Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Review Special Issues

Microplastic in soil–current status in Europe with special focus on method tests with Austrian samples

  • Within the last decade the production of plastic steadily increased and so did the amount of plastic waste. When bigger plastic pieces enter the environment, they are fragmented over time due to mechanical and environmental forces. The occurring and the directly released microplastic cause severe problems on soil organisms, due to alteration of physical properties and chemical interactions in the habitat. Main emissions sources of microplastic are different kinds of abrasions (road traffic, packaging, fibers of textiles during washing), waste disposal and drifts. Remains of mulching foils and protection nets spoil agricultural soil as well as the application of compost, sewage sludge and digestate, which may contain microplastic. Once released, microplastic accumulates much stronger in terrestrial than in aquatic systems. Spectroscopic, microscopic and thermo-analytical methods are commonly used to analyze microplastic in soil. The main challenges are to differentiate between soil matrix and plastic particles and to get rid of disturbing organic compounds. Unfortunately, there is no soil without plastic, no environmental blind sample to allow the finding of method limits. Inter-laboratory cooperation and data collection should allow estimation and comparison of emissions not only on European but on global scale. Investigations of Austrian samples provided a first orientation for regulations and measures to avoid further environmental pollution.

    Citation: Katharina Meixner, Mona Kubiczek, Ines Fritz. Microplastic in soil–current status in Europe with special focus on method tests with Austrian samples[J]. AIMS Environmental Science, 2020, 7(2): 174-191. doi: 10.3934/environsci.2020011

    Related Papers:

    [1] Chii-Dong Ho, Gwo-Geng Lin, Thiam Leng Chew, Li-Pang Lin . Conjugated heat transfer of power-law fluids in double-pass concentric circular heat exchangers with sinusoidal wall fluxes. Mathematical Biosciences and Engineering, 2021, 18(5): 5592-5613. doi: 10.3934/mbe.2021282
    [2] Timothy C. Reluga, Jan Medlock, Alison Galvani . The discounted reproductive number for epidemiology. Mathematical Biosciences and Engineering, 2009, 6(2): 377-393. doi: 10.3934/mbe.2009.6.377
    [3] Baojun Song . Basic reinfection number and backward bifurcation. Mathematical Biosciences and Engineering, 2021, 18(6): 8064-8083. doi: 10.3934/mbe.2021400
    [4] Kazunori Sato . Basic reproduction number of SEIRS model on regular lattice. Mathematical Biosciences and Engineering, 2019, 16(6): 6708-6727. doi: 10.3934/mbe.2019335
    [5] Tom Burr, Gerardo Chowell . The reproduction number Rt in structured and nonstructured populations. Mathematical Biosciences and Engineering, 2009, 6(2): 239-259. doi: 10.3934/mbe.2009.6.239
    [6] Qixuan Wang, Hans G. Othmer . The performance of discrete models of low reynolds number swimmers. Mathematical Biosciences and Engineering, 2015, 12(6): 1303-1320. doi: 10.3934/mbe.2015.12.1303
    [7] Sergio Bermudo, Robinson A. Higuita, Juan Rada . k-domination and total k-domination numbers in catacondensed hexagonal systems. Mathematical Biosciences and Engineering, 2022, 19(7): 7138-7155. doi: 10.3934/mbe.2022337
    [8] Ali Moussaoui, Pierre Auger, Christophe Lett . Optimal number of sites in multi-site fisheries with fish stock dependent migrations. Mathematical Biosciences and Engineering, 2011, 8(3): 769-783. doi: 10.3934/mbe.2011.8.769
    [9] Chayu Yang, Jin Wang . Computation of the basic reproduction numbers for reaction-diffusion epidemic models. Mathematical Biosciences and Engineering, 2023, 20(8): 15201-15218. doi: 10.3934/mbe.2023680
    [10] José Ángel Juárez Morales, Jesús Romero Valencia, Raúl Juárez Morales, Gerardo Reyna Hernández . On the offensive alliance number for the zero divisor graph of Zn. Mathematical Biosciences and Engineering, 2023, 20(7): 12118-12129. doi: 10.3934/mbe.2023539
  • Within the last decade the production of plastic steadily increased and so did the amount of plastic waste. When bigger plastic pieces enter the environment, they are fragmented over time due to mechanical and environmental forces. The occurring and the directly released microplastic cause severe problems on soil organisms, due to alteration of physical properties and chemical interactions in the habitat. Main emissions sources of microplastic are different kinds of abrasions (road traffic, packaging, fibers of textiles during washing), waste disposal and drifts. Remains of mulching foils and protection nets spoil agricultural soil as well as the application of compost, sewage sludge and digestate, which may contain microplastic. Once released, microplastic accumulates much stronger in terrestrial than in aquatic systems. Spectroscopic, microscopic and thermo-analytical methods are commonly used to analyze microplastic in soil. The main challenges are to differentiate between soil matrix and plastic particles and to get rid of disturbing organic compounds. Unfortunately, there is no soil without plastic, no environmental blind sample to allow the finding of method limits. Inter-laboratory cooperation and data collection should allow estimation and comparison of emissions not only on European but on global scale. Investigations of Austrian samples provided a first orientation for regulations and measures to avoid further environmental pollution.


    The linear Diophantine problem of Frobenius is to find the largest integer which is not expressed by a nonnegative linear combination of given positive relatively prime integers a1,a2,,al. Such a largest integer is called the Frobenius number [3], denoted by g(A)=g(a1,a2,,al), where A={a1,a2,,al}. In the literature on the Frobenius problem, the Sylvester number or genus n(A)=n(a1,a2,,al), which is the total number of integers that cannot be represented as a nonnegative linear combination of a1,a2,,al [4].

    There are many aspects to studying the Frobenius problem. For example, there are algorithmic aspects to find the values or the bounds, complexity of computations, denumerants, numerical semigroup, applications to algebraic geometry and so on (see e.g., [5,6]). Nevertheless, one of the motivations for our p-generalizations originates in the number of representations d(n;a1,a2,,al) to a1x1+a2x2++alxl=n for a given positive integer n. This number is equal to the coefficient of xn in 1/(1xa1)(1xa2)(1xal) for positive integers a1,a2,,al with gcd(a1,a2,,al)=1 [4]. Sylvester [7] and Cayley [8] showed that d(n;a1,a2,,al) can be expressed as the sum of a polynomial in n of degree k1 and a periodic function of period a1a2al. In [9], the explicit formula for the polynomial part is derived by using Bernoulli numbers. For two variables, a formula for d(n;a1,a2) is obtained in [10]. For three variables in the pairwise coprime case d(n;a1,a2,a3). For three variables, in [11], the periodic function part is expressed in terms of trigonometric functions, and its results have been improved in [12] by using floor functions so that three variables case can be easily worked with-in the formula.

    In this paper, we are interested in one of the most general and most natural types of Frobenius numbers, which focuses on the number of representations. For a nonnegative integer p, the largest integer such that the number of expressions that can be represented by a1,a2,,al is at most p is denoted by gp(A)=gp(a1,a2,,al) and may be called the p-Frobenius number. That is, all integers larger than gp(A) have at least the number of representations of p+1 or more. This generalized Frobenius number gp(A) is called the p-Frobenius number [1,2], which is also called the k-Frobenius number [13] or the s-Frobenius number [14]. When p=0, g(A)=g0(A) is the original Frobenius number. One can consider the largest integer gp(a1,a2,,al) that has exactly p distinct representations (see e.g., [13,14]). However, in this case, the ordering g0g1 may not hold. For example, g17(2,5,7)=43>g18(2,5,7)=42. In addition, for some j, gj may not exist. For example, g22(2,5,7) does not exist because there is no positive integer whose number of representations is exactly 22. Therefore, in this paper we do not study gp(A) but gp(A).

    Similarly to the p-Frobenius number, the p-Sylvester number or the p-genus np(A)=np(a1,a2,,al) is defined by the cardinality of the set of integers which can be represented by a1,a2,,al at most p ways. When p=0, n(A)=n0(A) is the original Sylvester number.

    In this paper, we are interested in one of the most crucial topics, that is, to find explicit formulas of indicators, in particular, of p-Frobenius numbers and p-Sylvester numbers. In the classical case, that is, for p=0, explicit formulas of g(a1,a2) and n(a1,a2) are shown when l=2 [3,4]. However, for l3, g(A) cannot be given by any set of closed formulas which can be reduced to a finite set of certain polynomials [15]. For l=3, there are several useful algorithms to obtain the Frobenius number (see e.g., [16,17,18]). For the concretely given three positive integers, if the conditions are met, the Frobenius number can be completely determined by the method of case-dividing by A. Tripathi [19]. Although it is possible to find the Frobenius number by using the results in [19], it is another question whether the Frobenius number can be given by a closed explicit expression for some special triplets, and special considerations are required. Only for some special cases, explicit closed formulas have been found, including arithmetic, geometric, Mersenne, repunits and triangular (see [20,21,22] and references therein).

    For p>0, if l=2, explicit formulas of gp(a1,a2) and np(a1,a2) are still given without any difficulty (see e.g., [23]). However, if l3, no explicit formula had been given even in a special case. However, quite recently, we have succeeded in giving explicit formulas for the case where the sequence is of triangular numbers [1] or of repunits [2] for the case where l=3.

    In this paper, we give an explicit formula for the p-Frobenius number for the Fibonacci number triple (Fi,Fi+2,Fi+k) (i,k3). Here, the n-th Fibonacci number Fn is defined by Fn=Fn1+Fn2 (n2) with F1=1 and F0=0. Our main result (Theorem 6.1 below) is a kind of generalizations of [24,Theorem 1] when p=0. However, when p>0, the exact situation is not completely similar to the case where p=0, and the case by case discussion is necessary. As analogues, we also show explicit formulas of gp(Li,Li+2,Li+k) for Lucas numbers Ln with i,k3. Here, Lucas numbers Ln satisfy the recurrence relation Ln=Ln1+Ln2 (n2) with L0=2 and L1=1. By using our constructed framework, we can also find explicit formulas of the p-Sylvester numbers np(Fi,Fi+2,Fi+k) and np(Li,Li+2,Li+k). Our result (Theorem 13) can extend the result in [24,Corollary 2]. The main idea is to find the explicit structure of the elements of an Apéry set [25]. In addition, we use a complete residue system, studied initially by Selmer [26]. By using Apéry sets, we construct the first least set of the complete residue system, then the second least set of the complete residue system, and the third, and so on. As a basic framework, we use a similar structure in [2]. We can safely say that one of our theorems (Theorem 6.1 below) is a kind of generalization of [24,Theorem 1]. Nevertheless, for each nonnegative integer p, the exact situation is not completely similar, but the case by case discussion is necessary.

    Without loss of generality, we assume that a1=min{a1,a2,,al}. For each 0ia11, we introduce the positive integer m(p)i congruent to i modulo a1 such that the number of representations of m(p)i is bigger than or equal to p+1, and that of mia1 is less than or equal to p. Note that m(0)0 is defined to be 0. The set

    Ap(A;p)=Ap(a1,a2,,al;p)={m(p)0,m(p)1,,m(p)a11},

    is called the p-Apéry set of A={a1,a2,,al} for a nonnegative integer p, which is congruent to the set

    {0,1,,a11}(moda1).

    When p=0, the 0-Apéry set is the original Apéry set [25].

    It is hard to find any explicit formula of gp(a1,a2,,al) when l3. Nevertheless, the following convenient formulas are known (see [28]). After finding the structure of m(p)j, we can obtain p-Frobenius or p-Sylvester numbers for triple (Fi,Fi+2,Fi+k).

    Lemma 1. Let k, p and μ be integers with k2, p0 and μ1. Assume that gcd(a1,a2,,al)=1. We have

    gp(a1,a2,,al)=max0ja11m(p)ja1, (2.1)
    np(a1,a2,,al)=1a1a11j=0m(p)ja112. (2.2)

    Remark. When p=0, (2.1) is the formula by Brauer and Shockley [27]:

    g(a1,a2,,al)=(max1ja11mj)a1, (2.3)

    where mj=m(0)j (1ja11) with m0=0. When p=0, (2.2) is the formula by Selmer [26]:

    n(a1,a2,,al)=1a1a11j=1mja112. (2.4)

    Note that m0=m(0)0=0. A more general form by using Bernoulli numbers is given in [28], as well as the concept of weighted sums [29,30].

    It is necessary to find the exact situation of 0-Apéry set Ap(Fi,0), the least complete residue system, which was initially studied in [26]. Concerning Fibonacci numbers, we use the framework in [24].

    Throughout this paper, for a fixed integer i, we write

    Ap(Fi;p)={m(p)0,m(p)1,,m(p)Fi1}

    for short. Then, we shall construct the set of the least complete residue system Ap(Fi;0). That is, mj ( 0\le j < h\le F_i-1 ), and if for a positive integer M , M\equiv j and M\ne m_j ( 0\le j\le F_i-1 ), then M > m_j . Then, for the case p = 1 we shall construct the second set of the least complete residue system {\rm Ap} (F_i; 1) . That is, m_j^{(1)}\not\equiv m_h^{(1)}\pmod{F_i} ( 0\le j < h\le F_i-1 ), m_j^{(1)}\equiv m_j\pmod{F_i} ( 0\le j\le F_i-1 ), and there does not exist an integer M such that m_j^{(1)} > M > m_j and M\equiv j\pmod{F_i} . Similarly, for p = 2 , we shall construct the third set of the least complete residue system {\rm Ap} (F_i; 2) . That is, m_j^{(2)}\not\equiv m_h^{(2)}\pmod{F_i} ( 0\le j < h\le F_i-1 ), m_j^{(2)}\equiv m_j^{(1)}\pmod{F_i} ( 0\le j\le F_i-1 ), and there does not exist an integer M such that m_j^{(2)} > M > m_j^{(1)} and M\equiv j\pmod{F_i} .

    By using a similar frame as in [24], we first show an analogous result about Lucas triple (L_i, L_{i+2}, L_{i+k}) when p = 0 . As a preparation we shall show the result when p = 0 , with a sketch of the proof. The results about Fibonacci numbers can be applied to get those about Lucas numbers. When p = 0 , by setting integers r and \ell as L_i-1 = r F_k+\ell with r\ge 0 and 0\le\ell\le F_k-1 and by using the identity L_n = L_m F_{n-m+1}+L_{m-1}F_{n-m} , we can get an analogous identity of the Fibonacci one in [24,Theorem 1].

    Theorem 1. For integers i, k\ge 3 and r = \left\lfloor{(L_i-1)/F_k}\right\rfloor , we have

    \begin{align*} &g_0(L_i, L_{i+2}, L_{i+k})\\ & = \left\{ \begin{alignedat}{2} & (L_i-1)L_{i+2}-L_i(r F_{k-2}+1) &\quad& {{if\ r = 0 , \ or\ r\ge 1\ and}} \\ &&&{{ (L_i-r F_k)L_{i+2} > F_{k-2}L_i }}, \\ & (r F_k-1)L_{i+2}-L_i\bigl((r-1)F_{k-2}+1\bigr) & & {{otherwise}}\, . \end{alignedat} \right. \end{align*}

    Proof. Consider the linear representation

    \begin{align*} t_{x, y}:& = x L_{i+2}+y L_{i+k}\\ & = (x+y F_k)L_{i+2}-y F_{k-2}L_i\quad(x, y\ge 0)\, . \end{align*}

    Then, by \gcd(L_i, L_{i+2}) = 1 , we can prove that the above table represents the least complete residue system \{0, 1, \dots, L_i-1\}\pmod{L_i} .

    That is, we can prove that none of two elements among this set is not congruent modulo F_i , and if there exists an element congruent to any of the elements among this set, then such an element is bigger and not in this set.

    When r = 0 , the largest element among all the t_{x, y} 's in this table is t_{\ell, 0} . When r\ge 1 , the largest element is either t_{F_k-1, r-1} or t_{\ell, r} . Since t_{F_k-1, r-1} < t_{\ell, r} is equivalent to F_{k-2}L_i < (L_i-r F_k)L_{i+2} , the result is followed by the identity (2.3). The first case is given by t_{\ell, r}-L_i , and the second is given by t_{F_k-1, r-1}-L_i .

    Now, let us begin to consider the case p\ge 1 . We shall obtain the Frobenius number using Lemma 1 (2.1). For this it is necessary to know the structure of the elements of the p -Apéry set, and the structure of the elements of the p -Apéry set depends on the structure of the elements of the ( p-1 )-Apéry set. Therefore, in the case of p = 1 , the structure of the elements of the 1 -Apéry set is analyzed from the structure of the elements of the 0 -Apéry set, which is the original Apéry set, thereby obtaining the 1 -Frobenius number. When p = 1 , we have the following.

    Theorem 2. For i\ge 3 , we have

    \begin{align} g_1(F_i, F_{i+2}, F_{i+k})& = (2 F_i-1)F_{i+2}-F_i\quad(k\ge i+2)\, , \end{align} (3.1)
    \begin{align} g_1(F_i, F_{i+2}, F_{2 i+1})& = (F_{i-2}-1)F_{i+2}+F_{2 i+1}-F_i\, , \end{align} (3.2)
    \begin{align} g_1(F_i, F_{i+2}, F_{2 i})& = (F_{i}-1)F_{i+2}+F_{2 i}-F_i\, . \end{align} (3.3)

    When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge 1 , that is, k\le i-1 , we have

    \begin{align} &g_1(F_i, F_{i+2}, F_{i+k})\\ & = \begin{cases} (F_i-r F_k-1)F_{i+2}+(r+1)F_{i+k}-F_i&{{if\ (F_i-r F_k)F_{i+2}\ge F_{k-2}F_i }}, \\ (F_k-1)F_{i+2}+r F_{i+k}-F_i&{{if \ (F_i-r F_k)F_{i+2} < F_{k-2}F_i }}. \end{cases} \end{align} (3.4)

    Remark. When r\ge1 and k = i-1, i-2, i-3, i-4, i-5 , we have more explicit formulas.

    \begin{align*} g_1(F_i, F_{i+2}, F_{2 i-1})& = (F_{i-2}-1)F_{i+2}+2 F_{2 i-1}-F_i\quad(i\ge 4)\, , \\ g_1(F_i, F_{i+2}, F_{2 i-2})& = (F_{i-3}-1)F_{i+2}+3 F_{2 i-2}-F_i\quad(i\ge 5)\, , \\ g_1(F_i, F_{i+2}, F_{2 i-3})& = \begin{cases} (F_{i-6}-1)F_{i+2}+5 F_{2 i-3}-F_i&{ (i\ge 7) }\\ F_{i+2}+4 F_{2 i-3}-F_i( = 149)&{ (i = 6) }\, , \end{cases} \\ g_1(F_i, F_{i+2}, F_{2 i-4})& = (F_{i-5}+F_{i-7}-1)F_{i+2}+7 F_{2 i-4}-F_i\, , \\ g_1(F_i, F_{i+2}, F_{2 i-5})& = \begin{cases} (F_{i-5}-1)F_{i+2}+11 F_{2 i-5}-F_i&{ (i\ge 10) }\\ 12 F_{2 i-5}-F_i&{ (i = 9) }\\ 11 F_{2 i-5}-F_i&{ (i = 8) } \, . \end{cases} \end{align*}

    Proof. Put the linear representation

    \begin{align*} t_{x, y}:& = x F_{i+2}+y F_{i+k}\\ & = (x+y F_k)F_{i+2}-y F_{k-2}F_i\quad(x, y\ge 0)\, . \end{align*}

    For given F_i and F_k , integers r and \ell are determined uniquely as F_i-1 = r F_k+\ell with 0\le\ell\le F_k-1 .

    Table 1.  {\rm Ap}(F_i;0) and {\rm Ap}(F_i;1) for r\ge 1.

     | Show Table
    DownLoad: CSV

    The second set {\rm Ap} (F_i; 1) can be yielded from the first set {\rm Ap}(F_i; 0) as follows. Assume that r\ge 1 . Only the first line \{t_{0, 0}, t_{1, 0}, \dots, t_{F_k-1, 0}\} moves to fill the last gap in the ( r+1 )-st line, and the rest continue to the next ( r+2 )-nd line. Everything else from the second line shifts up by 1 and moves to the next right block (When r = 1 , the new right block consists of only one line t_{F_k, 0}, \cdots, t_{F_k+\ell, 0} , but this does not affect the final result).

    \begin{align*} t_{0, 1}&\equiv t_{F_k, 0}, &t_{1, 1}&\equiv t_{F_k+1, 0}, &\quad\dots, \quad t_{F_k-1, 1}&\equiv t_{2 F_k-1, 0}, \\ t_{0, 2}&\equiv t_{F_k, 1}, &t_{1, 2}&\equiv t_{F_k+1, 1}, &\quad\dots, \quad t_{F_k-1, 2}&\equiv t_{2 F_k-1, 1}, \\ \dots\\ t_{0, r-1}&\equiv t_{F_k, r-2}, &t_{1, r-1}&\equiv t_{F_k+1, r-2}, &\quad\dots, \quad t_{F_k-1, r-1}&\equiv t_{2 F_k-1, r-2}, \\ t_{0, r}&\equiv t_{F_k, r-1}, &\!\!\!\!\quad\dots, &\!\!\!\!&t_{\ell, r}\equiv t_{F_k+\ell, r-1}, && \end{align*}
    \qquad\qquad\qquad\qquad t_{0, 0}\equiv t_{\ell+1, r}, \quad\dots, \quad t_{F_k-\ell-2, 0}\equiv t_{F_k-1, r},
    t_{F_k-\ell-1, 0}\equiv t_{0, r+1}, \quad\dots, \quad t_{F_k-1, 0}\equiv t_{\ell, r+1}.

    The first group is summarized as

    t_{x, y}\equiv t_{F_k+x, y-1}\pmod{F_i}

    for 0\le x\le F_k-1 and 1\le y\le r-1 or 0\le x\le\ell and y = r . This congruence is valid because

    \begin{align*} &t_{x, y} = (x+y F_k)F_{i+2}-y F_{k-2}F_i\\ &\equiv(F_k+x+(y-1)F_k)F_{i+2}-(y-1)F_{k-2}F_i = t_{F_k+x, y-1}\pmod{F_i}\, . \end{align*}

    The second group is valid because for 0\le x\le F_k-\ell-2 ,

    \begin{align*} t_{x, 0}& = x F_{i+2}\\ &\equiv(\ell+1+x+r F_k)F_{i+2}-r F_{k-2}F_i = t_{\ell+1+x, r}\pmod{F_i}\, . \end{align*}

    The third group is valid because for 0\le x\le \ell ,

    \begin{align*} t_{F_k-\ell-1+x, 0}& = (F_k-\ell-1+x)F_{i+2}\\ &\equiv(x+(r+1)F_k)F_{i+2}-(r+1)F_{k-2}F_i = t_{x, r+1}\pmod{F_i}\, . \end{align*}
    Table 2.  {\rm Ap}(F_i;0) and {\rm Ap}(F_i;1) for r=0 and 2\ell+1\ge F_k.

     | Show Table
    DownLoad: CSV

    Assume that r = 0 . The first set {\rm Ap}(F_i; 0) consists of only the first line. If 2\ell+1\ge F_k , then the second set {\rm Ap}(F_i; 1) can be yielded by moving to fill the last gap in the line, the rest continuing to the next line.

    \begin{align*} t_{0, 0}&\equiv t_{\ell+1, 0}, \quad &&\dots, &\quad t_{F_k-\ell-2, 0}&\equiv t_{F_k-1, 0}\, , \\ t_{F_k-\ell-1, 0}&\equiv t_{0, 1}, \quad &&\dots, &\quad t_{\ell, 0}&\equiv t_{2\ell+1-F_k, 1}\pmod{F_i}\, . \end{align*}

    They are valid because for 0\le j\le F_k-\ell-2 ,

    \begin{align*} t_{j, 0}& = j F_{i+2}\equiv(F_i+j)F_{i+2}\\ & = (\ell+1-j)F_{i+2} = t_{\ell+1-j, 0}\pmod{F_i}, \end{align*}

    and for 0\le j\le 2\ell+1-F_k ,

    \begin{align*} t_{F_k-\ell-1+j, 0}& = (F_k-\ell-1+j)F_{i+2}\\ &\equiv(j+F_k)F_{i+2}-F_{k-2}F_i = t_{j, 1}\pmod{F_i}\, . \end{align*}
    Table 3.  {\rm Ap}(F_i;0) and {\rm Ap}(F_i;1) for r=0 and 2\ell+1\le F_k-1.

     | Show Table
    DownLoad: CSV

    If 2\ell+1\le F_k-1 , then the second set {\rm Ap}(F_i; 1) can be yielded by moving to fill the last gap in the line only.

    t_{0, 0}\equiv t_{\ell+1, 0}, \quad\dots, \quad t_{\ell, 0}\equiv t_{2\ell+1, 0}\pmod{F_i}\, .

    They are valid because for 0\le j\le\ell ,

    \begin{align*} t_{j, 0}& = j F_{i+2}\equiv(F_i+j)F_{i+2}\\ & = (\ell+j+1)F_{i+2} = t_{\ell+j+1, 0}\pmod{F_i}\, . \end{align*}

    Next, we shall decide the maximal element in the second set {\rm Ap}(F_i; 1) (and also in the first set {\rm Ap}(F_i; 0) ).

    Case 1 (1) Assume that r = 0 and 2\ell+1\le F_k-1 . The second condition is equivalent to 2 F_i\le F_k , which is equivalent to i\le k-2 . The largest element in the second set {\rm Ap}(F_i; 1) , which is congruent to \{0, 1, \dots, F_i-1\}\pmod{F_i} , is given by t_{2\ell+1, 0} = (2 F_i-1)F_{i+2} .

    Case 1 (2) Assume that r = 0 and 2\ell+1\ge F_k . The second condition is equivalent to 2 F_i-1\ge F_k , which is equivalent to i\ge k-1\ge 3 . In this case there are two possibilities for the largest element in the second set {\rm Ap}(F_i; 1) : t_{F_k-1, 0} = (F_k-1)F_{i+2} or t_{2\ell+1-F_k, 1} = (2 F_i-1)F_{i+2}-F_{k-2}F_i . However, because of i\ge k-1\ge 3 , always t_{F_k-1, 0} < t_{2\ell+1-F_k, 1} .

    Case 2 Assume that r\ge 1 . This condition is equivalent to F_i-1\ge F_k , which is equivalent to i\ge k+1 .

    In this case there are four possibilities for the largest element in the second set {\rm Ap}(F_i; 1) :

    \begin{align*} t_{2 F_k-1, r-2}& = (r F_k-1)F_{i+2}-(r-2)F_{k-2}F_i, \\ t_{F_k+\ell, r-1}& = (F_i-1)F_{i+2}-(r-1)F_{k-2}F_i, \\ t_{F_k-1, r}& = \bigl((r+1)F_k-1\bigr)F_{i+2}-r F_{k-2}F_i, \\ t_{\ell, r+1}& = (F_i+F_k-1)F_{i+2}-(r+1)F_{k-2}F_i. \end{align*}

    However, it is clear that t_{2 F_k-1, r-2} < t_{F_k-1, r} . Because i\ge k+1 , t_{F_k+\ell, r-1} < t_{F_k-1, r} . Thus, the only necessity is to compare t_{F_k-1, r} and t_{\ell, r+1} , and t_{F_k-1, r} > t_{\ell, r+1} is equivalent to (F_i-r F_k)F_{i+2} > F_{k-2}F_i .

    Finally, rewriting the forms in terms of F_{i+2} and F_{i+k} and applying Lemma 1 (2.1), we get the result. Namely, the formula (3.1) comes from Case 1 (1). The formulas (3.2) and (3.3) come from Case 1 (2) when k = i+1 and k = i , respectively. The general formula (3.4) comes from Case 2.

    When p = 2 , we have the following.

    Theorem 3. For i\ge 3 , we have

    \begin{align} g_2(F_i, F_{i+2}, F_{i+k})& = (3 F_i-1)F_{i+2}-F_i\quad(k\ge i+3)\, , \end{align} (4.1)
    \begin{align} g_2(F_i, F_{i+2}, F_{2 i+2})& = \begin{cases} (F_{i-2}-1)F_{i+2}+F_{2 i+2}-F_i&{{ (i\ is\ odd ) }}\\ (F_{i+2}-1)F_{i+2}-F_i&{{ (i\ is \ even ) }}\, , \end{cases} \end{align} (4.2)
    \begin{align} g_2(F_i, F_{i+2}, F_{2 i+1})& = (F_{i}-1)F_{i+2}+F_{2 i+1}-F_i\, , \end{align} (4.3)
    \begin{align} g_2(F_i, F_{i+2}, F_{2 i})& = (2 F_{i}-1)F_{i+2}-F_i\, , \end{align} (4.4)
    \begin{align} g_2(F_i, F_{i+2}, F_{2 i-1})& = \begin{cases} (F_{i-4}-1)F_{i+2}+3 F_{2 i-1}-F_i&{{ (i\ge 5) }}\\ F_{i+2}+2 F_{2 i-1}-F_i( = 31)&{{ (i = 4) }}\, . \end{cases} \end{align} (4.5)

    When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge 2 , that is, k\le i-2 , we have

    \begin{align} &g_2(F_i, F_{i+2}, F_{i+k})\\ & = \begin{cases} (F_i-r F_k-1)F_{i+2}+(r+2)F_{i+k}-F_i&{{if \ (F_i-r F_k)F_{i+2}\ge F_{k-2}F_i }};\\ (F_k-1)F_{i+2}+(r+1)F_{i+k}-F_i&{{if\ (F_i-r F_k)F_{i+2} < F_{k-2}F_i }}\, . \end{cases} \end{align} (4.6)

    Remark. When k = i-2 and k = i-3 , we can write this more explicitly as

    \begin{align} g_2(F_i, F_{i+2}, F_{2 i-2})& = (F_{i-3}-1)F_{i+2}+4 F_{2 i-2}-F_i\quad(i\ge 5)\, , \end{align} (4.7)
    \begin{align} g_2(F_i, F_{i+2}, F_{2 i-3})& = \begin{cases} (F_{i-6}-1)F_{i+2}+6 F_{2 i-3}-F_i&{ (i\ge 7) }\\ F_{i+2}+5 F_{2 i-3}-F_i( = 183)&{ (i = 6) }\, , \end{cases} \end{align} (4.8)

    respectively. The formulas (4.7) and (4.8) hold when r = 2 and r = 4 , respectively.

    Proof. When p = 2 , the third least complete residue system {\rm Ap}(F_i; 2) is determined from the second least complete residue system {\rm Ap}(F_i; 1) . When r\ge 2 , some elements go to the third block.

    Table 4.  {\rm Ap}(F_i;p) (p=0,1,2) for r=0 and F_k\ge 3\ell+3.

     | Show Table
    DownLoad: CSV

    Case 1 (1) Let r = 0 and F_k\ge 3\ell+3 = 3 F_i . Since for \ell+1\le j\le 2\ell+1 ,

    \begin{align*} t_{j, 0}& = j F_{i+2}\equiv(F_i+j)F_{i+2}\\ & = (\ell+j+1)F_{i+2} = t_{\ell+j+1, 0}\pmod{F_i}\, , \end{align*}

    the third set {\rm Ap}(F_i; 2) is given by

    \{t_{2\ell+1, 0}, \dots, t_{3\ell+2, 0}\}\pmod{F_i}\, .

    As the maximal element is t_{3\ell+2, 0} , by (2.1), we have

    g_2(F_i, F_{i+2}, F_{i+k}) = (3 F_i-1)F_{i+2}-F_i\, .
    Table 5.  {\rm Ap}(F_i;p) (p=0,1,2) for r=0 and 2\ell+2\le F_k\le 3\ell+2.

     | Show Table
    DownLoad: CSV

    Case 1 (2) Let r = 0 and 2 F_i = 2\ell+2\le F_k\le 3\ell+2 = 3 F_i-1 . Since t_{j, 0}\equiv t_{\ell+j+1, 0}\pmod{F_i} ( \ell+1\le j\le F_k-\ell-2 ), and for 0\le j\le 3\ell+2-F_k ,

    \begin{align*} t_{F_k-\ell-1+j, 0}& = (F_k-\ell-1+j)F_{i+2} = (F_k-F_i+j)F_{i+2}\\ &\equiv(F_k+j)F_{i+2}\equiv(j+F_k)F_{i+2}+F_{k-2}F_i = t_{j, 1}\pmod{F_i}\, , \end{align*}

    the third set {\rm Ap}(F_i; 2) is

    \{t_{2\ell+1, 0}, \dots, t_{F_k-1, 0}, t_{0, 1}, \dots, t_{3\ell+2-F_k, 1}\}\pmod{F_i}\, .
    Table 6.  {\rm Ap}(F_i;p) (p=0,1,2) for r=0 and F_k\le 2\ell+1.

     | Show Table
    DownLoad: CSV

    The first elements t_{2\ell+1, 0}, \dots, t_{F_k-1, 0} are in the last of the first line, and the last elements t_{0, 1}, , \dots, t_{3\ell+2-F_k, 1} are in the first part of the second line. Hence, the maximal element is t_{F_k-1, 0} = (F_k-1)F_{i+2} or t_{3\ell+2-F_k, 1} = (3 F_i-1)F_{i+2}-F_{k-2}F_i . Therefore, when (3 F_i-F_k)F_{i+2}\ge F_{k-2}F_i , g_2(F_i, F_{i+2}, F_{i+k}) = (3 F_i-1)F_{i+2}-(F_{k-2}+1)F_i . When (3 F_i-F_k)F_{i+2} < F_{k-2}F_i , g_2(F_i, F_{i+2}, F_{i+k}) = (F_k-1)F_{i+2}-F_i .

    Case 1 (3) Let r = 0 and F_k\le 2\ell+1 = 2 F_i-1 . Since for \ell+1\le j\le F_k-1

    \begin{align*} t_{j, 0}& = j F_{i+2}\equiv(F_i+j)F_{i+2}\\ &\equiv(\ell+1+j)F_{i+2}-F_{k-2}F_i = t_{\ell-F_k+1+j, 1}\pmod{F_i}, \end{align*}

    and for 0\le j\le 2\ell+1-F_k

    \begin{align*} t_{j, 1}& = (j+F_k)F_{i-2}-F_{k-2}F_i\\ &\equiv(F_k+j)F_{i+2} = t_{F_k+j, 0}\pmod{F_i}\, , \end{align*}

    the third set {\rm Ap}(F_i; 2) is

    \{t_{2\ell+2-F_k, 1}, \dots, t_{\ell, 1}, t_{F_k, 0}, \dots, t_{2\ell+1, 0}\}\pmod{F_i}\, .

    The first elements t_{2\ell+2-F_k, 1}, \dots, t_{\ell, 1} are in the second line of the first block, and the last elements are t_{F_k, 0}, \dots, t_{2\ell+1, 0} in the first line of the second block. So, the maximal element is t_{\ell, 1} = (F_i+F_k-1)F_{i+2}-F_{k-2}F_i or t_{2\ell+1, 0} = (2 F_i-1)F_{i+2} . Since F_k\le 2 F_i-1 , only when k = i+1 , we have g_2(F_i, F_{i+2}, F_{i+k}) = (F_i+F_k-1)F_{i+2}-(F_{k-2}+1)F_i . When k\le i , we have g_2(F_i, F_{i+2}, F_{i+k}) = (2 F_i-1)F_{i+2}-F_i .

    Table 7.  {\rm Ap}(F_i;p) (p=0,1,2) for r=1 and F_k\ge 2\ell+2.

     | Show Table
    DownLoad: CSV

    Case 2 (1) Let r = 1 and 2\ell+2\le F_k , that is, \frac{2}{3}F_i\le F_k\le F_i-1 . This case happens only when i = 4 and k = 3 . Since for \ell+1\le j\le F_k-1

    \begin{align*} t_{j, 1}& = (j+F_k)F_{i+2}-F_{k-2}F_i\\ &\equiv(F_k+j)F_{i+2} = t_{F_k+j, 0}\pmod{F_i}\, , \end{align*}

    for 0\le j\le\ell

    \begin{align*} t_{j, 2}& = (j+2 F_k)F_{i+2}-2 F_{k-2}F_i\\ &\equiv(F_k+j+F_k)F_{i+2}-F_{k-2}F_i = t_{F_k+j, 1}\pmod{F_i}\, , \end{align*}

    and for 0\le j\le\ell

    \begin{align*} t_{F_k+j, 0}& = (F_k+j)F_{i+2}\equiv(F_i+j+F_k)F_{i+2}\\ &\equiv(\ell+1+j+2 F_k)F_{i+2}-2 F_{k-2}F_i = t_{\ell+1+j, 2}\pmod{F_i}\, , \end{align*}

    the third set {\rm Ap}(F_i; 2) is

    \{t_{F_k+\ell+1, 0}, \dots, t_{2 F_k-1, 0}, t_{F_k, 1}, \dots, t_{F_k+\ell, 1}, t_{\ell+1, 2}, \dots, t_{2\ell+1, 2}\}\pmod{F_i}\, .

    The first elements t_{F_k+\ell+1, 0}, \dots, t_{2 F_k-1, 0} are in the first line of the second block, the second elements t_{F_k, 1}, \dots, t_{F_k+\ell, 1} are in the second line of the second block, and the last elements t_{\ell+1, 2}, \dots, t_{2\ell+1, 2} in the third line of the first block. So, the maximal element is one of t_{2 F_k-1, 0} = (2 F_k-1)F_{i+2} , t_{F_k+\ell, 1} = (F_i+F_k-1)F_{i+2}-F_{k-2}F_i or t_{2\ell+1, 2} = (2 F_i-1)F_{i+2}-2 F_{k-2}F_i . As i = 4 and k = 3 , t_{2\ell+1, 2} = 34 is the largest. Hence, g_2(F_i, F_{i+2}, F_{i+k}) = (2 F_i-1)F_{i+2}-(2 F_{k-2}+1)F_i , that is, g_2(F_4, F_6, F_7) = 34-F_4 = 31 .

    Table 8.  {\rm Ap}(F_i;p) (p=0,1,2) for r=1 and F_k\le 2\ell+1.

     | Show Table
    DownLoad: CSV

    Case 2 (2) Let r = 1 and 2\ell+1\ge F_k , that is, (F_i-1)/2 < F_k\le(2F_i-1)/3 . This relation holds only when k = i-1\ge 4 . Since t_{j, 1}\equiv t_{F_k+j, 0}\pmod{F_i} ( \ell+1\le j\le F_k-1 ), t_{j, 2}\equiv t_{F_k+j, 1}\pmod{F_i} ( 0\le j\le\ell ), t_{F_k+j, 0}\equiv t_{\ell+1+j, 2}\pmod{F_i} ( 0\le j\le F_k-\ell-2 ), and for 0\le j\le 2\ell+1-F_k

    \begin{align*} t_{2 F_k-\ell-1+j, 0}& = (2 F_k-\ell-1+j)F_{i+2}\equiv(3 F_k-F_i+j)F_{i+2}\\ &\equiv(j+3 F_k)F_{i+2}-3 F_{k-2}F_i = t_{j, 3}\pmod{F_i}\, , \end{align*}

    the third set {\rm Ap}(F_i; 2) is

    \begin{eqnarray} \{t_{F_k+\ell+1, 0}, \dots, t_{2 F_k-1, 0}, t_{F_k, 1}, \dots, t_{F_k+\ell, 1}, \\ t_{\ell+1, 2}, \dots, t_{F_k-1, 2}, t_{0, 3}, \dots, t_{2\ell+1-F_k, 3}\}\pmod{F_i}\, . \end{eqnarray}

    So, the maximal element is one of t_{2 F_k-1, 0} = (2 F_k-1)F_{i+2} , t_{F_k+\ell, 1} = (F_i+F_k-1)F_{i+2}-F_{k-2}F_i , t_{F_k-1, 2} = (3 F_k-1)F_{i+2}-2 F_{k-2}F_i or t_{2\ell+1-F_k, 3} = (2 F_i-1)F_{i+2}-3 F_{k-2}F_i . As k = i-1\ge 4 , t_{2\ell+1-F_k, 3} = (2 F_i-1)F_{i+2}-3 F_{i-3}F_i is the largest. Hence, g_2(F_i, F_{i+2}, F_{2 i-1}) = (2 F_i-1)F_{i+2}-(3 F_{i-3}+1)F_i .

    Case 3 Let r\ge 2 . The part

    t_{F_k, 1}, \dots, t_{2 F_k-1, 1}, \dots, t_{F_k, r-2}, \dots, t_{2 F_k-1, r-2}, t_{F_k, r-1}, \dots, t_{F_k+\ell, r-1}

    in the second block among the second set {\rm Ap}(F_i; 1) corresponds to the part

    t_{2 F_k, 0}, \dots, t_{3 F_k-1, 0}, \dots, t_{2 F_k, r-3}, \dots, t_{3 F_k-1, r-3}, t_{2 F_k, r-2}, \dots, t_{2 F_k+\ell, r-2}

    in the third block among the third least set {\rm Ap}(F_i; 2) * because

    *When r = 2 , only the last shorter line remains, and t_{3 F_k-1, r-3} in table 9 does not appear. However, this does not affect the result.

    \begin{align*} t_{F_k+j, h}& = (F_k+j+h F_k)F_{i+2}-h F_{k-2}F_i\\ &\equiv\bigl(2 F_k+j+(h-1)F_k\bigr)F_{i+2}-(h-1)F_{k-2}F_i\\ & = t_{2 F_k+j, h-1}\pmod{F_i} \end{align*}
    Table 9.  {\rm Ap}(F_i;p) (p=0,1,2) for r\ge 2.

     | Show Table
    DownLoad: CSV

    for 0\le j\le F_k-1 and 1\le h\le r-2 or 0\le j\le\ell and h = r-1 . The part t_{\ell+1, r}, \dots, t_{F_k-1, r} in the first block among the second set {\rm Ap}(F_i; 1) corresponds to the part t_{F_k+\ell+1, r-1}, \dots, t_{2 F_k-1, r-1} in the second block among the third set {\rm Ap}(F_i; 2) because for ell+1\le j\le F_k-1

    \begin{align*} t_{j, r}& = (j+r F_k)F_{i+2}-r F_{k-2}F_i\\ &\equiv\bigl(F_k+j+(r-1)F_k\bigr)F_{i+2}-(r-1)F_{k-2}F_i\\ & = t_{F_k+j, r-1}\pmod{F_i}\, . \end{align*}

    The part t_{0, r+1}, \dots, t_{\ell, r+1} in the first block among the second set {\rm Ap}(F_i; 1) corresponds to the part t_{F_k, r}, \dots, t_{F_k+\ell, r} in the second block among the third set {\rm Ap}(F_i; 2) because for 0\le j\le\ell

    \begin{align*} t_{j, r+1}& = \bigl(j+(r+1)F_k\bigr)F_{i+2}-(r+1)F_{k-2}F_i\\ &\equiv(F_k+j+r F_k)F_{i+2}-r F_{k-2}F_i\\ & = t_{F_k+j, r}\pmod{F_i}\, . \end{align*}

    The first line t_{F_k, 0}, \dots, t_{2 F_k-\ell-2}, t_{2 F_k-\ell-1}, \dots, t_{2 F_k-1, 0} in the second block among the second set {\rm Ap}(F_i; 1) corresponds to two parts t_{\ell+1, r+1}, \dots, t_{F_k-1, r+1} and t_{0, r+2}, \dots, t_{\ell, r+2} in the first block among the third set {\rm Ap}(F_i; 2) because for 0\le j\le F_k-\ell-2

    \begin{align*} t_{F_k+j, 0}& = (F_k+j)F_{i+2}\equiv(F_i+F_k+j)F_{i+2}-(r+1)F_{k-2}F_i\\ & = \bigl(\ell+1+j+(r+1)F_k\bigr)F_{i+2}-(r+1)F_{k-2}F_i\\ & = t_{\ell+1+j, r+1}\pmod{F_i}, \end{align*}

    and for 0\le j\le\ell ,

    \begin{align*} t_{2 F_k-\ell-1+j, 0}& = (2 F_k-\ell-1+j)F_{i+2} = (2 F_k-F_i+r F_k+j)F_{i+2}\\ &\equiv\bigl(j+(r+2)F_k\bigr)F_{i+2}-(r+2)F_{k-2}F_i\\ & = t_{j, r+2}\pmod{F_i}\, . \end{align*}

    Hence, the third set {\rm Ap}(F_i; 2) is given by

    \begin{eqnarray} \{t_{2 F_k, 0}, \dots, t_{3 F_k-1, 0}, \dots, t_{2 F_k, r-3}, \dots, t_{3 F_k-1, r-3}, t_{2 F_k, r-2}, \dots, t_{2 F_k+\ell, r-2}, \\ t_{F_k+\ell+1, r-1}, \dots, t_{2 F_k-1, r-1}, t_{F_k, r}, \dots, t_{F_k+\ell, r}, \\ t_{\ell+1, r+1}, \dots, t_{F_k-1, r+1}, t_{0, r+2}, \dots, t_{\ell, r+2}\}\pmod{F_i}\, . \end{eqnarray}

    There are six candidates for the maximal element:

    \begin{align*} t_{3 F_k-1, r-3}& = (r F_k-1)F_{i+2}-(r-3)F_{k-2}F_i\, , \\ t_{2 F_k+\ell, r-2}& = (F_i-1)F_{i+2}-(r-2)F_{k-2}F_i\, , \\ t_{2 F_k-1, r-1}& = \bigl((r+1)F_k-1\bigr)F_{i+2}-(r-1)F_{k-2}F_i\, , \\ t_{F_k+\ell, r}& = (F_i+F_k-1)F_{i+2}-r F_{k-2}F_i\, , \\ t_{F_k-1, r+1}& = \bigl((r+2)F_k-1\bigr)F_{i+2}-(r+1)F_{k-2}F_i\, , \\ t_{\ell, r+2}& = (F_i+2 F_k-1)F_{i+2}-(r+2)F_{k-2}F_i\, . \end{align*}

    However, it is easy to see that the first four values are less than the last two. Hence, if (F_i-r F_k)F_{i+2}\ge F_{k-2}F_i , then g_2(F_i, F_{i+2}, F_{i+k}) = t_{\ell, r+2}-F_i = (F_i+2 F_k-1)F_{i+2}-\bigl((r+2)F_{k-2}+1\bigr)F_i . If (F_i-r F_k)F_{i+2} < F_{k-2}F_i , then g_2(F_i, F_{i+2}, F_{i+k}) = t_{F_k-1, r+1}-F_i = \bigl((r+2)F_k-1\bigr)F_{i+2}-\bigl((r+1)+1\bigr)F_{k-2}F_i .

    Finally, we rewrite the form as the linear combination of F_{i+2} and F_{i+k} and apply Lemma 1 (2.1). The formula (4.1) comes from Case 1 (1). The formula (4.2) comes from Case 1 (2). The formulas (4.3) and (4.4) come from Case 1 (3). The formula (4.5) comes from Case 2 (1) (2). The general formula (4.6) comes from Case 3.

    When p = 3 , we have the following.

    Theorem 4. For i\ge 3 , we have

    \begin{align} g_3(F_i, F_{i+2}, F_{i+k})& = (4 F_i-1)F_{i+2}-F_i\quad(k\ge i+3)\, , \end{align} (5.1)
    \begin{align} g_3(F_i, F_{i+2}, F_{2 i+2})& = (F_{i}-1)F_{i+2}+F_{2 i+2}-F_i\, , \\ g_3(F_i, F_{i+2}, F_{2 i+1})& = (F_{i}+F_{i-2}-1)F_{i+2}+F_{2 i+1}-F_i\, , \\ g_3(F_i, F_{i+2}, F_{2 i})& = (F_{i}-1)F_{i+2}+2 F_{2 i}-F_i\, , \\ g_3(F_i, F_{i+2}, F_{2 i-1})& = (F_{i-2}-1)F_{i+2}+3 F_{2 i-1}-F_i\quad(i\ge 4)\, , \\ g_3(F_i, F_{i+2}, F_{2 i-2})& = \begin{cases} (F_{i-5}-1)F_{i+2}+5 F_{2 i-2}-F_i&{{ (i\ge 6) }}\\ F_{i+2}+4 F_{2 i-2}-F_i( = 92)&{{ (i = 5) }}\, . \end{cases} \end{align} (5.2)

    When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge 3 , that is, k\le i-3 , we have

    \begin{align} &g_3(F_i, F_{i+2}, F_{i+k})\\ & = \begin{cases} (F_i-r F_k-1)F_{i+2}+(r+3)F_{i+k}-F_i&{{if\ (F_i-r F_k)F_{i+2}\ge F_{k-2}F_i }};\\ (F_k-1)F_{i+2}+(r+2)F_{i+k}-F_i&{{if \ (F_i-r F_k)F_{i+2} < F_{k-2}F_i }}\, . \end{cases} \end{align} (5.3)
    Table 10.  {\rm Ap}(F_i;p) (p=0,1,2,3) for r\ge 3.

     | Show Table
    DownLoad: CSV

    Proof. When p = 3 , the fourth least complete residue system {\rm Ap}(F_i; 3) is determined from the third least complete residue system {\rm Ap}(F_i; 2) . When r\ge 3 , some elements go to the fourth block. The proof of the cases r = 0, 1, 2 is similar to that of Theorem 3 and needs more case-by-case discussions, and it is omitted.

    In the table, denotes the area of the n -th least set of the complete residue system {\rm Ap} (F_i; n-1) . Here, each m_j^{(n-1)} , satisfying m_j^{(n-1)}\equiv j\pmod{F_i} ( 0\le j\le F_i-1 ), can be expressed in at least n ways, but m_j^{(n-1)}-F_i can be expressed in at most n-1 ways. As illustrated in the proof of Theorem 4.1, two areas (lines) of ④ in the first block correspond to the first line of ③ in the third block, two areas (lines) of ④ in the second block correspond to two areas (lines) of ③ in the first block, two areas (lines) of ④ in the third block correspond to two areas (lines) of ③ in the second block, and the area of ④ in the fourth block correspond to the area of ③ in the third block except the first line. Eventually, the maximal element of the fourth set of the complete residue system is from the first block, that is, t_{F_k-1, r+2} = \bigl((r+3)F_k-1\bigr)F_{i+2}-(r+2)F_{k-2}F_i or t_{\ell, r+3} = (F_i+3 F_k-1)F_{i+2}-(r+3)F_{k-2}F_i . Hence, if (F_i-r F_k)F_{i+2}\ge F_{k-2}F_i , then g_3(F_i, F_{i+2}, F_{i+k}) = t_{\ell, r+3}-F_i = (F_i+3 F_k-1)F_{i+2}-\bigl((r+3)F_{k-2}+1\bigr)F_i . If (F_i-r F_k)F_{i+2} < F_{k-2}F_i , then g_3(F_i, F_{i+2}, F_{i+k}) = t_{F_k-1, r+2}-F_i = \bigl((r+3)F_k-1\bigr)F_{i+2}-\bigl((r+2)F_{k-2}+1\bigr)F_i . Notice that r\ge 3 implies that k\le i-3 .

    Repeating the same process, when r is big enough that r\ge p , that is, k is comparatively smaller than i , as a generalization of (3.4), (4.6) and (5.3), we can have an explicit formula.

    Theorem 5. Let i\ge 3 and p be a nonnegative integer. When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge p with (r, p)\ne(0, 0) , we have

    \begin{align*} &g_p(F_i, F_{i+2}, F_{i+k})\notag\\ & = \begin{cases} (F_i-r F_k-1)F_{i+2}+(r+p)F_{i+k}-F_i&{{if\ (F_i-r F_k)F_{i+2}\ge F_{k-2}F_i }};\\ (F_k-1)F_{i+2}+(r+p-1)F_{i+k}-F_i&{{if\ (F_i-r F_k)F_{i+2} < F_{k-2}F_i }}\, . \end{cases} \end{align*}

    Remark. When p = 0 , Theorem 5 reduces to [24,Theorem 1] except r = 0 .

    On the other hand, k is comparatively larger than i . As a generalization of (3.1), (4.1) and (5.1), we can also have the following formula.

    Proposition 1. For i, k\ge 3 , we have

    g_p(F_i, F_{i+2}, F_{i+k}) = g_p(F_i, F_{i+2})\quad(k\ge i+h)

    when (p, h) = (3, 4) , (4, 4) , (5, 5) , (6, 5) , (7, 5) , (8, 5) , (9, 6) , (10, 6) , (11, 6) , (12, 6) , (13, 6) , (14, 6) , (15, 7) , (16, 7) , (17, 7) , (18, 7) , (19, 7) , (20, 7) , (21, 7) , (22, 7) , (23, 7) , (24, 8) , \dots .

    The proof depends on the fact

    (p+1)F_i F_{i+2}-F_i-F_{i+2} < F_{2 i+h}\quad(i\ge 3)\, .

    Nevertheless, such h 's are not necessarily sharp because even if (p+1)F_i F_{i+2}-F_i-F_{i+2} > F_{2 i+h} , it is possible to have g_p(F_i, F_{i+2}, F_{i+k}) = g_p(F_i, F_{i+2}) ( k\ge i+h ).

    The formulas about Fibonacci numbers can be applied to obtain those about Lucas numbers. The discussion is similar, though the value \left\lfloor{(L_i-1)/F_k}\right\rfloor is different from \left\lfloor{(F_i-1)/F_k}\right\rfloor . So, we list the results only.

    When p = 1 , we have the following.

    Theorem 6. For i\ge 3 , we have

    \begin{align*} g_1(L_i, L_{i+2}, L_{i+k})& = (2 L_i-1)L_{i+2}-L_i\quad(k\ge i+4)\, , \\ g_1(L_i, L_{i+2}, L_{2 i+3})& = (F_{i+3}-1)L_{i+2}-L_i\, , \\ g_1(L_i, L_{i+2}, L_{2 i+2})& = (3 F_{i-1}-1)L_{i+2}+L_{2 i+2}-L_i\, . \end{align*}

    When r = \left\lfloor{(L_i-1)/F_k}\right\rfloor\ge 1 , that is, k\le i+1 , we have

    \begin{align*} &g_1(L_i, L_{i+2}, L_{i+k})\\ & = \begin{cases} (L_i-r F_k-1)L_{i+2}+(r+1)L_{i+k}-L_i&{{if\ (L_i-r F_k)L_{i+2}\ge F_{k-2}L_i }}, \\ (F_k-1)L_{i+2}+r L_{i+k}-L_i&{{if\ (L_i-r F_k)L_{i+2} < F_{k-2}L_i }}. \end{cases} \end{align*}

    When p = 2 , we have the following.

    Theorem 7. For i\ge 3 , we have

    \begin{align*} g_2(L_i, L_{i+2}, L_{i+k})& = (3 L_i-1)L_{i+2}-L_i\quad(k\ge i+4)\, , \\ g_2(L_i, L_{i+2}, L_{2 i+3})& = (L_{i}-1)L_{i+2}+L_{2 i+3}-L_i\, , \\ g_2(L_i, L_{i+2}, L_{2 i+2})& = \begin{cases} (L_{i}-1)L_{i+2}+L_{2 i+2}-L_i&{{ (i \ is\ odd ) }}\\ (2 L_{i}-1)L_{i+2}-L_i&{{ (i \ is\ even ) }}\, , \end{cases} \\ g_2(L_i, L_{i+2}, L_{2 i+1})& = (2 F_{i-1}-1)L_{i+2}+2 L_{2 i+1}-L_i\, , \\ g_2(L_i, L_{i+2}, L_{2 i})& = L_{i+2}+3 L_{2 i}-L_i( = 61)\quad(i = 3)\, . \end{align*}

    When r = \left\lfloor{(L_i-1)/F_k}\right\rfloor\ge 2 , that is, k\le i except i = k = 3 , we have

    \begin{align*} &g_2(L_i, L_{i+2}, L_{i+k})\\ & = \begin{cases} (L_i-r F_k-1)L_{i+2}+(r+2)L_{i+k}-L_i&{{if\ (L_i-r F_k)L_{i+2}\ge F_{k-2}L_i }}, \\ (F_k-1)L_{i+2}+(r+1)L_{i+k}-L_i&{{if\ (L_i-r F_k)L_{i+2} < F_{k-2}L_i }}. \end{cases} \end{align*}

    When p = 3 , we have the following.

    Theorem 8. For i\ge 3 , we have

    \begin{align*} g_3(L_i, L_{i+2}, L_{i+k})& = (4 L_i-1)L_{i+2}-L_i\quad(k\ge i+5)\, , \\ g_3(L_i, L_{i+2}, L_{2 i+4})& = (4 F_{i-1}-F_{i-2}-1)L_{i+2}+L_{2 i+4}-L_i\, , \\ g_3(L_i, L_{i+2}, L_{2 i+3})& = (4 F_{i+1}-1)L_{i+2}-L_i\, , \\ g_3(L_i, L_{i+2}, L_{2 i+2})& = (F_{i}+2 F_{i-3}-1)L_{i+2}+2 L_{2 i+2}-L_i\, , \\ g_3(L_i, L_{i+2}, L_{2 i+1})& = (F_{i-1}-1)L_{i+2}+3 L_{2 i+1}-L_i\, , \\ g_3(L_i, L_{i+2}, L_{2 i})& = \begin{cases} (2 F_{i-3}-1)L_{i+2}+4 L_{2 i}-L_i&\mathit{\rm{ (i\ge 4) }}\\ 3 L_{i+2}+2 L_{2 i}-L_i( = 69)&\mathit{\rm{ (i = 3) }}\, . \end{cases} \end{align*}

    When r = \left\lfloor{(L_i-1)/F_k}\right\rfloor\ge 3 , that is, k\le i-1 , we have

    \begin{align*} &g_3(L_i, L_{i+2}, L_{i+k})\\ & = \begin{cases} (L_i-r F_k-1)L_{i+2}+(r+3)L_{i+k}-L_i&{{if\ (L_i-r F_k)L_{i+2}\ge F_{k-2}L_i }}, \\ (F_k-1)L_{i+2}+(r+2)L_{i+k}-L_i&{{if\ (L_i-r F_k)L_{i+2} < F_{k-2}L_i }}. \end{cases} \end{align*}

    For general p , when r is not less than p , we have an explicit formula.

    Theorem 9. Let i\ge 3 and p be a nonnegative integer. When r = \left\lfloor{(L_i-1)/F_k}\right\rfloor\ge p with (r, p)\ne(0, 0) , we have

    \begin{align*} &g_p(L_i, L_{i+2}, L_{i+k})\notag\\ & = \begin{cases} (L_i-r F_k-1)L_{i+2}+(r+p)L_{i+k}-L_i&{{if\ (L_i-r F_k)L_{i+2}\ge F_{k-2}L_i }};\\ (F_k-1)L_{i+2}+(r+p-1)L_{i+k}-L_i&{{if\ (L_i-r F_k)L_{i+2} < F_{k-2}L_i }}\, . \end{cases} \end{align*}

    By using the table of complete residue systems, we can also find explicit formulas of the p -Sylvester number, which is the total number of nonnegative integers that can only be expressed in at most p ways. When p = 0 , such a number is often called the Sylvester number.

    When p = 1 , we have the following.

    Theorem 10. For i\ge 3 , we have

    \begin{align} n_1(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(3 F_i F_{i+2}-F_i-F_{i+2}+1)\quad(k\ge i+2)\, , \end{align} (8.1)
    \begin{align} n_1(F_i, F_{i+2}, F_{2 i+1})& = \frac{1}{2}(3 F_i F_{i+2}-F_i-F_{i+2}+1)-(2 F_i-F_k)F_{k-2}\, , \\ &\qquad\qquad\qquad\qquad\qquad(k = i, i+1)\, . \end{align} (8.2)

    When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge 1 , that is, k\le i-1 , we have

    \begin{align} &n_1(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}\bigl(F_i+2 F_k-1)F_{i+2}-F_i+1\bigr)-\left(r F_i-\frac{(r-1)(r+2)}{2}F_k\right)F_{k-2}\, . \end{align} (8.3)

    Proof. When r = 0 and 2\ell+1\le F_k-1 , by F_i-1 = \ell ,

    \begin{align*} \sum\limits_{j = 0}^{F_i-1}m_j^{(1)}& = t_{\ell+1, 0}+\cdots+t_{2\ell+1, 0}\\ & = \left(\frac{(2\ell+1)(2\ell+2)}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}\\ & = \frac{(3 F_i-1)F_i F_{i+2}}{2}\, . \end{align*}

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} n_1(F_i, F_{i+2}, F_{i+k})& = \frac{(3 F_i-1)F_{i+2}}{2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}(3 F_i F_{i+2}-F_i-F_{i+2}+1)\, , \end{align*}

    which is (8.1).

    When r = 0 and 2\ell+1\ge F_k , by F_i-1 = \ell ,

    \begin{align*} \sum\limits_{j = 0}^{F_i-1}m_j^{(1)}& = (t_{\ell+1, 0}+\cdots+t_{F_k-1, 0})+(t_{0, 1}+\cdots+t_{2\ell+1-F_k, 1})\\ & = \left(\frac{(F_k-1)F_k}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}\\ &\quad +\frac{(2\ell+1-F_k)(2\ell+2-F_k)}{2}F_{i+2}+(2\ell+2-F_k)F_{i+k}\\ & = \left(\frac{(3 F_i-1)F_i}{2}-2 F_i F_k+F_k^2\right)F_{i+2}+(2 F_i-F_k)F_{i+k}\, . \end{align*}

    Since F_{i+k} = F_{i+2}F_k-F_i F_{k-2} ,

    \sum\limits_{j = 0}^{F_i-1}m_j^{(1)} = \left(\frac{(3 F_i-1)F_{i+2}}{2}-(2 F_i-F_k)F_{k-2}\right)F_i\, .

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} n_1(F_i, F_{i+2}, F_{i+k})& = \frac{(3 F_i-1)F_{i+2}}{2}-(2 F_i-F_k)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}(3 F_i F_{i+2}-F_i-F_{i+2}+1)-(2 F_i-F_k)F_{k-2}\, , \end{align*}

    which is (8.2).

    When r\ge 1 , by F_i-1 = r F_k+\ell , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(1)}\\ & = \sum\limits_{h = 0}^{r-2}(t_{F_k, h}+\cdots+t_{2 F_k-1, h}) +(t_{F_k, r-1}+\cdots+t_{F_k+\ell, r-1})\\ &\quad +(t_{\ell+1, r}+\cdots+t_{F_k-1, r})+(t_{0, r+1}+\cdots+t_{\ell, r+1})\\ & = (r-1)\left(\frac{(2 F_k-1)(2 F_k)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}+\frac{(r-2)(r-1)}{2}F_k F_{i+k}\\ &\quad +\left(\frac{(F_k+\ell)(F_k+\ell+1)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}+(\ell+1)(r-1)F_{i+k}\\ &\quad +\left(\frac{(F_k-1)F_k}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}+(F_k-1-\ell)r F_{i+k}\\ &\quad +\frac{\ell(\ell+1)}{2}F_{i+2}+(\ell+1)(r+1)F_{i+k}\\ & = \frac{1}{2}\left((r-1)(3 F_k-1)F_k+\bigl(F_i-(r-1)F_k-1\bigr)\bigl(F_i-(r-1)F_k\bigr)\right)F_{i+2}\\ &\quad +\left(\frac{(r-2)(r-1)}{2}F_k+r\bigl(F_i-(r-1)F_k\bigr)\right)F_{i+k}\\ & = \frac{1}{2}(F_i+2 F_k-1)F_i F_{i+2}\\ &\quad -\left(r F_i-\frac{(r-1)(r+2)}{2}F_k\bigr)\right)F_{k-2}F_i\, . \end{align*}

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} &n_1(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}(F_i+2 F_k-1)F_{i+2}-\left(r F_i-\frac{(r-1)(r+2)}{2}F_k\right)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl((F_i+2 F_k-1)F_{i+2}-F_i+1\bigr)-\left(r F_i-\frac{(r-1)(r+2)}{2}F_k\right)F_{k-2}\, , \end{align*}

    which is (8.3).

    When p = 2 , we have the following.

    Theorem 11. For i\ge 3 , we have

    \begin{align} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(5 F_i F_{i+2}-F_i-F_{i+2}+1)\quad(k\ge i+3)\, , \end{align} (8.4)
    \begin{align} n_2(F_i, F_{i+2}, F_{2 i+2})& = \frac{1}{2}\bigl((7 F_{i+2}-6 F_i-1)F_{i}-F_{i+2}+1\bigr)\, , \end{align} (8.5)
    \begin{align} n_2(F_i, F_{i+2}, F_{2 i+1})& = \frac{1}{2}\bigl((7 F_{i+2}-8 F_i-1)F_{i}-F_{i+2}+1\bigr)\, , \end{align} (8.6)
    \begin{align} n_2(F_i, F_{i+2}, F_{2 i})& = \frac{1}{2}(3 F_i F_{i+2}-F_i-F_{i+2}+1)\, , \end{align} (8.7)
    \begin{align} n_2(F_i, F_{i+2}, F_{2 i-1})& = \frac{1}{2}\bigl((170 F_i-1)F_i+(24 F_{i+2}-125 F_i-1)F_{i+2}+1\bigr)\, . \end{align} (8.8)

    When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge 2 , that is, k\le i-2 , we have

    \begin{align} &n_2(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}\bigl((F_i+4 F_k-1)F_{i+2}-F_i+1\bigr)-\frac{1}{2}\bigl(2 r F_i-(r+3)(r-2)F_k\bigr)F_{k-2}\, . \end{align} (8.9)

    Proof. When r = 0 and F_k\ge 3\ell+3 , by F_i-1 = \ell , we have

    \begin{align*} \sum\limits_{j = 0}^{F_i-1}m_j^{(2)} & = t_{2\ell+2, 0}+\cdots+t_{3\ell+2, 0}\\ & = \left(\frac{(3\ell+2)(3\ell+3)}{2}-\frac{(2\ell+1)(2\ell+2)}{2}\right)F_{i+2}\\ & = \frac{1}{2}(5 F_i-1)F_i F_{i+2}\, . \end{align*}

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(5 F_i-1)F_{i+2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}(5 F_i F_{i+2}-F_i-F_{i+2}+1)\, , \end{align*}

    which is (8.4).

    When r = 0 and 2\ell+2\le F_k\le 3\ell+2 , by F_{i+k} = F_{i+2}F_k-F_i F_{k-2} , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(2)}\\ & = (t_{2\ell+2, 0}+\cdots+t_{F_k-1, 0})+(t_{0, 1}+\cdots+t_{3\ell+2-F_k, 1})\\ & = \left(\frac{(F_k-1)F_k}{2}-\frac{(2\ell+1)(2\ell+2)}{2}\right)F_{i+2}\\ &\quad +\frac{(3\ell+2-F_k)(3\ell+3-F_k)}{2}F_{i+2}+(3\ell+3-F_k)F_{i+k}\\ & = \frac{1}{2}(5 F_i-1)F_i F_{i+2}-(3 F_i-F_k)F_i F_{k-2}\, . \end{align*}

    Hence, we have

    \begin{align*} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(5 F_i-1)F_{i+2}-(3 F_i-F_k)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}(5 F_i F_{i+2}-F_i-F_{i+2}+1)-(3 F_i-F_k)F_{k-2}\, . \end{align*}

    This case occurs only when k = i+2 . Hence, we get (8.5).

    When r = 0 and F_k\le 2\ell+1 , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(2)} = (t_{F_k, 0}+\cdots+t_{2\ell+1, 0})+(t_{2\ell+2-F_k, 1}+\cdots+t_{\ell, 1})\\ & = \left(\frac{(2\ell+1)(2\ell+2)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}\\ &\quad +\left(\frac{\ell(\ell+1)}{2}-\frac{(2\ell+1-F_k)(2\ell+2-F_k)}{2}\right)F_{i+2}+(F_k-\ell-1)F_{i+k}\\ & = \frac{1}{2}(F_i+2 F_k-1)F_i F_{i+2}-(F_k-F_i)F_i F_{k-2}\, . \end{align*}

    Hence, we have

    \begin{align*} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(F_i+2 F_k-1)F_{i+2}-(F_k-F_i)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl((F_i+2 F_k-1)F_{i+2}-F_i+1\bigr)-(F_k-F_i)F_{k-2}\, . \end{align*}

    This case occurs only when k = i+1 . Hence, by rewriting we get (8.6).

    When r = 1 and 2\ell+2\le F_k , by F_i-1 = F_k+\ell , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(2)}\\ & = (t_{F_k+\ell+1, 0}+\cdots+t_{2 F_k-1, 0})+(t_{F_k, 1}+\cdots+t_{F_k+\ell, 1})\\ &\quad +(t_{\ell+1, 2}+\cdots+t_{2\ell+1, 2})\\ & = \left(\frac{(2 F_k-1)(2 F_k)}{2}-\frac{(F_k+\ell)(F_k+\ell+1)}{2}\right)F_{i+2}\\ &\quad +\left(\frac{(F_k+\ell)(F_k+\ell+1)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}+(\ell+1)F_{i+k}\\ &\quad +\left(\frac{(2\ell+1)(2\ell+2)}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}+2(\ell+1)F_{i+k}\\ & = \frac{1}{2}(3 F_i-1)F_i F_{i+2}-3(F_i-F_k)F_i F_{k-2}\, . \end{align*}

    Hence, we have

    \begin{align*} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(3 F_i-1)F_{i+2}-3(F_i-F_k)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl(3 F_i F_{i+2}-F_i-F_{i+2}+1\bigr)-3(F_i-F_k)F_{k-2}\, . \end{align*}

    This case occurs only when k = i . Hence, we get (8.7).

    When r = 1 and 2\ell+1\ge F_k , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(2)}\\ & = (t_{F_k+\ell+1, 0}+\cdots+t_{2 F_k-1, 0})+(t_{F_k, 1}+\cdots+t_{F_k+\ell, 1})\\ &\quad +(t_{\ell+1, 2}+\cdots+t_{F_k-1, 2})+(t_{0, 3}+\cdots+t_{2\ell+1-F_k, 3})\\ & = \left(\frac{(2 F_k-1)(2 F_k)}{2}-\frac{(F_k+\ell)(F_k+\ell+1)}{2}\right)F_{i+2}\\ &\quad +\left(\frac{(F_k+\ell)(F_k+\ell+1)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}+(\ell+1)F_{i+k}\\ &\quad +\left(\frac{(F_k-1)F_k}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}+2(F_k-\ell-1)F_{i+k}\\ &\quad +\frac{(2\ell+1-F_k)(2\ell+2-F_k)}{2}F_{i+2}+3(2\ell+2-F_k)F_{i+k}\\ & = \frac{1}{2}(3 F_i-1)F_i F_{i+2}-(5 F_i-6 F_k)F_i F_{k-2}\, . \end{align*}

    Hence, we have

    \begin{align*} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(3 F_i-1)F_{i+2}-(5 F_i-6 F_k)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl(3 F_i F_{i+2}-F_i-F_{i+2}+1\bigr)-(5 F_i-6 F_k)F_{k-2}\, . \end{align*}

    This case occurs only when k = i-1 . Hence, after rewriting, we get (8.8).

    When r\ge 2 , by F_i-1 = r F_k+\ell , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(2)}\\ & = \sum\limits_{h = 0}^{r-3}(t_{2 F_k, h}+\cdots+t_{3 F_k-1, h}) +(t_{2 F_k, r-2}+\cdots+t_{2 F_k+\ell, r-2})\\ &\quad +(t_{F_k+\ell+1, r-1}+\cdots+t_{2 F_k-1, r-1})+(t_{F_k, r}+\cdots+t_{F_k+\ell, r})\\ &\quad +(t_{\ell+1, r+1}+\cdots+t_{F_k-1, r+1})+(t_{0, r+2}+\cdots+t_{\ell, r+2})\\ & = (r-2)\left(\frac{(3 F_k-1)(3 F_k)}{2}-\frac{(2 F_k-1)(2 F_k)}{2}\right)F_{i+2}+\frac{(r-3)(r-2)}{2}F_k F_{i+k}\\ &\quad +\left(\frac{(2 F_k+\ell)(2 F_k+\ell+1)}{2}-\frac{(2 F_k-1)(2 F_k)}{2}\right)F_{i+2}+(\ell+1)(r-2)F_{i+k}\\ &\quad +\left(\frac{(2 F_k-1)(2 F_k)}{2}-\frac{(F_k+\ell)(F_k+\ell+1)}{2}\right)F_{i+2}+(F_k-\ell-1)(r-1)F_{i+k}\\ &\quad +\left(\frac{(F_k+\ell)(F_k+\ell+1)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}+(\ell+1)r F_{i+k}\\ &\quad +\left(\frac{(F_k-1)F_k}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}+(F_k-\ell-1)(r+1)F_{i+k}\\ &\quad +\frac{\ell(\ell+1)}{2}F_{i+2}+(\ell+1)(r+2)F_{i+k}\\ & = \frac{1}{2}(F_i+4 F_k-1)F_i F_{i+2}-\frac{1}{2}\bigl(2 r F_i-(r+3)(r-2)F_k\bigr)F_i F_{k-2}\, . \end{align*}

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} &n_2(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}(F_i+4 F_k-1)F_{i+2}-\frac{1}{2}\bigl(2 r F_i-(r+3)(r-2)F_k\bigr)F_{k-2} -\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl((F_i+4 F_k-1)F_{i+2}-F_i+1\bigr)-\frac{1}{2}\bigl(2 r F_i-(r+3)(r-2)F_k\bigr)F_{k-2}\, , \end{align*}

    which is (8.9).

    When p = 3 , we have the following. The process is similar, and the proof is omitted.

    Theorem 12. For i\ge 3 , we have

    \begin{align} n_3(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(7 F_i F_{i+2}-F_i-F_{i+2}+1)\quad(k\ge i+3)\, , \\ n_3(F_i, F_{i+2}, F_{2 i+2})& = (F_{i}-1)F_{i+2}+F_{2 i+2}-F_i\, , \\ n_3(F_i, F_{i+2}, F_{2 i+1})& = (F_{i}+F_{i-2}-1)F_{i+2}+F_{2 i+1}-F_i\, , \\ n_3(F_i, F_{i+2}, F_{2 i})& = \frac{1}{2}\bigl((5 F_i-1)F_{i+2}-F_i+1\bigr)-2 F_{i}F_{i-2}\, , \\ n_3(F_i, F_{i+2}, F_{2 i-1})& = \frac{1}{2}\bigl((F_i+4 F_{i-1}-1)F_{i+2}-F_i+1\bigr)-2 F_{i-1}F_{i-3}\quad(i\ge 4)\, , \\ n_3(F_i, F_{i+2}, F_{2 i-2})& = \frac{1}{2}\bigl((3 F_i-1)F_{i+2}-F_i+1\bigr)-(8 F_i-15 F_{i-2})F_{i-4}\quad(i\ge 5)\, . \end{align} (8.10)

    When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge 3 , that is, k\le i-3 , we have

    \begin{align*} &n_3(F_i, F_{i+2}, F_{i+k})\notag\\ & = \frac{1}{2}\bigl((F_i+6 F_k-1)F_{i+2}-F_i+1\bigr)-\frac{1}{2}\bigl(2 r F_i-(r+4)(r-3)F_k\bigr)F_{k-2}\, . \end{align*}

    We can continue to obtain explicit formulas of n_p(F_i, F_{i+2}, F_{i+k}) for p = 4, 5, \dots . However, the situation becomes more complicated. We need more case-by-case discussions.

    For general p , when r\ge p , we can have an explicit formula.

    Theorem 13. Let i\ge 3 and p be a nonnegative integer. When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge p , we have

    \begin{align} &n_p(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}\bigl((F_i+2 p F_k-1)F_{i+2}-F_i+1\bigr)-\frac{1}{2}\bigl(2 r F_i-(r+p+1)(r-p)F_k\bigr)F_{k-2}\, . \end{align} (8.11)

    Remark. When p = 0 , Theorem 13 reduces to [24,Corollary 2].

    Sketch of the proof of Theorem 13. We have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(p)}\\ & = \sum\limits_{h = 0}^{r-p-1}(t_{p F_k, h}+\cdots+t_{(p+1)F_k-1, h})\\ &\quad +(t_{p F_k, r-p}+\cdots+t_{p F_k+\ell, r-p})\\ &\quad +(t_{(p-1)F_k+\ell+1, r-p+1}+\cdots+t_{(p-1)F_k-1, r-p+1})\\ &\quad +(t_{(p-1)F_k, r-p+2}+\cdots+t_{(p-1)F_k+\ell, r-p+2})\\ &\quad +\cdots\\ &\quad +(t_{\ell+1, r+p-1}+\cdots+t_{F_k-1, r+p-1})+(t_{0, r+p}+\cdots+t_{\ell, r+p})\\ & = \frac{1}{2}\bigl((r-p)((2 p+1)F_k-1)F_k+(F_i-(r-p)F_k-1)(F_i-(r-p)F_k)\bigr)F_{i+2}\\ &\quad +\left(\frac{(r-p-1)(r-p)}{2}F_k+r(F_i-(r-p)F_k)\right)F_{i+k}\\ & = \frac{1}{2}(F_i+2 p F_k-1)F_i F_{i+2}-\frac{1}{2}\bigl(2 r F_i-(r+p+1)(r-p)F_k\bigr)F_i F_{k-2}\, . \end{align*}

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} &n_p(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}(F_i+2 p F_k-1)F_{i+2}-\frac{1}{2}\bigl(2 r F_i-(r+p+1)(r-p)F_k\bigr)F_{k-2} -\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl((F_i+2 p F_k-1)F_{i+2}-F_i+1\bigr)-\frac{1}{2}\bigl(2 r F_i-(r+p+1)(r-p)F_k\bigr)F_{k-2}\, , \end{align*}

    which is (8.11).

    Consider the Fibonacci triple (F_6, F_8, F_{10}) . Since F_6-1 = 2 F_4+1 , we see that r = 2 and \ell = 1 . Then, we can construct the first least set, the second least and 3rd, 4th and 5th least sets of the complete residue systems as follows.

    \begin{align*} ①{\rm Ap} (F_6;0)& = \{0, 21, 42, 55, 76, 97,110,131\}\pmod{F_6}\, , \\ ②{\rm Ap} (F_6;1)& = \{63, 84,105,118,139,152,165,186\}\pmod{F_6}\, , \\ ③{\rm Ap} (F_6;2)& = \{126,147,160,173,194,207,220,241\}\pmod{F_6}\, , \\ ④{\rm Ap} (F_6;3)& = \{168,181,202,215,228,249,262,275\}\pmod{F_6}\, , \\ ⑤{\rm Ap} (F_6;4)& = \{189,210,223,236,257,270,283,296\}\pmod{F_6}\, .\\ \end{align*}
    Table 11.  {\rm Ap}(F_6,j) (j=0,1,2,3,4).

     | Show Table
    DownLoad: CSV

    Therefore, by Lemma 1 (2.1) with (2.3), we obtain that

    \begin{align*} g_0(F_6, F_8, F_{10})& = 131-8 = 123\, , \\ g_1(F_6, F_8, F_{10})& = 186-8 = 178\, , \\ g_2(F_6, F_8, F_{10})& = 241-8 = 233\, , \\ g_3(F_6, F_8, F_{10})& = 275-8 = 267\, , \\ g_4(F_6, F_8, F_{10})& = 296-8 = 288\, . \end{align*}

    By Lemma 1 (2.2) with (2.4), we obtain that

    \begin{align*} n_0(F_6, F_8, F_{10})& = \frac{0+21+\cdots+131}{8}-\frac{8-1}{2} = 63\, , \\ n_1(F_6, F_8, F_{10})& = \frac{63+84+\cdots+186}{8}-\frac{8-1}{2} = 123\, , \\ n_2(F_6, F_8, F_{10})& = \frac{126+147+\cdots+241}{8}-\frac{8-1}{2} = 180\, , \\ n_3(F_6, F_8, F_{10})& = \frac{168+181+\cdots+275}{8}-\frac{8-1}{2} = 219\, , \\ n_4(F_6, F_8, F_{10})& = \frac{189+210+\cdots+296}{8}-\frac{8-1}{2} = 242\, . \end{align*}

    On the other hand, from (3.4), by (F_6-2 F_4)F_8 > F_2 F_6 , we get

    \begin{align*} g_1(F_6, F_8, F_{10})& = (F_6-2 F_4-1)F_{8}+3 F_{10}-F_6\\ & = 178\, . \end{align*}

    From (4.6) and (5.2), we get

    \begin{align*} g_2(F_6, F_8, F_{10})& = (F_6-2 F_4-1)F_{8}+4 F_{10}-F_6\\ & = 233\, , \\ g_3(F_6, F_8, F_{10})& = (F_{1}-1)F_{8}+5 F_{10}-F_6\\ & = 267\, , \end{align*}

    respectively. From (8.3), (8.9) and (8.10), we get

    \begin{align*} &n_1(F_6, F_8, F_{10})\\ & = \frac{1}{2}\bigl(F_6+2 F_4-1)F_{8}-F_6+1\bigr)-\left(2 F_6-\frac{(2-1)(2+2)}{2}F_4\right)F_{2}\\ & = 123\, , \\ &n_2(F_6, F_8, F_{10})\\ & = \frac{1}{2}\bigl((F_6+4 F_4-1)F_{8}-F_6+1\bigr)-\frac{1}{2}\bigl(4 F_6-(2+3)(2-2)F_4\bigr)F_{2}\\ & = 180\, , \\ &n_3(F_6, F_8, F_{10})\\ & = \frac{1}{2}\bigl((3 F_6-1)F_{8}-F_6+1\bigr)-(8 F_6-15 F_{4})F_{2}\\ & = 219\, , \end{align*}

    respectively.

    In [31], a more general triple g(F_a, F_b, F_c) is studied for distinct Fibonacci numbers with a, b, c\ge 3 . In [32], the Frobenius number g(a, a+b, 2 a+3 b, \dots, F_{2k-1}a+F_{2 k}b) is given for relatively prime integers a and b . Will we be able to say anything in terms of these p -Frobenius numbers?

    The authors thank the anonymous referees for careful reading of this manuscript.

    The authors declare there is no conflict of interest.



    [1] PlasticsEurope (2015) Plastic-the facts 2015, 1160 Brussels-Belgium, PlasticsEurope.
    [2] PlasticsEurope (2018) Plastic-the facts 2018, 1040 Brussels-Belgium, PlasticsEurope.
    [3] Secretariat-General (2018) Communication from the commission of the European parliament, the council, the European economic and social committee and the committee of the regions-A European Strategy for Plastics in a Circular Economy, European Commission.
    [4] Sexlinger K (2019) Kunststoffe im Boden, Montfortstraße 4, 6900 Bregenz, Institut für Umwelt und Lebensmittelsicherheit (Umweltinstitut).
    [5] Lechner A, Keckeis H, Lumesberger-Loisl F, et al. (2014) The Danube so colourful: A potpourri of plastic litter outnumbers fish larvae in Europe"s second largest river. Environ Pollut 188: 177-181. doi: 10.1016/j.envpol.2014.02.006
    [6] Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44: 842-852. doi: 10.1016/S0025-326X(02)00220-5
    [7] A European Strategy for Plastics in a Circular Economy (2018) Brussels, Belgium, European Commission.
    [8] Bertling J, Hamann L, Bertling R (2018) Kunststoffe in der Umwelt. Fraunhofer UMSICHT.
    [9] ISO (2019) Plastics-Environmental aspects-Analysis of relevant terms used in the sector and need for standardization, ISO.
    [10] Liebmann B, Brielmann H, Heinfellner H, et al. (2015) Mikroplastik in der Umwelt Vorkommen, Nachweis und Handlungsbedarf, Wien, Umweltbundesamt.
    [11] Braun U, Jekel M, Gerdts G, et al. (2018) Microplastics Analytics-Sampling, Preparation and Detection Methods, Bundesministerium für Bildung und Forschung Unterabteilung Nachhaltigkeit; Zukunftsvorsorge.
    [12] Ibeh CC (2011) Thermoplastic Materials: Properties, Manufacturing Methods, and Applications, CRC Press.
    [13] de Souza Machado AA, Kloas W, Zarfl C, et al. (2018) Microplastics as an emerging threat to terrestrial ecosystems. Glob Change Biol 24: 1405-1416. doi: 10.1111/gcb.14020
    [14] Circular Economy Package Report: Questions & Answers (2019) Brussels, European Commission.
    [15] Bundesministerium für Nachhaltigkeit und Tourismus (2020) Fremdstoffe, Mikroplastik und deren Inhaltsstoffe im Boden, Wien, Arbeitsgruppe des Fachbeirates für Bodenfruchtbarkeit und Bodenschutz.
    [16] Weithmann N, Möller JN, Löder MGJ, et al. (2018) Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci Adv 4.
    [17] Mahon AM, O'Connell B, Healy MG, et al. (2017) Microplastics in Sewage Sludge: Effects of Treatment. Environ Sci Technol 51: 810-818. doi: 10.1021/acs.est.6b04048
    [18] He D, Luo Y, Lu S, et al. (2018) Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends Anal Chem 109: 163-172. doi: 10.1016/j.trac.2018.10.006
    [19] Bläsing M, Amelung W (2018) Plastics in soil: Analytical methods and possible sources. Sci Total Environ 612: 422-435. doi: 10.1016/j.scitotenv.2017.08.086
    [20] Nadherny-Borutin S (2019) Kunststoffrecycling-eine potentielle Mikrokunststoffquelle?, In: University of Natural Sources and Life Sciences, Vienna, Institute of Waste Management (ABF-BOKU) (Ed.), Vom Makro-zum Mikro-Kunststoff-Wo ist die Abfallwirtschaft gefordert?, Muthgasse 18, 1190 Vienna.
    [21] Eurostat-Population (2019) 2019. Available from: https://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&plugin=1&language=de&pcode=tps00001.
    [22] Biologisch abbaubare Mulchfolien aus nachwachsenden Rohstoffen-Informationen und Verwendungshinweise-(2009) Hannover, Freising.
    [23] European Commission (2019) European Commission-European Commission, Closing the loop: Commission delivers on Circular Economy Action Plan, 2019. Available from: https://ec.europa.eu/commission/presscorner/detail/en/IP_19_1480.
    [24] Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture (1986).
    [25] 40 CFR 503-STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE (2003).
    [26] Verordnung des Bundesministers für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft, mit der Bestimmungen zur Durchführung des Düngemittelgesetzes 1994 erlassen werden (2004).
    [27] Verordnung des Bundesministers für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft über Qualitätsanforderungen an Komposte aus Abfällen (2001).
    [28] Verordnung der Landesregierung zur Durchführung des Gesetzes zum Schutz der Bodenqualität (2018).
    [29] Verordnung des Bundesministers für Land-und Forstwirtschaft über die allgemeine Begrenzung von Abwasseremissionen in Fließgewässer und öffentliche Kanalisationen (1996).
    [30] Verordnung über das Inverkehrbringen von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln (2012).
    [31] Verordnung über die Verwertung von Bioabfällen auf landwirtschaftlich, forstwirtschaftlich und gärtnerisch genutzten Böden (2017).
    [32] Directive 94/62/EC of 20 December 1994 on packaging and packaging waste (1994).
    [33] EU DIRECTIVE 2019/904 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 5 June 2019 on the reduction of the impact of certain plastic products on the environment (2019).
    [34] Nachhaltigkeitsagenda für Getränkeverpackungen 2018-2030-Fortschreibung bis zum Jahr 2030 unterzeichnet (2019) WKO, 2019. Available from: https://www.wko.at/service/netzwerke/Grundsaetze-Nachhaltigkeitsagenda_fuer_Getraenkeverpackunge.html.
    [35] Madigan MT, Martinko JM, Bender KS, et al. (2014) Brock Biology of Microorganisms, Boston, Pearson.
    [36] de Souza Machado AA, Lau CW, Till J, et al. (2018) Impacts of Microplastics on the Soil Biophysical Environment. Environ Sci Technol 52: 9656-9665. doi: 10.1021/acs.est.8b02212
    [37] Amlinger F, Peyr S, Geszti J, et al. (2006) Evaluierung der nachhaltig positiven Wirkung von Kompost auf die Fruchtbarkeit und Produktivität von Böden, Lebensministerium.
    [38] de Souza Machado AA, Lau CW, Kloas W, et al. (2019) Microplastics Can Change Soil Properties and Affect Plant Performance. Environ Sci Technol 53: 6044-6052. doi: 10.1021/acs.est.9b01339
    [39] Van A, Rochman CM, Flores EM, et al. (2012) Persistent organic pollutants in plastic marine debris found on beaches in San Diego, California. Chemosphere 86: 258-263. doi: 10.1016/j.chemosphere.2011.09.039
    [40] Dierkes G, Lauschke T, Becher S, et al. (2019) Quantification of microplastics in environmental samples via pressurized liquid extraction and pyrolysis-gas chromatography. Anal Bioanal Chem 411: 6959-6968. doi: 10.1007/s00216-019-02066-9
    [41] Liu M, Lu S, Song Y, et al. (2018) Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ Pollut 242: 855-862. doi: 10.1016/j.envpol.2018.07.051
    [42] Paul A, Wander L, Becker R, et al. (2019) High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil. Environ Sci Pollut Res 26: 7364-7374. doi: 10.1007/s11356-018-2180-2
    [43] Scheurer M, Bigalke M (2018) Microplastics in Swiss Floodplain Soils. Environ Sci Technol 52: 3591-3598. doi: 10.1021/acs.est.7b06003
    [44] Dümichen E, Eisentraut P, Bannick CG, et al. (2017) Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere 174: 572-584. doi: 10.1016/j.chemosphere.2017.02.010
    [45] Smidt E, Meissl K, Tintner J (2008) The influence of waste sample preparation on reproducibility of thermal data. Thermochim Acta 468: 55-60. doi: 10.1016/j.tca.2007.11.021
    [46] Eckert S (2019) Analyse von Mikroplastikpartikel.
    [47] Watteau F, Dignac M-F, Bouchard A, et al. (2018) Microplastic Detection in Soil Amended With Municipal Solid Waste Composts as Revealed by Transmission Electronic Microscopy and Pyrolysis/GC/MS. Front Sustain Food Syst 2.
    [48] Zhang S, Yang X, Gertsen H, et al. (2018) A simple method for the extraction and identification of light density microplastics from soil. Sci Total Environ 616-617: 1056-1065. doi: 10.1016/j.scitotenv.2017.10.213
    [49] Löder MGJ, Gerdts G (2015) Methodology Used for the Detection and Identification of Microplastics-A Critical Appraisal, In: Bergmann M, Gutow L, Klages M (Eds.), Marine Anthropogenic Litter, Cham, Springer International Publishing, 201-227.
    [50] Claessens M, Van Cauwenberghe L, Vandegehuchte MB, et al. (2013) New techniques for the detection of microplastics in sediments and field collected organisms. Mar Pollut Bull 70: 227-233. doi: 10.1016/j.marpolbul.2013.03.009
    [51] Hurley RR, Lusher AL, Olsen M, et al. (2018) Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices. Environ Sci Technol 52: 7409-7417. doi: 10.1021/acs.est.8b01517
  • This article has been cited by:

    1. Takao Komatsu, Claudio Pita-Ruiz, The Frobenius Number for Jacobsthal Triples Associated with Number of Solutions, 2023, 12, 2075-1680, 98, 10.3390/axioms12020098
    2. Takao Komatsu, Shanta Laishram, Pooja Punyani, p-Numerical Semigroups of Generalized Fibonacci Triples, 2023, 15, 2073-8994, 852, 10.3390/sym15040852
    3. Takao Komatsu, Haotian Ying, p-Numerical semigroups with p-symmetric properties, 2024, 23, 0219-4988, 10.1142/S0219498824502165
    4. Takao Komatsu, Haotian Ying, The p-Numerical Semigroup of the Triple of Arithmetic Progressions, 2023, 15, 2073-8994, 1328, 10.3390/sym15071328
    5. Takao Komatsu, On the determination of p-Frobenius and related numbers using the p-Apéry set, 2024, 118, 1578-7303, 10.1007/s13398-024-01556-5
    6. Takao Komatsu, Ruze Yin, 2024, Chapter 2, 978-3-031-49217-4, 15, 10.1007/978-3-031-49218-1_2
    7. Takao Komatsu, Vichian Laohakosol, The p-Frobenius Problems for the Sequence of Generalized Repunits, 2024, 79, 1422-6383, 10.1007/s00025-023-02055-6
    8. Ruze Yin, Takao Komatsu, Frobenius Numbers Associated with Diophantine Triples of x2-y2=zr, 2024, 16, 2073-8994, 855, 10.3390/sym16070855
    9. Ruze Yin, Jiaxin Mu, Takao Komatsu, The p-Frobenius Number for the Triple of the Generalized Star Numbers, 2024, 16, 2073-8994, 1090, 10.3390/sym16081090
    10. Evelia R. García Barroso, Juan I. García-García, Luis José Santana Sánchez, Alberto Vigneron-Tenorio, On p-Frobenius of Affine Semigroups, 2024, 21, 1660-5446, 10.1007/s00009-024-02625-0
    11. TAKAO KOMATSU, NEHA GUPTA, MANOJ UPRETI, FROBENIUS NUMBERS ASSOCIATED WITH DIOPHANTINE TRIPLES OF x^2+y^2=z^3 , 2024, 0004-9727, 1, 10.1017/S0004972724000960
    12. Jiaxin Mu, Takao Komatsu, p-Numerical Semigroups of Triples from the Three-Term Recurrence Relations, 2024, 13, 2075-1680, 608, 10.3390/axioms13090608
    13. Takao Komatsu, Fatih Yilmaz, The p-Frobenius number for the triple of certain quadratic numbers, 2024, 1367-0751, 10.1093/jigpal/jzae125
    14. Takao Komatsu, Tapas Chatterjee, Frobenius numbers associated with Diophantine triples of x^2+3 y^2=z^3, 2025, 119, 1578-7303, 10.1007/s13398-025-01725-0
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(9444) PDF downloads(944) Cited by(39)

Figures and Tables

Figures(3)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog