. (6.5)

    Writing (6.5) in the form

    |w(t)|Eα(q[φ(t)φ(a)]α)(1M)2w0+2w0pV[1+Γ(1+α)Γ(α)]1M+3w0A(pV[1+Γ(1+α)Γ(α)](1M))2+w0A(pV[1+Γ(1+α)Γ(α)]1M)33w0A[1+pV[1+Γ(1+α)Γ(α)]1M+(pV[1+Γ(1+α)Γ(α)]1M)2+(pV[1+Γ(1+α)Γ(α)]1M)3] (6.6)

    provides the basis for our next claim.

    Claim. On the interval [a+(n1)υ,a+nυ], it is clear that

    |w(t)|Eα(q[φ(t)φ(a)]α)(1Mw0)3Ank=0(Vp[1+Γ(1+α)Γ(α)]1M)k.

    The validity of the claim for n=1,2, and 3 is established by Eqs (6.3), (6.4), and (6.6). Let t[a+nυ,a+(n+1)υ]. Then from (6.1),

    |w(t)|2w0Eα(q[φ(t)φ(a)]α)+3ApVw01Mnk=0(Vp[Γ(α)Γ(1+α)+1]1M)kEα(q[φ(t)φ(a)]α)+3ApΓ(1+α)Γ(α)w0V1Mnk=0(Vp[Γ(α)Γ(1+α)+1]1M)k×Eα(q[φ(t)φ(a)]α)+taEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1(sak(sσ)|w(σ)|dσ)φ(s)ds,

    or

    (1Mw0)|w(t)|Eα(q[φ(t)φ(a)]α)2+3VpA1Mnk=0(Vp[Γ(1+α)Γ(α)+1]1M)k+3VpA1MΓ(1+α)Γ(α)×nk=0(Vp[Γ(1+α)Γ(α)+1]1M)k.

    Then,

    (1Mw0)|w(t)|Eα(q[φ(t)φ(a)]α)3A{1+[Γ(1+α)Γ(α)+1]pV1Mnk=0(Vp[Γ(1+α)Γ(α)+1]1M)k},

    i.e.,

    (1Mw0)|w(t)|Eα(q[φ(t)φ(a)]α)3A{1+nk=0(Vp[Γ(1+α)Γ(α)+1]1M)1+k}.

    Thus,

    (1Mw0)|w(t)|Eα(q[φ(t)φ(a)]α)3An+1k=0(Vp[Γ(1+α)Γ(α)+1]1M)k,

    demonstrating that the assertion holds. Moreover, the series converges if the following condition is satisfied:

    1+Γ(1+α)Γ(α)1MVp<1.

    We have just proved the following result.

    Theorem 6.1. Suppose that u(t) is a solution of

    {Dφ,αC[u(t)pu(tυ)]qu(t)+t0k(ts)u(s)ds,t,υ>a,p>0,0<α<1,u(t)=ϖ(t),aυta,

    with |ϖ(t)|Eα(q(φ(t+υ)φ(a))α), aυta, q>0, p>0, and k is a nonnegative function verifying

    ta[φ(t)φ(s)]α1Eα,α(q[φ(t)φ(s)]α)×(saEα(q[φ(σ)φ(a)]α)k(sσ)dσ)φ(s)dsMEα(q[φ(t)φ(a)]α),t>a,

    for some M such that

    M<1[Γ(1+α)Γ(α)+1]Vp,

    with

    [Γ(1+α)Γ(α)+1]Vp<1.

    Then,

    |w(t)|CEα(q[φ(t)φ(a)]α),t>a,

    where C>0 is a positive constant.

    Neural networks are a fundamental part of artificial intelligence and are widely used to address complex problems in various fields. In this work, we utilize our findings to analyze the behavior of Cohen-Grossberg neural networks. Specifically, we consider the following problems:

    {Dφ,αC[xi(t)pxi(tυ)]=hi(xi(t))[gi(xi(t))nj=1aijfj(xj(t))nj=1bijlj(xj(tτ))nj=1dijakj(s)Φj(xj(ts))dsIi], t,υ>a, p>0xi(t)=xi0(t),t[aυ,a], i=1,2,...,n,

    and

    {Dφ,αC[xi(t)ptaxi(s)ψi(ts)ds]=hi(xi(t))[gi(xi(t))nj=1bijlj(xj(tτ))nj=1aijfj(xj(t))nj=1dijaΦj(xj(ts))kj(s)dsIi], t>a, p>0,xi(0)=xi0(t), ta, i=1,2,...,n,

    where xi.(t) stands the state of the ith neuron, n is the number of neurons, gi is a suitable function, hi represents an amplification function, bij, aij, dij represent the weights or strengths of the connections from the jth neuron to the ith neuron, Ii is the external input to the ith neuron, ψi are the neutral delay kernels, fj,lj,Φj denote the signal transmission functions, υ is the neutral delay, τ corresponds to the transmission delay, ϕi is the history of the i th state, and kj denotes the delay kernel function. These systems represent a general class of Cohen-Grossberg neural networks with both continuously distributed and discrete delays. To streamline our analysis and highlight our key findings, we have opted to examine simpler systems with fixed time delays. More complex scenarios involving variable delays or multiple delays can be explored in future research. To simplify our analysis, let us examine the simpler case

    {Dφ,αC[xi(t)pxi(tυ)]=hi(xi(t))[gi(xi(t))nj=1dijakj(s)fj(xj(ts))dsIi],xi(t)=xi0(t),t[aυ,a], i=1,2,...,n, (7.1)

    for t,υ>a, p>0.

    We adopt the following standard assumptions.

    (A1) The functions fi are assumed to satisfy the Lipschitz condition

    |fi(x)fi(y)|Li|xy| for every x,yR and for each i=1,2,...,n,

    where Li denotes the Lipschitz constant corresponding to the function fi.

    (A2) The delay kernel functions kj are nonnegative and exhibit piecewise continuity. Additionally, each kj has a finite integral over its domain, expressed as κj=akj(s)ds<, for j=1,...,n.

    (A3) The functions gi have derivatives that are uniformly bounded by a constant G. Specifically,

    |gi(z)|G, for all zR and for each i=1,2,...,n,

    where G>0 is a fixed constant.

    (A4) The functions hi are strictly positive and continuous, and they satisfy the following bounds:

    0<β_ihi(z)¯βi, for all zR and i=1,2,...,n.

    For simplicity, we suppose that the initial values xi0(t) are all zero for times before a.

    Definition 7.1. The point x=(x1,x2,...,xn)T is said to be an equilibrium if, for each i=1,2,...,n, it satisfies the equation

    gi(xi)=nj=1aijfj(xj)+nj=1dijakj(s)fj(xj)ds+Ii=nj=1(aij+dijκj)fj(xj)+Ii, t>a.

    Previous studies have shown that an equilibrium exists and is unique. To facilitate our analysis, we translate the equilibrium point to the origin of the coordinate system by using the substitution x(t)x=y(t). This leads to the following:

    {Dφ,αC[yi(t)pyi(tυ)]=hi(xi+yi(t))[gi(yi(t)+xi)            nj=1dijtafj(xj+yj(ts))kj(s)dsIi], t>a, i=1,...,n,yi(t)=ψi(t):=ϕi(t)xi, t[aυ,a], i=1,...,n,

    or

    {Dφ,αC[yi(t)pyi(tυ)]=Hi(yi(t))[Gi(yi(t))nj=1dijt0Fj(yj(ts))kj(s)ds], t>a, i=1,...,n,yi(t)=ψi(t):=ϕi(t)xi, t[aυ,a], i=1,...,n,

    where

    Fi(yi(t))=fi(yi(t)+xi)fi(xi), Gi(yi(t))=gi(yi(t)+xi)gi(x)Hi(yi(t))=hi(yi(t)+xi), t>a, i=1,...,n.

    Using the mean value theorem, the following inequality can be established:

    Dφ,αC|yi(t)pyi(tυ)|sgn[yi(t)pyi(tυ)]Dφ,αC[yi(t)pyi(tυ)]=sgn[yi(t)pyi(tυ)]Hi(yi(t))[gi(ˉxi(t))yi(t)nj=1dijaFj(yj(ts))kj(s)ds].

    By subtracting and adding the term pgi(ˉxi(t))yi(tυ), we obtain

    Dφ,αC|yi(t)pyi(tυ)|sgn[yi(t)pyi(tυ)]Hi(yi(t))[gi(ˉxi(t))[yi(t)pyi(tυ)]+pgi(ˉxi(t))yi(tυ)nj=1dijaFj(yj(ts))kj(s)ds], t>a, i=1,...,n,

    or

    Dφ,αC|yi(t)pyi(tυ)|Hi(yi(t))G|yi(t)pyi(tυ)|+pGHi(yi(t))|yi(tυ)|+Hi(yi(t))nj=1dijakj(s)Lj|yj(ts)|ds, t>a, i=1,2,...,n.

    Therefore,

    Dφ,αC|yi(t)pyi(tυ)|Gβ_i|yi(t)pyi(tυ)|+pG¯βi|yi(tυ)|+¯βinj=1Ljdijakj(s)|yj(ts)|ds, t>a, i=1,...,n.

    Finally, we consider the equation for wi and rewrite it in the following form:

    |wi(t)pwi(tυ)|=Eα(Gβ_i[φ(t)φ(a)]α)|Φi(a)pΦi(aυ)|+ta[φ(t)φ(s)]α1Eα,α(q[φ(t)φ(s)]α)×(pG¯βi|wi(tυ)|+¯βinj=1Ljdij0kj(s)|wj(ts)|ds)φ(s)ds, t>a, i=1,2,...,n.

    The Mittag-Leffler stability of this problem follows directly from our earlier result.

    We have investigated a general Halanay inequality of fractional order with distributed delays, incorporating delays of neutral type. General sufficient conditions were established to guarantee the Mittag-Leffler stability of the solutions, supported by illustrative examples. The rate of stability obtained appears to be the best achievable, consistent with previous findings in fractional-order problems.

    Furthermore, we applied our theoretical results to a practical problem, demonstrating their applicability. Our analysis suggests that these results can be extended to more general cases, such as variable delays or systems involving additional terms. It is worth noting that the conditions on the various parameters within the system could potentially be improved, as we did not focus on optimizing the estimations and bounds. In this regard, exploring optimal bounds for the delay coefficient p and the kernel k would be an interesting direction for future research.

    The author declares that have not used Artificial Intelligence (AI) tools in the creation of this article.

    The author sincerely appreciates the financial support and facilities provided by Imam Abdulrahman Bin Faisal University.

    The author declares that there is no conflict of interest regarding the publication of this paper.



    [1] P. Y. Chen, Y. X. Li, X. P. Zhang, Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 1531–1547. https://doi.org/10.3934/dcdsb.2020171 doi: 10.3934/dcdsb.2020171
    [2] P. Y. Chen, R. H. Wang, X. P. Zhang, Long-time dynamics of fractional nonclassical diffusion equations with nonlinear colored noise and delay on unbounded domains, Bull. Sci. Math., 173 (2021), 103071. https://doi.org/10.1016/j.bulsci.2021.103071 doi: 10.1016/j.bulsci.2021.103071
    [3] P. Y. Chen, X. H. Zhang, X. P. Zhang, Asymptotic behavior of non-autonomous fractional stochastic p-Laplacian equations with delay on Rn, J. Dyn. Differ. Equations, (2021). https://doi.org/10.1007/s10884-021-10076-4 doi: 10.1007/s10884-021-10076-4
    [4] R. H. Wang, Y. R. Li, B. X. Wang, Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091–4126. https://doi.org/10.3934/dcds.2019165 doi: 10.3934/dcds.2019165
    [5] R. H. Wang, L. Shi, B. X. Wang, Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on RN, Nonlinearity, 32 (2019), 4524–4556. https://doi.org/10.1088/1361-6544/ab32d7 doi: 10.1088/1361-6544/ab32d7
    [6] R. N. Wang, D. H. Chen, T. J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differ. Equations, 252 (2012), 202–235. https://doi.org/10.1016/j.jde.2011.08.048 doi: 10.1016/j.jde.2011.08.048
    [7] Y. Zhou, J. W. He, B. Ahmad, N. H. Tuan, Existence and regularity results of a backward problem for fractional diffusion equations, Math. Meth. Appl. Sci., 42 (2019), 6775–6790. https://doi.org/10.1002/mma.5781 doi: 10.1002/mma.5781
    [8] B. de Andrade, A. Viana, On a fractional reaction-diffusion equation, Z. Angew. Math. Phys., 68 (2017), 59. http://doi.org/10.1007/s00033-017-0801-0 doi: 10.1007/s00033-017-0801-0
    [9] P. Clément, J. A. Nohel, Asymptotic behavior of solutions of nonlinear volterra equations with completely positive kernels, SIAM J. Math. Anal., 12 (1981), 514–535. https://doi.org/10.1137/0512045 doi: 10.1137/0512045
    [10] D. del-Castillo-Negrete, B. A. Carreras, V. E. Lynch, Fractional diffusion in plasma turbulence, Phys. Plasmas, 11 (2004), 3854–3864. https://doi.org/10.1063/1.1767097 doi: 10.1063/1.1767097
    [11] J. Klafter, I. M. Sokolov, Anomalous diffusion spreads its wings, Phys. World, 18 (2005), 29–32.
    [12] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon Linghorne, 1993.
    [13] B. de Andrade, V. V. Au, D. O'Regan, N. H. Tuan, Well-posedness results for a class of semilinear time-fractional diffusion equations, Z. Angew. Math. Phys., 71 (2020), 24. https://doi.org/10.1007/s00033-020-01348-y doi: 10.1007/s00033-020-01348-y
    [14] S. D. Eidelman, A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differ. Equations, 199 (2004), 211–255. https://doi.org/10.1016/j.jde.2003.12.002 doi: 10.1016/j.jde.2003.12.002
    [15] L. Li, J. G. Liu, L. Z Wang, Cauchy problems for Keller-Segel type time-space fractional diffusion equation, J. Differ. Equations, 265 (2018), 1044–1096. https://doi.org/10.1016/j.jde.2018.03.025 doi: 10.1016/j.jde.2018.03.025
    [16] J. R. Wang, Y. Zhou, Mittag-Leffler-Ulam stabilities of fractional evolution equations, Appl. Math. Lett., 25 (2012), 723–728. https://doi.org/10.1016/j.aml.2011.10.009 doi: 10.1016/j.aml.2011.10.009
    [17] H. Antil, J. Pfefferer, S. Rogovs, Fractional operators with inhomogeneous boundary conditions: Analysis, control, and discretization, Commun. Math. Sci., 16 (2018), 1395–1426. https://doi.org/10.4310/CMS.2018.v16.n5.a11 doi: 10.4310/CMS.2018.v16.n5.a11
    [18] J. L. Padgett, The quenching of solutions to time-space fractional kawarada problems, Comput. Math. Appl., 76 (2018), 1583–1592. https://doi.org/10.1016/j.camwa.2018.07.009 doi: 10.1016/j.camwa.2018.07.009
    [19] Y. Zhou, J. R. Wang, L. Zhang, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2016.
    [20] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
    [21] K. Diethelm, The Analysis of Fractional Differential Equations, an Application Oriented, Exposition Using Differential Operators of Caputo type, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010. https://doi.org/10.1007/978-3-642-14574-2
  • This article has been cited by:

    1. Q. Rubbab, Y. Mahsud, S. Irshad, M. A. Imran, A. Ahmadian, S. Salahshour, M. Ferrara, Numerical simulations of unsteady flows in a rotating channel using a novel eigenfunction expansion method, 2020, 10, 2158-3226, 065035, 10.1063/5.0012874
    2. Maria Alessandra Ragusa, Fan Wu, Regularity Criteria for the 3D Magneto-Hydrodynamics Equations in Anisotropic Lorentz Spaces, 2021, 13, 2073-8994, 625, 10.3390/sym13040625
    3. Sadek Gala, Eugeny Galakhov, Maria Alessandra Ragusa, Olga Salieva, Beale–Kato–Majda Regularity Criterion of Smooth Solutions for the Hall-MHD Equations with Zero Viscosity, 2021, 1678-7544, 10.1007/s00574-021-00256-7
    4. Sharad K. Yadav, Hideaki Miura, Rahul Pandit, Statistical properties of three-dimensional Hall magnetohydrodynamics turbulence, 2022, 34, 1070-6631, 095135, 10.1063/5.0107434
    5. Sadek Gala, Michel Théra, Logarithmically improved regularity criterion for the 3D Hall-MHD equations, 2021, 40, 2238-3603, 10.1007/s40314-021-01585-5
    6. Baoying Du, On three-dimensional Hall-magnetohydrodynamic equations with partial dissipation, 2022, 2022, 1687-2770, 10.1186/s13661-022-01587-0
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1623) PDF downloads(76) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog