Loading [MathJax]/jax/output/SVG/jax.js

Certain -homomorphisms acting on unital C-probability spaces and semicircular elements induced by p-adic number fields over primes p

  • In this paper, we study the Banach -probability space (ACLS, τ0A) generated by a fixed unital C-probability space (A, φA), and the semicircular elements Θp,j induced by p-adic number fields Qp, for all p P, j Z, where P is the set of all primes, and Z is the set of all integers. In particular, from the order-preserving shifts g×h± on P × Z, and -homomorphisms θ on A, we define the corresponding -homomorphisms σ1:θ(±,1) on ACLS, and consider free-distributional data affected by them.

    Citation: Ilwoo Cho. Certain -homomorphisms acting on unital C-probability spaces and semicircular elements induced by p-adic number fields over primes p[J]. Electronic Research Archive, 2020, 28(2): 739-776. doi: 10.3934/era.2020038

    Related Papers:

    [1] Zulqurnain Sabir, Hafiz Abdul Wahab, Juan L.G. Guirao . A novel design of Gudermannian function as a neural network for the singular nonlinear delayed, prediction and pantograph differential models. Mathematical Biosciences and Engineering, 2022, 19(1): 663-687. doi: 10.3934/mbe.2022030
    [2] Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Abeer S. Alnahdi, Mdi Begum Jeelani, M. A. Abdelkawy . Numerical investigations of the nonlinear smoke model using the Gudermannian neural networks. Mathematical Biosciences and Engineering, 2022, 19(1): 351-370. doi: 10.3934/mbe.2022018
    [3] Xin-You Meng, Yu-Qian Wu . Bifurcation analysis in a singular Beddington-DeAngelis predator-prey model with two delays and nonlinear predator harvesting. Mathematical Biosciences and Engineering, 2019, 16(4): 2668-2696. doi: 10.3934/mbe.2019133
    [4] Reymundo Itzá Balam, Francisco Hernandez-Lopez, Joel Trejo-Sánchez, Miguel Uh Zapata . An immersed boundary neural network for solving elliptic equations with singular forces on arbitrary domains. Mathematical Biosciences and Engineering, 2021, 18(1): 22-56. doi: 10.3934/mbe.2021002
    [5] Xinran Zhang, Yongde Zhang, Jianzhi Yang, Haiyan Du . A prostate seed implantation robot system based on human-computer interactions: Augmented reality and voice control. Mathematical Biosciences and Engineering, 2024, 21(5): 5947-5971. doi: 10.3934/mbe.2024262
    [6] Kelum Gajamannage, Erik M. Bollt . Detecting phase transitions in collective behavior using manifold's curvature. Mathematical Biosciences and Engineering, 2017, 14(2): 437-453. doi: 10.3934/mbe.2017027
    [7] Wenlong Wang, Chunrui Zhang . Bifurcation of a feed forward neural network with delay and application in image contrast enhancement. Mathematical Biosciences and Engineering, 2020, 17(1): 387-403. doi: 10.3934/mbe.2020021
    [8] Jitai Liang, Junjie Wei . Lyapunov functional for virus infection model with diffusion and state-dependent delays. Mathematical Biosciences and Engineering, 2019, 16(2): 947-966. doi: 10.3934/mbe.2019044
    [9] Xu Song, Jingyu Li . Asymptotic stability of spiky steady states for a singular chemotaxis model with signal-suppressed motility. Mathematical Biosciences and Engineering, 2022, 19(12): 13988-14028. doi: 10.3934/mbe.2022652
    [10] Yongquan Zhou, Yanbiao Niu, Qifang Luo, Ming Jiang . Teaching learning-based whale optimization algorithm for multi-layer perceptron neural network training. Mathematical Biosciences and Engineering, 2020, 17(5): 5987-6025. doi: 10.3934/mbe.2020319
  • In this paper, we study the Banach -probability space (ACLS, τ0A) generated by a fixed unital C-probability space (A, φA), and the semicircular elements Θp,j induced by p-adic number fields Qp, for all p P, j Z, where P is the set of all primes, and Z is the set of all integers. In particular, from the order-preserving shifts g×h± on P × Z, and -homomorphisms θ on A, we define the corresponding -homomorphisms σ1:θ(±,1) on ACLS, and consider free-distributional data affected by them.



    The historical Lane-Emden model was introduced first time by astrophysicist Jonathan Homer Lane and Robert Emden [1,2] working on the thermal performance of a spherical cloud of gas and classical law linked to thermodynamics [3]. The singular models have several applications in broad field of applied science and engineering such as catalytic diffusion reactions along with error estimate problems [4], density profile of gaseous star [5], stellar configuration [6], spherical annulus [7], isotropic continuous media [8], the theory of electromagnetic [9] and morphogenesis [10]. It is always not easy to solve the system of singular equations-based models due to their complex nature and singular points. To mention a few schemes that have been applied to solve such models include Legendre wavelets spectral technique [11], Bernoulli collocation scheme [12], variational iteration technique [13], Haar wavelet quasilinearization method [14], spectral collocation scheme [15], differential transformation approach [16] and Adomian decomposition technique [17].

    All these above cited approaches have their precise merits and imperfections, however stochastic solver has not been extensively implemented to solve multi-singular third kind of nonlinear system (MS-TKNS) using the artificial neural networks (ANNs) together with particle swarm optimization (PSO) and interior-point algorithm (IPA), i.e., ANN-PSO-IPA. The stochastic computing solvers have been widely applied to resolve numerous applications [18,19,20,21,22]. Recently, the stochastic solvers presented the solution of models for financial market forecasting [23], prey-predator nonlinear system [24], nonlinear singular functional differential model [25,26], SITR nonlinear system [27,28], singular delay differential system [29], nonlinear periodic boundary value problems [30], HIV nonlinear system [31], SIR nonlinear system of dengue fever [32] and alternative approach based on fuzzy-neuro methods to solve linear and nonlinear optimization problems [33,34]. These submissions enhance the worth of the stochastic solvers to authenticate the convergence and precision of the suggested ANN-PSO-IPA. The general form of the MS-TKNS is written as [35]:

    {d3Udχ3+2α1χd2Udχ2+P(P1)χ2dUdχ+H1(χ)F1(U,V)=G1(χ),d3Vdχ3+2α2χd2Vdχ2+Q(Q1)χ2dVdχ+H2(χ)F2(U,V)=G2(χ),U(0)=A,dU(0)dχ=d2U(0)dχ2=0,V(0)=B,dV(0)dχ=d2V(0)dχ2=0. (1)

    Where F1 and F2 are the nonlinear functions, P and Q are positive constants, G1 and G2 are indicated as a source functions.

    The purpose of this study is to present the solution of the model (1) via intelligent computing ANN-PSO-IPA. The contributions of the paper are as follows:

    ●  A novel neuro-swarm computing intelligent heuristics ANN-PSO-IPA is accessible for multi-singular nonlinear third order EF-SDEs.

    ●  The overlapping outcomes of the proposed ANN-PSO-IPA with the exact outcomes for three examples of MS-TKNS enhance the exactness, consistency and convergence.

    ●  Authorization of the precise performance is validated via statistical remark using the ANN-PSO-IPA based on Theil's Inequality Coefficient (TIC), Root Mean Square Error (RMSE), Variance Account For (VAF), Semi Interquartile (SI) Range.

    ●  Beside practically precise continuous outcomes on whole input training intermission, an easy implementable process, simplicity in perception, stability and robustness are other well-intentioned announcements for the designed neuro-swarm intelligent computing approach.

    The remaining structure of the current study is given as: Section 2 indicates the design methodology through PSO-IPA. The mathematical form of performance measures can be found in section 3. Section 4 shows the numerical results of the designed ANN-PSO-IPA. In the final section, final submissions and future guidance are provided.

    The design of ANN-PSO-IPA for MS-TKNS is presented in two steps, given as:

    Step 1: An error based objective function is accessible by using the mean square error sense.

    Step 2: The learning procedure of the structures is presented using the hybrid of PSO-IPA.

    The ANNs are famous to solve the various applications in different domain of applied science and engineering. The proposed outcomes are denoted by U(χ) and V(χ), while dnUdχn and dnVdχn show the nth derivative, mathematically given as:

    [ˆU(χ),ˆV(χ)]=[mi=1aU,iZ(wU,iχ+ϕU,i),mi=1aV,iZ(wV,iχ+ϕV,i)],[dnˆUdχn,dnˆVdχn]=[mi=1aU,idndχnZ(wU,iχ+ϕU,i),mi=1aV,idndχnZ(wV,iχ+ϕV,i)]. (2)

    Where m shows the neurons and n is the derivative order. The unknown weight vectors are a,w and ϕ. W=[WU,WV], for WU=[αU,wU,ϕU] and WV=[αV,wV,ϕV]. The components of the weight vector are given as:

    aU=[aU,1,aU,2,aU,3,...,aU,m],aV=[aV,1,aV,2,aV,3,...,aV,m],wU=[wU,1,wU,2,wU,3,...,wU,m],wV=[wV,1,wV,2,wV,3,...,wV,m],ϕU=[ϕU,1,ϕU,2,ϕU,3,...,ϕU,m],ϕV=[ϕV,1,ϕV,2,ϕV,3,...,ϕV,m].

    The log-sigmoid Z(χ)=1(1+eχ) is used as an activation function. The updated form of the system (2) using the approximate results of ˆU(χ) and ˆV(χ) are written as:

    [ˆU(χ),ˆV(χ)]=[mi=1aU,i1+e(wU,ix+ϕU,i),mi=1aV,i1+e(wV,ix+ϕV,i)],[dˆUdχ,dˆVdχ]=[mi=1aU,iwU,ie(wU,ix+ϕU,i)(1+e(wU,ix+ϕU,i))2,mi=1aV,iwV,ie(wV,ix+ϕV,i)(1+e(wV,ix+ϕV,i))2],[d2ˆUdχ2,d2ˆVdχ2]=[mi=1aU,iw2U,i{2e2(wU,ix+ϕU,i)(1+e(wU,ix+ϕU,i))3e(wU,ix+ϕU,i)(1+e(wU,ix+ϕU,i))2},mi=1aV,iw2V,i{2e2(wV,ix+ϕV,i)(1+e(wV,ix+ϕV,i))3e(wV,ix+ϕV,i)(1+e(wV,ix+ϕV,i))2}],[d3ˆUdχ3,d3ˆVdχ3]=[mi=1aU,iw3U,i{6e3(wU,ix+ϕU,i)(1+e(wU,ix+ϕU,i))46e2(wU,ix+ϕU,i)(1+e(wU,ix+ϕU,i))3+e(wU,ix+ϕU,i)(1+e(wU,ix+ϕU,i))2},mi=1aV,iw3V,i{6e3(wV,ix+ϕV,i)(1+e(wV,ix+ϕV,i))46e2(wV,ix+ϕV,i)(1+e(wV,ix+ϕV,i))3+e(wV,ix+ϕV,i)(1+e(wV,ix+ϕV,i))2}] (3)

    The error based objective formulation is written as:

    E=E1+E2+E3, (4)
    E1=1NNm=1(χ2md3ˆUdχ3+2α1χmd2ˆUdχ2+P(P1)dˆUdχ+χ2mH1F1(ˆU,ˆV)χ2mG1)2, (5)
    E2=1NNm=1(χ2md3ˆVdχ3+2α2χmd2ˆVdχ2+Q(Q1)dˆVdχ+χ2mH2F2(ˆU,ˆV)χ2mG2)2, (6)
    E3=16((ˆUA)2+(ˆU1)2+(ˆU1)2+(ˆVB)2+(ˆV)2+(ˆV)2) at χ=0. (7)

    Where N=1h,xm=mh. The Objective functions E1 and E2 are associated with the system of differential equations and E3 is the corresponding initial conditions.

    The optimization is performed to solve the MS-TKNS using the hybrid framework of PSO- IPA.

    PSO is an effective research method that has widely used as an alternative optimization of genetic algorithms that were discovered by Kennedy and Eberhart [36]. In the theory of search space, a single candidate result of decision variables in the optimization procedure is called a particle and set of these particle formulated a swarms. For the refinement of optimization variables in standard PSO utilized iterative process of optimizing based on local Pρ1LB and global Pρ1GB best position of the particle in the swarm. The mathematical relations of position Xi along with the velocity Vi in PSO are given, respectively, as follows:

    Xρi=Xρ1i+Vρ1i, (8)
    Vρi=ωVρ1i+η1(Pρ1LBXρ1i)r1+η2(Pρ1GBXρ1i)r2 (9)

    where ρrepresent the current flight index, the inertia vector is denoted by ω varying between 0 and 1, η1 and η2 indicate the cognitive and social accelerations, respectively, while, r1 and r2 are vectors form with pseudo real number between 0 and 1. Further information regrading PSO can be seen in [37], while few recent applications address by PSO include parameter estimation [38], nonlinear electric circuits [39], optimize performance of induction generator [40], optimization of permanent magnets synchronous motor [41] and systems of equations based physical models [42].

    The quickly converges performance of PSO is attained by the process of hybridization with the appropriate local search approach by taking the PSO best values as an initial weight. Consequently, in the presented study, an effective local search scheme based on interior-point (IPA) is exploited for rapid fine-tuning of the results by the PSO algorithm. The hybrid of PSO-IPA train the ANNs as well as fundamental parameter setting for both PSO and IPA are tabulated in Table 1. Recently, IPA is used to power flow optimization incorporating security constraints [43], multistage nonlinear nonconvex problems [44], image processing [45] and multi-fractional order doubly singular model [46]. The hybrid of PSO-IPA train the decision variables of ANNs as per procedure and settings tabulated in Table 1.

    Table 1.  Detailed pseudo code of PSO-IPA to solve the nonlinear third order EF-SDEs.
    Start of PSO
    Step-1: Initialization: Generate the primary swarm randomlyand amend the parameters of {PSO} and {optimoptions} routine.
    Step-2: Fitness Evaluation: Scrutinize the {fitness value} for each particle in Eq (4).
    Step-3: Ranking: Rank to each particle of the least standards of the {fitness function}
    Step-4: Stopping Standards: Stop, if any of the below form achieved
    ● Selected flights
    ● Fitness level
    When accomplished the above values, then go to Step-5
    Step-5: Renewal: The Eqs (8) and (9) are used for the position and velocity.
    Step-6: Improvement: Repeat the above steps 02–06, until the entire flights are attained.
    Step-7: Storage: The attained best fitness values is stored and elect as the global best particle.
    End of PSO
    Start the process of PSO-IPA
    Inputs: Use the global best values
    Output: WPSO-IPS are the PSO-IPA's best values
    Initialize: Take {global best values} as a {start point}
    Termination: Terminate the process, when {Fitness = E = 10−18}, {TolX = 10−20}, {TolCon = TolFun = 10−21}, {MaxFunEvals = 260000} and {Generation = 1500}.
    While: [Stop]
    Fitness Evaluation: The Eq (4) is used for the fitness value E
    Adjustments: Invoke the routine {fmincon} for the IP algorithm to adjust the values of the weight vector.
    Store to fitness values using the basic form of the weight vector
    Store: WPSO-IPS values, final adaptive weight values, function count, fitness, time and generations for the present run.
    End of the PSO-IPA

     | Show Table
    DownLoad: CSV

    The current study is associated to present the statistical measures for solving the MS-TKNS. Therefore, three performances based on Theil's inequality coefficient (TIC) mean absolute deviation (MAD) and Variance Account For (VAF) and their global variables are Global TIC (G.TIC), Global MAD (G.MAD) and Global EVAF (G.EVAF) are applied. The mathematical descriptions of these statistical operators are provided as:

    [TICU, TICV]=[1nni=1(U(χi)ˆU(χi))2(1nni=1U2(χi)+1nni=1ˆU2(χi)),1nni=1(V(χi)ˆV(χi))2(1nni=1V2(χi)+1nni=1ˆV2(χi))], (10)
    [RMSEU,RMSEV]=[1nni=1(UiˆUi)2,1nni=1(ViˆVi)2], (11)
    {[VAFU,VAFV]=[(1var(U(χi)ˆU(χi))var(U(χi)))100,(1var(V(χi)ˆV(χi))var(V(χi)))100][EVAFU,EVAFV]=[|100VAFU|,|100VAFV|]. (12)

    In this section, the detail discussion to solve three variants of the MS-TKNS is presented.

    Problem 1: Consider the MS-TKNS is:

    {d3Udχ3+2χd2Udχ2+3χdUdχU2V=17eχ3+9χeχ3+72χ3eχ3+27χ6eχ3,d3Vdχ3+2χd2Vdχ2+3χdVdχUV2=19eχ3+9χeχ3+72χ3eχ327χ6eχ3,U(0)=1,dU(0)dχ=d2U(0)dχ2=0,V(0)=1,dV(0)dχ=d2V(0)dχ2=0. (13)

    The exact/true solutions of the above Eq (13) are [eχ3,eχ3] and the fitness function becomes as:

    E=1NNm=0((χmd3ˆUdχ3+2d2ˆUdχ2+3dˆUdχχmˆU2ˆVχmG1)2+(χmd3ˆVdχ3+2d2ˆVdχ2+3dˆVdχχmˆUˆV2χmG2)2)+16((ˆU1)2+(dˆUdχ)2+(d2ˆUdχ2)2+(ˆV1)2+(dˆVdχ)2+(d2ˆVdχ2)2). (14)

    Problem 2: Consider the MS-TKNS is:

    {d3Udχ3+2χd2Udχ2+3χdUdχ+UV3=4+e3χ3+4e2χ3+6eχ3+19eχ3+9χeχ3+72χ3eχ3+27χ6eχ3,d3Vdχ3+2χd2Vdχ2+3χdVdχ+U3V=417eχ3+4e2χ3+6eχ3+3e3χ39χeχ3+72χ3eχ327χ6eχ3,U(0)=2,dU(0)dχ=d2U(0)dχ2=0,V(0)=2,dV(0)dχ=d2V(0)dχ2=0. (15)

    The true solutions of the above equation are [1+eχ3,1+eχ3] and the objective function becomes as:

    E=1NNm=0((χmd3ˆUdχ3+2d2ˆUdχ2+3dˆUdχ+χmˆUˆV3χmG1)2+(χmd3ˆVdχ3+2d2ˆVdχ2+3dˆVdχ+χmˆU3ˆVχmG2)2)+16((ˆU2)2+(dˆUdχ)2+(d2ˆUdχ2)2+(ˆV2)2+(dˆVdχ)2+(d2ˆVdχ2)2). (16)

    Problem 3: Consider the MS-TKNS is:

    {d3Udχ3+6χd2Udχ22χdUdχ+(1U)V=426χχ3+χ6,d3Vdχ3+6χd2Vdχ22χdVdχU(1V)=42+6χχ3χ6,U(0)=1,dU(0)dχ=d2U(0)dχ2=0,V(0)=1,dV(0)dχ=d2V(0)dχ2=0. (17)

    The true solutions of the Eq (17) are [1+χ3,1χ3] and the fitness function becomes as:

    E=1NNm=0((χmd3ˆUdχ3+6d2ˆUdχ22dˆUdχ+χm(1ˆU)ˆVχmG1)2+(χmd3ˆVdχ3+6d2ˆVdχ22dˆVdχ+χmˆU(1ˆV)χmG2)2)+16((ˆU1)2+(dˆUdχ)2+(d2ˆUdχ2)2+(ˆV1)2+(dˆVdχ)2+(d2ˆVdχ2)2). (18)

    In order to find the proposed solutions of the Problems 1, 2 and 3 based on the MS-TKNS by using the proposed solver ANN-PSO-IPA for 40 multiple trials to achieve the adaptable parameters. The plots of the weight sets are shown in Figure 1 for U(χ) and V(χ), respectively. These weights are the decision variables of ANNs as presented in equations 3 such that the fitness functions in (14), (16) and (18) for respective problems 1, 2 and 3 are optimized with PSO-IPA, i.e., initially for global search efficacy of PSO and fine tune with IPA for rapid local search. These sets of weights are applied in first equation of set (3) to find approximate solutions to the three problems and the mathematical form are given as:

    ˆUP1=6.7861+e(11.644χ+15.35)+4.5391+e(1.651χ+2.200)+0.5581+e(8.143χ+9.243)+...+4.3771+e(0.019χ+2.086)    , (19)
    ˆUP2=1.0081+e(1.230χ+0.015)+4.2091+e(12.45χ15.681)+0.3361+e(6.716χ+6.309)+...0.3291+e(1.124χ+3.324)    , (20)
    ˆUP3=0.0171+e(4.530χ3.801)+4.6821+e(2.529χ+2.999)+5.0981+e(0.715χ+0.913)+...+3.1591+e(2.099χ+8.587)    , (21)
    ˆVP1=5.0491+e(2.457χ+2.070)+0.0681+e(0.380χ+1.115)+0.0411+e(0.464χ+0.215)+...+1.7901+e(2.540χ1.143)    , (22)
    ˆVP2=1.5501+e(0.418χ1.586)0.6921+e(4.495χ+2.403)+1.5501+e(3.258χ+2.387)+...0.2531+e(0.32χ0.418)    , (23)
    ˆVP3=2.2371+e(0.454χ0.035)0.8251+e(1.564χ+0.541)0.2491+e(1.204χ0.301)+...0.7711+e(1,792χ+0.440)    , (24)
    Figure 1.  Best weight sets and result comparisons for Problems 1, 2 and 3.

    The optimization of the MS-TKNS is performed for the problems 1, 2 and 3 using the proposed solver ANN-PSO-IPA for 40 independent trials. Set of weights and results comparison are plotted graphically in Figure 1. It is specified that the exact and proposed solutions overlapped for both the indexes ˆU(χ) and ˆV(χ) of the problems 1, 2 and 3. This exact matches of the outcomes shows the correctness of the proposed methodology ANN-PSO-IPA. In order to calculate the comparison of the numerical results, the plots of the absolute error (AE) are drawn in Figure 2(a), (b) for ˆU(χ) and ˆV(χ). One can observe that most of the AE values of problems 1–3 for ˆU(χ) lie in the range of 10−6 to 10−7, 10−4 to 10−6 and 10−6 to 10−8, while, for ˆV(χ), these values lie around 10−5 to 10−6, 10−3 to 10−4 and 10−6 to 10−7. The plots of the performance measures through fitness, RMSE, TIC and EVAF are drawn in the Figure 2(c), (d) for ˆU(χ) and ˆV(χ). It is seen that the fitness values lie around to 10−06 to 10,−08 for problems 1 and 3, while the fitness values for Problem 2 are close to 10−08. The RMSE values of ˆU(χ) and ˆV(χ) for problem 1 and 3 are close to 10−6 to 10−8, while for Problem 2, the RMSE lie 10−4–10−6 for ˆU(χ) and 10−2–10–4 for ˆV(χ). The TIC performance lie around 10−6–10−8 for both indexes of all the Problems. The EVAF values for problem 1 and 3 lie 10−10–10−12 for both the indexes, while it lies around 10−8–10−10 for problem 2.

    Figure 2.  Absolute error and performance indices for Problems 1, 2 and 3.

    The convergence measures for the Problems 1–3 based on the MS-TKNS using the Fitness, histograms and boxplots for 10 numbers of neurons are provided in Figure 3. It is shown that most of the fitness values lie around 10−4–10−6 for Problem 1 and 3, while for Problem 3 these values lie around 10−6–10−8. The convergence of both the indexes of all the problems for RMSE, TIC and EVAF is provided in Figures 49. Most of the values for both the indexes of all the problems lie in good ranges.

    Figure 3.  Convergence procedures for the Problems 1, 2 and 3 based on the MS-TKNS using the Fitness, histograms and boxplots for 10 neurons.
    Figure 4.  Convergence investigations of ˆU(χ) for the Problems 1, 2 and 3 based on the MS-TKNS using the Fitness, histograms and boxplots for 10 neurons.
    Figure 5.  Convergence investigations of ˆV(χ) for the Problems 1, 2 and 3 MS-TKNS using the Fitness, histograms and boxplots for 10 neurons.
    Figure 6.  Convergence investigations of ˆU(χ) for the Problems 1, 2 and 3 based on the MS-TKNS for the TIC values.
    Figure 7.  Convergence investigations of ˆV(χ) for the Problems 1, 2 and 3 based on the MS-TKNS for the TIC values.
    Figure 8.  Convergence measures of ˆU(χ) for the Problems 1, 2 and 3 based on the MS-TKNS using the EVAF values.
    Figure 9.  Convergence measures of ˆV(χ) for the Problems 1, 2 and 3 based on the MS-TKNS for the EVAF, values.

    For more accuracy and precision, statistical indices are performed based on minimum (Min), standard deviation (SD), mean, SI range and Median. SI Range is one half of the difference of Q3 = 75% data, i.e., 3rd quartile and Q1 = 25% data, i.e., 1st quartile is calculated for 40 trials of ANN-PSO-IPA to solve three different problems of MS-TKNS. These statistical based outcomes for Problems 1–3 are tabulated in Tables 2 and 3 for the indexes ˆU(χ) and ˆV(χ). It is observed that most of the ˆU(χ) and ˆV(χ) values for Problems 1–3 lie in the best ranges. The global performance G.FIT, G.RMSE, G.TIC and G.EVAF of ˆU(χ) and ˆV(χ) for Problems 1, 2 and 3 are tabulated in Table 4. These performances of the global values for Problems 1, 2 and 3 for 40 independent trials are provided. The magnitude (Mag) and Median values for all Problems using the indexes ˆU(χ) and ˆV(χ) proved very good results based on the statistical global operators.

    Table 2.  The statistics results of ˆU(χ) for each problem of the MS-TKNS using the designed ANN-PSO-IPA.
    Mode
    The solution of ˆU(χ) for Problems 1–3
    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
    P-1 Min 3×10−7 1×10−7 6×10−7 7×10−7 5×10−7 1×10−7 8×10−7 8×10−7 4×10−7 1×10−7 5×10−7
    Mean 2×10−5 2×10−5 2×10−5 3×10−5 3×10−5 4×10−5 5×10−5 5×10−5 6×10−5 6×10−5 6×10−5
    SD 4×10−5 4×10−5 4×10−5 4×10−5 4×10−5 5×10−5 5×10−5 6×10−5 6×10−5 6×10−5 6×10−5
    Median 7×10−6 6×10−6 9×10−6 1×10−5 1×10−5 2×10−5 2×10−5 3×10−5 3×10−5 3×10−5 3×10−5
    SIR 1×10−5 1×10−5 1×10−5 1×10−5 2×10−5 3×10−5 3×10−5 3×10−5 3×10−5 3×10−5 4×10−5
    P-2 Min 7×10−6 8×10−6 7×10−6 1×10−5 3×10−6 2×10−6 1×10−5 1×10−6 1×10−6 1×10−5 2×10−5
    Mean 3×10−3 3×10−3 3×10−3 3×10−3 4×10−3 6×10−3 1×10−2 1×10−2 2×10−2 4×10−2 5×10−2
    SD 1×10−2 1×10−2 1×10−2 1×10−2 1×10−2 2×10−2 5×10−2 9×10−2 1×10−1 2×10−1 3×10−1
    Median 3×10−4 3×10−4 3×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 3×10−4
    SIR 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4
    P-3 Min 1×10−7 1×10−7 7×10−7 1×10−7 2×10−7 1×10−9 3×10−7 1×10−7 8×10−7 2×10−7 1×10−7
    Mean 8×10−6 9×10−6 1×10−5 1×10−5 1×10−5 1×10−5 2×10−5 2×10−5 2×10−5 3×10−5 3×10−5
    SD 1×10−5 1×10−5 1×10−5 2×10−5 2×10−5 3×10−5 3×10−5 4×10−5 4×10−5 5×10−5 6×10−5
    Median 3×10−6 3×10−6 3×10−6 5×10−6 6×10−6 7×10−6 8×10−6 1×10−5 1×10−5 1×10−5 1×10−5
    SIR 4×10−6 4×10−6 5×10−6 6×10−6 5×10−6 6×10−6 8×10−6 9×10−6 1×10−5 1×10−5 1×10−5

     | Show Table
    DownLoad: CSV
    Table 3.  The statistics results of ˆV(χ) for each problem of the MS-TKNS using the designed ANN-PSO-IPA.
    Mode
    The solution of ˆU(χ) for Problems 1–3
    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
    P-1 Min 7×10−7 4×10−7 1×10−7 1×10−6 1×10−7 1×10−6 8×10−7 2×10−6 8×10−7 3×10−6 5×10−6
    Mean 3×10−5 3×10−5 3×10−5 4×10−5 5×10−5 5×10−5 6×10−5 7×10−5 7×10−5 8×10−5 8×10−5
    SD 5×10−5 4×10−5 5×10−5 5×10−5 6×10−5 7×10−5 8×10−5 9×10−5 9×10−5 1×10−4 1×10−4
    Median 1×10−5 1×10−5 1×10−5 2×10−5 2×10−5 3×10−5 4×10−5 4×10−5 5×10−5 5×10−5 5×10−5
    SIR 1×10−5 1×10−5 1×10−5 1×10−5 1×10−5 2×10−5 2×10−5 2×10−5 2×10−5 2×10−5 2×10−5
    P-2 Min 1×10−5 4×10−6 1×10−5 3×10−6 2×10−5 3×10−6 1×10−7 3×10−5 6×10−4 4×10−3 1×10−2
    Mean 1×10−3 5×10−3 1×10−2 2×10−2 3×10−2 4×10−2 4×10−2 5×10−2 5×10−2 6×10−2 9×10−2
    SD 3×10−3 2×10−2 9×10−2 1×10−1 2×10−1 2×10−1 2×10−1 3×10−1 3×10−1 3×10−1 3×10−1
    Median 2×10−4 1×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 3×10−4 2×10−3 9×10−3 3×10−2
    SIR 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 1×10−4 1×10−4 2×10−4 2×10−4 2×10−4 3×10−4
    P-3 Min 2×10−7 3×10−7 6×10−7 6×10−7 3×10−7 2×10−7 1×10−7 1×10−7 2×10−7 1×10−7 4×10−7
    Mean 9×10−6 8×10−6 9×10−6 1×10−5 1×10−5 1×10−5 1×10−5 1×10−5 2×10−5 2×10−5 2×10−5
    SD 1×10−5 1×10−5 1×10−5 1×10−5 1×10−5 2×10−5 2×10−5 3×10−5 3×10−5 4×10−5 5×10−5
    Median 3×10−6 2×10−6 3×10−6 4×10−6 5×10−6 6×10−6 8×10−6 8×10−6 9×10−6 1×10−5 1×10−5
    SIR 5×10−6 5×10−6 3×10−6 3×10−6 4×10−6 6×10−6 6×10−6 7×10−6 8×10−6 8×10−6 1×10−5

     | Show Table
    DownLoad: CSV
    Table 4.  Global performance of ˆU(χ) and ˆV(χ) for Problems 1, 2 and 3.
    Index
    Example
    G.FIT G.RMSE G.TIC G.EVAF
    Mag Median Mag Median Mag Median Mag Median
    ˆU(χ)
    1 6×10-6 3×10-6 4×10−5 2×10−5 7×10−6 4×10−6 2×10−9 5×10−10
    2 2×10−4 4×10−5 2×10−2 2×10−4 7×10−6 4×10−6 4×10−2 2×10−7
    3 1×10−6 3×10−7 2×10−5 9×10−6 1×10−5 6×10−6 4×10−9 1×10−10
    ˆV(χ)
    1 6×10−6 3×10−6 6×10−5 4×10−5 1×10−5 8×10−6 3×10−7 5×10−9
    2 2×10−4 4×10−5 5×10−2 1×10−2 1×10−5 7×10−6 3×10−1 2×10−3
    3 1×10−6 3×10−7 1×10−5 8×10−6 1×10−5 1×10−5 3×10−9 9×10−11

     | Show Table
    DownLoad: CSV

    In this research study, a stable, reliable and accurate numerical ANN-PSO-IPA is accessible to solve the multi-singular nonlinear third kind of Emden-Fowler system by using the ANN strength with continuous mapping. A fitness function of these networks is optimized for the global and local search capabilities of particle swarm optimization and interior-point algorithm, respectively. The proposed ANN-PSO-IPA is broadly applied to solve three different variants of the multi-singular nonlinear third kind of Emden-Fowler system. The precise and accurate performance is observed for ANN-PSO-IPA based on AE with consistent precision around 5 to 8 decimal places of precision for all three problems of the multi-singular nonlinear third kind of Emden-Fowler system. Statistical interpretations in terms of Min, Mean, SD, SI ranges and Median are performed to validate the convergence, robustness and accuracy of the proposed ANN-PSO-IPA for solving the multi-singular nonlinear third kind of Emden-Fowler system based Eqs 1–3.

    In the future, new stochastic solvers based on ANN optimized with evolutionary/swarming paradigm looks proficient to solve nonlinear biological systems [47,48,49,50], fluid dynamics models [51,52,53,54,55,56] and fractional models [57,58,59,60]. Additionally, the different ANNs structure exploiting variety of activation functions should be implemented to solve the MS-TKNS for improved performance.

    This paper has been partially supported by Ministerio de Ciencia, Innovacion y Universidades grant number PGC2018-0971-B-100 and Fundacion Seneca de la Region de Murcia grant number 20783/PI/18.

    All the authors of the manuscript declared that there are no potential conflicts of interest.



    [1] Albeverio S., Jorgensen P. E. T., Paolucci A. M. (2012) On fractional Brownian motion and wavelets. Compl. Anal. Oper. Theo. 6: 33-63.
    [2] S. Albeverio, P. E. T. Jorgensen and A. M. Paolucci, Multiresolution wavelet analysis of integer scale Bessel functions, J. Math. Phy., 48 (2007), 073516, 24 pp.

    10.1063/1.2750291

    MR2337697

    [3] Alpay D., Jorgensen P. E. T., Levanony D. (2017) On the equivalence of probability spaces. J. Theo. Prob. 30: 813-841.
    [4] D. Alpay, P. E. T. Jorgensen and D. P. Kimsey, Moment problems in an infinite number of variables, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 18 (2015), 1550024, 14 pp.

    10.1142/S0219025715500241

    MR3447225

    [5] Alpay D., Jorgensen P. E. T. (2015) Spectral theory for Gaussian processes: Reproducing kernels. Random Functions and Operator Theory 83: 211-229.
    [6] Alpay D., Jorgensen P. (2015) Spectral theory for Gaussian processes: Reproducing kernels, boundaries, & L2 -wavelet generators with fractional scales. Numb. Funct. Anal, Optim. 36: 1239-1285.
    [7] Alpay D., Jorgensen P., Salomon G. (2014) On free stochastic processes and their derivatives. Stochastic Process. Appl. 124: 3392-3411.
    [8] Cho I. (2017) Free semicircular families in free product Banach -algebras induced by p-adic number fields over primes p. Compl. Anal. Oper. Theo. 11: 507-565.
    [9] Cho I. (2017) Adelic analysis and functional analysis on the finite adele ring. Opuscula Math. 38: 139-185.
    [10] Cho I. (2019) Semicircular-like and semicircular laws on Banach -probability spaces induced by dynamical systems of the finite adele ring. Adv. Oper. Theo. 4: 24-70.
    [11] Cho I. (2016) p-adic free stochastic integrals for p-adic weighted-semicircular motions determined by primes p. Libertas Math. (New S.) 36: 65-110.
    [12] Cho I., Jorgensen P. E. T. (2017) Semicircular elements induced by p-adic number fields. Opuscula Math. 37: 665-703.
    [13] Connes A. (1994) Noncommutative Geometry. Inc., San Diego, CA: Academic Press.
    [14] Bost J.-B., Connes A. (1995) Hecke algebras, type III-factors, and phase transitions with spontaneous symmetry breaking in number theory. Selecta Math. (N.S.) 1: 411-457.
    [15] A. Connes, Trace formula in noncommutative Geometry and the zeroes of the Riemann zeta functions, Available at: http://www.alainconnes.org/en/download.php.
    [16] Dragovich B., Radyno Ya., Khennikov A. (2007) Distributions on adéles. J. Math. Sci. 142: 2105-2112.
    [17] Dragovich B., Khennikov A., Mihajiović D. (2007) Linear fractional p-adic and adelic dynamical systems. Rep. Math. Phy. 60: 55-68.
    [18] T. L. Gillespie, Superposition of Zeroes of Automorphic L-Functions and Functoriality, Thesis (Ph.D.)–The University of Iowa, 2011, 75 pp.

    MR2942141

    [19] Gillespie T., Ji G. H. (2011) Prime number theorems for Rankin-Selberg L-functions over number fields. Sci. China Math. 54: 35-46.
    [20] Haagerup U., Larsen F. (2000) Brown's spectrial distribution measure for R-diagonal elements in finite von Neumann algebras. J. Funct. Anal. 176: 331-367.
    [21] Jorgensen P. E. T., Paolucci A. M. (2012) Markov measures and extended zeta functions. J. Appl. Math. Comput. 38: 305-323.
    [22] Jorgensen P. E. T., Paolucci A. M. (2011) States on the Cuntz algebras and p-adic random walks. J. Aust. Math. Soc. 90: 197-211.
    [23] Kaygorodov I., Shestakov I., Umirbaev U. (2018) Free generic Poisson fields and algebras. Comm. Alg. 46: 1799-1812.
    [24] Kemp T., Speicher R. (2007) Strong Haagerup inequalities for free R-diagonal elements. J. Funct. Anal. 251: 141-173.
    [25] Makar-Limanov L., Shestakov I. (2012) Polynomials and Poisson dependence in free Poisson algebras and free Poisson fields. J. Alg. 349: 372-379.
    [26] A. Nica and R. Speicher, Lectures on the Combinatorics of Free Probability, London Mathematical Society Lecture Note Series, 335. Cambridge University Press, Cambridge, 2006.

    10.1017/CBO9780511735127

    MR2266879

    [27] Rǎdulescu F. (1994) Random matrices, amalgamated free products and subfactors of the von Neumann algebra of a free group of nonsingular index. Invent. Math. 115: 347-389.
    [28] Radulescu F. (2014) Free group factors and Hecke operators. The Varied Landscape of Operator Theory, Theta Ser. Adv. Math., Theta, Bucharest 17: 241-257.
    [29] R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Mem. Amer. Math. Soc., 132 (1998).

    10.1090/memo/0627

    MR1407898

    [30] Speicher R. (2000) A conceptual proof of a basic result in the combinatorial approach to freeness. Infinit. Dimention. Anal. Quant. Prob. Relat. Topics 3: 213-222.
    [31] Vladimirov V. S., Volovich I. V. (1989) p-adic quantum mechanics. Comm. Math. Phy. 123: 659-676.
    [32] V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics, Series on Soviet and East European Mathematics, 1. World Scientific Publishing Co., Inc., River Edge, NJ, 1994.

    10.1142/1581

    MR1288093

    [33] Voiculescu D.-V. (2008) Aspects of free analysis. Jpn. J. Math. 3: 163-183.
    [34] Voiculescu D. (2005) Free probability and the von Neumann algebras of free groups. Rep. Math. Phy. 55: 127-133.
    [35] D. V. Voiculescu, K. J. Dykemma and A. Nica, Free Random Variables: A Noncommutative Probability Approach to Free Products with Applications to Random Matrices, Operator Algebras and Harmonic Analysis on Free Groups, CRM Monograph Series, 1. American Mathematical Society, Providence, RI, 1992.

    MR1217253

  • This article has been cited by:

    1. Muhammad Umar, Muhammad Asif Zahoor Raja, Zulqurnain Sabir, Qasem Al-Mdallal, A computational framework to solve the nonlinear dengue fever SIR system, 2022, 25, 1025-5842, 1821, 10.1080/10255842.2022.2039640
    2. Wangxun Yu, Aiju Wang, Zhiguo Qu, New Solutions of Nonlinear Equations Constrained by Bounded Variables under Edge Computation, 2022, 2022, 1530-8677, 1, 10.1155/2022/9855672
    3. Zulqurnain Sabir, Muhammad Umar, Muhammad Asif Zahoor Raja, Haci Mehmet Baskonus, Wei Gao, Designing of Morlet wavelet as a neural network for a novel prevention category in the HIV system, 2022, 15, 1793-5245, 10.1142/S1793524522500127
    4. Zulqurnain Sabir, Mohamed R. Ali, Irwan Fathurrochman, Muhammad Asif Zahoor Raja, R. Sadat, Dumitru Baleanu, Dynamics of multi-point singular fifth-order Lane–Emden system with neuro-evolution heuristics, 2022, 13, 1868-6478, 795, 10.1007/s12530-021-09413-1
    5. Sakda Noinang, Zulqurnain Sabir, Gilder Cieza Altamirano, Muhammad Asif Zahoor Raja, Manuel Jes鷖 S鄋chez-Chero, Mar韆-Ver髇ica Seminario-Morales, Wajaree Weera, Thongchai Botmart, Swarming Computational Techniques for the Influenza Disease System, 2022, 73, 1546-2226, 4851, 10.32604/cmc.2022.029437
    6. Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Juan L. G. Guirao, Tareq Saeed, Swarm Intelligence Procedures Using Meyer Wavelets as a Neural Network for the Novel Fractional Order Pantograph Singular System, 2021, 5, 2504-3110, 277, 10.3390/fractalfract5040277
    7. Tianqi Yu, Lei Liu, Yan-Jun Liu, Observer-based adaptive fuzzy output feedback control for functional constraint systems with dead-zone input, 2022, 20, 1551-0018, 2628, 10.3934/mbe.2023123
    8. Zhanrong Guan, Weak signal detection method based on nonlinear differential equations, 2024, 24, 14727978, 1207, 10.3233/JCM-247329
    9. Zulqurnain Sabir, Tareq Saeed, Juan L. G. Guirao, Juan M. Sánchez, Adrián Valverde, A Swarming Meyer Wavelet Computing Approach to Solve the Transport System of Goods, 2023, 12, 2075-1680, 456, 10.3390/axioms12050456
    10. Keliang Luo, Advancing Smart Sensor Networks and Carbon-Based Biosensors Through Artificial Intelligence: A Deep Learning Approach to Optoelectronic Device Innovation, 2025, 13, 2169-3536, 86083, 10.1109/ACCESS.2025.3567561
    11. Fei Ren, Chao Ren, Optimizing physical education strategies through circular intuitionistic Fuzzy Bonferroni based school policy formulation, 2025, 15, 2045-2322, 10.1038/s41598-025-03363-3
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3373) PDF downloads(190) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog