Processing math: 46%
Research article Special Issues

Pharmaceutical transforming microbes from wastewater and natural environments can colonize microplastics

  • Treated wastewater effluents are a source of emerging contaminants, including microplastics and pharmaceuticals, that impact rivers and streams. As microplastics are transported from wastewater treatment into the environment, pharmaceuticals can sorb to the surface and also be colonized by microorganisms. To investigate the microbial communities that are important in pharmaceutical transformation on microplastic surfaces, we used a culture-based approach with naproxen as the model pharmaceutical. Microplastic beads served as a solid substrate for delivering naproxen to anaerobic cultures inoculated with either anaerobic digester sludge or sediment from a wastewater-impacted river. After demonstrating naproxen transformation activity within the cultures, we separated the bulk liquid culture from the colonized microplastic beads and transferred them into separate bottles of sterile media amended with naproxen. Naproxen transformation occurred in cultures that contained microbially-colonized microplastics. Results from DNA analyses of the microbial community from each treatment demonstrated a different microbial community structure on the colonized plastic compared to that of the planktonic cells, thus illustrating a selection of the microbial community by the microplastics. These findings demonstrate that the microbial community attached to microplastic beads can continue pharmaceutical transformation activity when the microplastics are transferred to new media, thus serving as a model for the potential transport of pharmaceuticaltransforming microbes from wastewater treatment to freshwater environments.

    Citation: Abigail W. Porter, Sarah J. Wolfson, Lily. Young. Pharmaceutical transforming microbes from wastewater and natural environments can colonize microplastics[J]. AIMS Environmental Science, 2020, 7(1): 99-116. doi: 10.3934/environsci.2020006

    Related Papers:

    [1] Churni Gupta, Necibe Tuncer, Maia Martcheva . Immuno-epidemiological co-affection model of HIV infection and opioid addiction. Mathematical Biosciences and Engineering, 2022, 19(4): 3636-3672. doi: 10.3934/mbe.2022168
    [2] Shengqiang Liu, Lin Wang . Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences and Engineering, 2010, 7(3): 675-685. doi: 10.3934/mbe.2010.7.675
    [3] Georgi Kapitanov, Christina Alvey, Katia Vogt-Geisse, Zhilan Feng . An age-structured model for the coupled dynamics of HIV and HSV-2. Mathematical Biosciences and Engineering, 2015, 12(4): 803-840. doi: 10.3934/mbe.2015.12.803
    [4] Nawei Chen, Shenglong Chen, Xiaoyu Li, Zhiming Li . Modelling and analysis of the HIV/AIDS epidemic with fast and slow asymptomatic infections in China from 2008 to 2021. Mathematical Biosciences and Engineering, 2023, 20(12): 20770-20794. doi: 10.3934/mbe.2023919
    [5] Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger . On the basic reproduction number R0 in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences and Engineering, 2007, 4(4): 595-607. doi: 10.3934/mbe.2007.4.595
    [6] Kazunori Sato . Basic reproduction number of SEIRS model on regular lattice. Mathematical Biosciences and Engineering, 2019, 16(6): 6708-6727. doi: 10.3934/mbe.2019335
    [7] Georgi Kapitanov . A double age-structured model of the co-infection of tuberculosis and HIV. Mathematical Biosciences and Engineering, 2015, 12(1): 23-40. doi: 10.3934/mbe.2015.12.23
    [8] Xue-Zhi Li, Ji-Xuan Liu, Maia Martcheva . An age-structured two-strain epidemic model with super-infection. Mathematical Biosciences and Engineering, 2010, 7(1): 123-147. doi: 10.3934/mbe.2010.7.123
    [9] Andrew Omame, Sarafa A. Iyaniwura, Qing Han, Adeniyi Ebenezer, Nicola L. Bragazzi, Xiaoying Wang, Woldegebriel A. Woldegerima, Jude D. Kong . Dynamics of Mpox in an HIV endemic community: A mathematical modelling approach. Mathematical Biosciences and Engineering, 2025, 22(2): 225-259. doi: 10.3934/mbe.2025010
    [10] Wenshuang Li, Shaojian Cai, Xuanpei Zhai, Jianming Ou, Kuicheng Zheng, Fengying Wei, Xuerong Mao . Transmission dynamics of symptom-dependent HIV/AIDS models. Mathematical Biosciences and Engineering, 2024, 21(2): 1819-1843. doi: 10.3934/mbe.2024079
  • Treated wastewater effluents are a source of emerging contaminants, including microplastics and pharmaceuticals, that impact rivers and streams. As microplastics are transported from wastewater treatment into the environment, pharmaceuticals can sorb to the surface and also be colonized by microorganisms. To investigate the microbial communities that are important in pharmaceutical transformation on microplastic surfaces, we used a culture-based approach with naproxen as the model pharmaceutical. Microplastic beads served as a solid substrate for delivering naproxen to anaerobic cultures inoculated with either anaerobic digester sludge or sediment from a wastewater-impacted river. After demonstrating naproxen transformation activity within the cultures, we separated the bulk liquid culture from the colonized microplastic beads and transferred them into separate bottles of sterile media amended with naproxen. Naproxen transformation occurred in cultures that contained microbially-colonized microplastics. Results from DNA analyses of the microbial community from each treatment demonstrated a different microbial community structure on the colonized plastic compared to that of the planktonic cells, thus illustrating a selection of the microbial community by the microplastics. These findings demonstrate that the microbial community attached to microplastic beads can continue pharmaceutical transformation activity when the microplastics are transferred to new media, thus serving as a model for the potential transport of pharmaceuticaltransforming microbes from wastewater treatment to freshwater environments.


    The Euler system

    {x(ρu)+y(ρv)=0,x(p+ρu2)+y(ρuv)=0,x(ρuv)+y(p+ρv2)=0 (1)

    is usually used to describe the two-dimensional steady isentropic inviscid compressible flow, where (u,v), p and ρ represent the velocity, pressure and density of the flow, respectively, and p(ρ)=ργ/γ for a polytropic gas with the adiabatic exponent γ>1 after the nondimensionalization. Suppose that the flow is irrotational, i.e.,

    uy=vx. (2)

    Then the density ρ can be formulated as a function of the flow speed q=u2+v2 according to the Bernoulli law ([2]):

    ρ(q2)=(1γ12q2)1/(γ1),0<q<2/(γ1). (3)

    The sound speed c is defined as c2=p(ρ). At the sonic state, the flow speed is c=2/(γ+1), which is critical in the sense that the flow is subsonic when q<c, sonic when q=c, and supersonic when q>c. The system (1), (2) can be transformed into the full potential equation

    div(ρ(|φ|2)φ)=0, (4)

    where φ is the velocity potential with φ=(u,v), ρ is the function given by (3). It is noted that (4) is elliptic in the subsonic region, degenerate at the sonic state, while hyperbolic in the supersonic region.

    Subsonic-sonic flow is one of the most interesting aspects in the mathematical theory of compressible flows. The related problems are usually raised in physical experiments and engineering designs, and there are a lot of numerical simulations and rigorous theory involved in this field (see, e.g., [2,8,15]). Two kinds of subsonic-sonic flows have been intensively studied for decades: the flow past a profile and the flow in a nozzle. The outstanding work [1] by L. Bers proved that there exists a unique two-dimensional subsonic potential flow past a profile provided that the freestream Mach number is less than a critical value and the maximum flow speed tends to the sound speed as the freestream Mach number tends to the critical value. Later, the similar results for multi-dimensional cases were established in [13,9] by G. Dong, R. Finn and D. Gilbarg. These three works did not cover the flow with the critical freestream Mach number. It was shown in [3] based on a compensated compactness framework that the two-dimensional flow with sonic points past a profile may be realized as the weak limit of a sequence of strictly subsonic flows. However, all the subsonic-sonic flows above are obtained in the weak sense and their smoothness and uniqueness are unknown yet, so are the subsonic-sonic flows in an infinitely long nozzle. For a two-dimensional infinitely long nozzle, C. Xie et al. ([22]) proved that there exists a critical value such that a strictly subsonic flow exists uniquely as long as the incoming mass flux is less than the critical value, and a subsonic-sonic flow exists as the weak limit of a sequence of strictly subsonic flows. The multi-dimensional cases were investigated in [24,12,14]. A typical subsonic-sonic flow with precise regularity is a radially symmetric subsonic-sonic flow in a convergent straight nozzle. The structural stability was initially proved in [20] for the case of two-dimensional finitely long nozzle, and some new results can be found in [16,17,18,21,19]. In the recent decade, there are also some studies on rotational subsonic and subsonic-sonic flows, see [4,6,11,7,5,23] and the references therein.

    In the present paper, we would like to investigate the subsonic-sonic flow in a class of semi-infinitely long nozzles. Assume precisely that l0, l1>0 and α(0,1) are constants, and fC2,α((,0]) satisfies

    f(0)<f(0)=0,(x)1/2fL((l0,0]), (5)
    f(x)>0 for x(,0),f(x)=0 for x(,l0]. (6)

    The upper and lower wall of the nozzle are described as

    Γup:y=fk(x)(x(,0]),andΓlow:y=l1(xR),

    respectively, where k(0,1] and

    fk(x)=kf(x),x(,0].

    The sonic curve of the flow is a free boundary intersecting the upper wall at the origin, which is chosen as the outlet of the nozzle and is denoted by

    Γout:x=S(y),y[l1,0],S(0)=0.

    It is assumed further that the subsonic-sonic flow satisfies the slip conditions at Γup and Γlow, and its velocity is along the normal direction at Γout. See the following figure for an intuition.

    As in [18,21], the subsonic-sonic flow problem can be formulated in the physical plane as

    div(ρ(|φ|2)φ)=0,(x,y)Ωk, (7)
    φy(x,l1)=0,x(,S(l1)), (8)
    φy(x,fk(x))fk(x)φx(x,fk(x))=0,x(,0), (9)
    |φ(S(y),y)|=c,φ(S(y),y)=0,y(l1,0), (10)

    where (φ,S) is a solution and Ωk is the semi-infinitely long nozzle bounded by Γup, Γlow and Γout. The problem (7)–(10) is a free boundary problem of a quasilinear degenerate elliptic equation in an unbounded domain, whose degeneracy occurs at the free boundary and is characteristic. As mentioned in Remark 1.6 of [22], one can not require in advance that the flow tends to be uniformly subsonic at the far fields, otherwise, the elliptic problem may be overdetermined. In the paper, we prove that the subsonic-sonic flow in the nozzle is uniformly subsonic at the far fields, and the uniqueness of the flow results from this property. Similar to [20,18,16,17,21], we still solve the problem in the potential plane for the reason that the shape of the sonic curve is unknown in the physical plane while known in the potential plane, and the estimates of the flow speed can be made conveniently. In the potential plane, the subsonic-sonic flow problem (7)–(10) can be transformed into a quasilinear degenerate elliptic problem with free parameters and nonlocal boundary conditions in unbounded domain. The unboundedness of the domain makes the problem more difficulty than the ones in [20,18,16,17,21]. The Schauder fixed point theorem is employed to prove the existence of subsonic-sonic flows. For a given incoming mass flux and flow speed at the upper wall, we solve a fixed boundary problem of a quasilinear degenerate elliptic equation. If the solved incoming mass flux and flow speed at the upper wall are just the given ones, we get the solution. Note that the problem we concerns is in unbounded domain, we get the solution to the fixed boundary problem by taking limits of the sequences of the solutions to the truncated problems. Like that in [21], it seems very hard to construct appropriate super and sub solutions to prove the existence of solutions to truncated problems without sufficiently small (x)1/2fL((l0,0)). The method in [21] is used here: we first solve every regularized truncated problem when the flow speed at the outlet is suitable small and get priori estimates for the average and the derivatives of the solution, then we show the existence of the solution to the regularized truncated problem by use of the preliminaries obtained above, and finally we prove that their limit as the flow speed tends to be sonic at the outlet is a desired solution to the truncated problem. The difficulty here is that in order to get the solution to the fixed boundary problem by taking the limit of the solutions to the truncated problems, we must seek a suitable variation rate k0 such that the solutions to all the truncated problems exit provided that k(0,k0]. We overcome this difficulty by constructing complicated super and sub solutions to all the truncated problems. The Harnack's inequality is used to achieve the regularities and the asymptotic behaviors of the solution to the fixed boundary problem. As to the uniqueness of the subsonic-sonic flow, we first fix the free boundaries into fixed ones and transform the nonlocal boundary conditions into common ones by a proper coordinates transformation, and then we estiblish the uniqueness theorem by the energy estimates. Summing up, it is proved in this paper that if f satisfies (5) and (6), then there exists a unique subsonic-sonic flow to the problem (7)–(10) for suitably small k, and the flow speed is only C1/2 Hölder continuous and the flow acceleration blows up at the sonic curve. Furthermore, the flow is uniformly subsonic at the far fields.

    The paper is arranged as follows. In Section 2, we formulate the subsonic-sonic flow problem (7)–(10) in the potential plane. Then in Section 3, we solve the fixed boundary problem of a quasilinear degenerate elliptic equation in an unbounded domain. Finally in Section 4, we establish the well-posedness of the subsonic-sonic flow, and prove that the flow is uniformly subsonic at the far fields.

    Define a velocity potential φ and a stream function ψ, respectively, by

    φx=u=qcosθ,φy=v=qsinθ,ψx=ρv=ρqsinθ,ψy=ρu=ρqcosθ, (11)

    where θ is the flow angle. The system (1), (2) can be reduced to the Chaplygin equations ([2]):

    θψ+ρ(q2)+2q2ρ(q2)qρ2(q2)qφ=0,1qqψ1ρ(q2)θφ=0 (12)

    in the potential-stream coordinates (φ,ψ). The coordinates transformation (11) between the two coordinate systems are valid at least in the absence of stagnation points. Eliminating θ from (12) yields the following quasilinear equation of second order

    2A(q)φ2+2B(q)ψ2=0,

    where

    A(q)=qcρ(s2)+2s2ρ(s2)sρ2(s2)ds,B(q)=qcρ(s2)sds,0<q<2/(γ1).

    It is obvious that B() is strictly increasing in (0,2/(γ1)), while A() is strictly increasing in (0,c] and strictly decreasing in [c,2/(γ1)). It follows from [21] that there exist two constants 0<N1<N2 depending only on γ such that for c/6qc,

    N1(cq)A(q)N2(cq),N1B(q),A(q),B(q)N2, (13)
    N1(cq)E(B(q))N2(cq),N2E(B(q)),E(B(q))N1, (14)

    where E=AB1 and B1 is the inverse function of B. We use A1() to denote the inverse function of A()|(0,c] in this paper. Additionally, the flow angle at the upper and the lower wall are

    Θup(x)=arctanfk(x),x[l0,0]andΘlow(x)0,x(,0),

    respectively.

    As in [18,21], in order to describe the problem in the potential plane, we denote the flow speed at the upper wall by

    Qup(x)=q(x,fk(x)),x(,0],

    then the potential function at the upper wall is expressed by

    Φup(x)=x0Qup(s)(1+(fk(s))2)1/2ds={x0Qup(s)(1+(fk(s))2)1/2ds,if x[l0,0],ζ0+xl0Qup(s)ds,if x(,l0) (15)

    with

    ζ0=l00Qup(s)(1+(fk(s))2)1/2ds.

    The inverse function of Φup is denoted by Xup. The subsonic-sonic flow problem (7)–(10) can be formulated in the potential plane as follows:

    2A(q)φ2(φ,ψ)+2B(q)ψ2(φ,ψ)=0,(φ,ψ)(,0)×(0,m), (16)
    qψ(φ,0)=0,φ(,0), (17)
    B(q)ψ(φ,m)=fk(x)(1+(fk(x))2)3/2Qup(x)|x=Xup(φ),φ(,0), (18)
    q(0,ψ)=c,ψ(0,m), (19)
    Qup(x)=q(φ,m)|φ=Φup(x),x(,0], (20)

    where (q,m) is a solution with m>0 being the incoming mass flux. Solutions to the problem (16)–(19) are defined as follows.

    Definition 2.1. For m>0, a function qL((,0)×(0,m)) is called a solution to the fixed boundary problem (16)–(19), if

    0<inf(,0)×(0,m)qsup(,0)×(0,m)qc

    such that the integral equation

    0m0(A(q(φ,ψ))2ξφ2(φ,ψ)+B(q(φ,ψ))2ξψ2(φ,ψ))dψdφ+0fk(x)(1+(fk(x))2)3/2Qup(x)|x=Xup(φ)ξ(φ,m)dφ=0

    holds for any ξC2((,0)×[0,m]) which vanishes for large |φ| with

    ξψ(,0)|(,0)=ξψ(,m)|(,0)=ξ(0,)|(0,m)=0.

    The existence of solutions to the problem (16)–(20) will be proved by a fixed point argument. Give m and Qup in advance as follows:

    δ1mδ2 (21)

    with

    δ1=cρ(c2/4)l12,δ2=cρ(c2)(l1+f(l0)),

    while QupC1/4((,0]) satisfies

    max{c2,ck1/4}Qup(x)c for x(,0],[Qup]C1/4((,0])1. (22)

    For such Qup, it is clear that Φup and Xup are well determined. Direct calculations yield that

    δ4ζ0δ3,c2Φup(x)δ5,x(,0], (23)
    |fk(x)(1+(fk(x))2)3/2Qup(x)|x=Xup(φ)|kδ6(φ)1/2χ[ζ0,0](φ),φ(,0], (24)

    where χ[ζ0,0](φ) is the characteristic function of the interval [ζ0,0], and

    δ3=cl02,δ4=cl0(1+f2L((l0,0)))1/2,δ5=c(1+f2L((l0,0)))1/2,δ6=(x)1/2fL((l0,0))(2c)3/2.

    For fC2,α((,0]) satisfying (5) and (6), it follows from [21] that there exists a constant ˜l0(0,l0) depending only on f(0) and (x)1/2fL(l0,0) such that 2f(0)f(x)f(0)/2 for x[˜l0,0], and hence there exist two constants 0<τ1τ2 depending only on ˜l0, l0, f(0), inf(l0,˜l0)f and sup(l0,˜l0)f such that

    τ1xf(x)τ2x,x[l0,0]. (25)

    In this section, we deal with the well-posedness of the fixed boundary problem. For the given m and QupC1/4((,0]) satisfy (21) and (22), respectively, we solve the degenerate elliptic problem (16)–(19). Since the problem is in an unbounded domain, we first deal with the truncated problem in [ζ0n,0]×[0,m] with any sufficient large positive integer n, and make some useful compact estimates. Then we solve the problem (16)–(19) by a limit process. The key of the proof is seeking the variation rate k, which ensures the solutions to the truncated problems exist, is independent of n.

    The truncated problem is written as

    2A(qn)φ2(φ,ψ)+2B(qn)ψ2(φ,ψ)=0,(φ,ψ)(ζ0n,0)×(0,m), (26)
    A(qn)φ(ζ0n,ψ)=0,ψ(0,m), (27)
    qnψ(φ,0)=0,φ(ζ0n,0), (28)
    B(qn)ψ(φ,m)=fk(x)(1+(fk(x))2)3/2Qup(x)|x=Xup(φ),φ(ζ0n,0), (29)
    qn(0,ψ)=c,ψ(0,m). (30)

    Note that (26) is degenerate at qn=c, we replace (30) with the following boundary condition

    qn(0,ψ)=c,ψ(0,m), (31)

    where c[c/3,c) is a constant, and consider the regularized truncated problem (26)–(29), (31). Then we solve the problem (26)–(30) by a limit process.

    The proof can be divided into four steps.

    Step 1. Well-posedness of the problem (26)–(29), (31) for c[c/3,c/2].

    Lemma 3.1. Assume that n2δ4+1 and c[c/3,c/2]. There exists a constant k1(0,1] depending only on γ, l0, l1, f(l0), fL((l0,0)) and (x)1/2fL((l0,0)), such that if k(0,k1], then the problem (26)–(29), (31) admits a unique solution qn,cC((ζ0n,0)×(0,m))C1([ζ0n,0)×[0,m])C([ζ0n,0]×[0,m]). Furthermore, qn,c satisfies

    c/6qn,c(φ,ψ)<c,(φ,ψ)[ζ0n,0]×[0,m], (32)
    qn,c(ζ0n,ψ)ck3/4,ψ[0,m]. (33)

    Proof. The uniqueness result follows from Proposition 3.2 in [20]. Set

    k1=min{(c6)4/3,(c48δ22δ34)2,(c96δ34)4,(A(c/4)A(c/6)8δ22δ34)2,(A(c/3)A(c/4)16δ34)4,(2δ1δ5/24B(5c/6)δ6)2,(2δ2δ5/24B(c/6)δ6A(c/6))2,(1δ22e2δ4)4,(3A(5c/6)4δ24e2δ4B(5c/6))2}.

    For k(0,k1], define

    ¯qn,c(φ,ψ)=23c+(k1/2ψ2+k1/4(φ2)eφ)Λ(φ),(φ,ψ)[ζ0n,0]×[0,m],q_n,c(φ,ψ)=A1(A(c/4)(k1/2ψ2+k1/4(φ2)eφ)Λ(φ)),(φ,ψ)[ζ0n,0]×[0,m],

    where

    Λ(φ)=max{0,(φ+2δ4)3},φ(,0].

    Thanks to (13), (14), (23) and (24), direct calculations show that

    c2¯qn,c(φ,ψ)5c6,c6q_n,c(φ,ψ)c3,(φ,ψ)[ζ0n,0]×[0,m],A(ˉqn,c)φ(ζ0n,ψ)=A(q_n,c)φ(ζ0n,ψ)=0,ψ(0,m),ˉqn,cψ(φ,0)=q_n,cψ(φ,0)=0,φ(ζ0n,0),
    B(ˉqn,c)ψ(φ,m)=2k1/2mB(¯qn,c(φ,m))Λ(φ)2k1/2δ2δ34B(5c/6)χ[ζ0,0](φ)kδ6(φ)1/2χ[ζ0,0](φ),φ(ζ0n,0),B(ˉqn,c)ψ(φ,m)=2k1/2mB(q_n,c(φ,m))A(q_n,c(φ,m))Λ(φ)2k1/2δ2δ34B(c/6)A(c/6)χ[ζ0,0](φ)kδ6(φ)1/2χ[ζ0,0](φ),φ(ζ0n,0),
    2A(ˉqn,c)φ2(φ,ψ)+2B(ˉqn,c)ψ2(φ,ψ)B(¯qn,c(φ,ψ))(A(¯qn,c(φ,ψ))B(¯qn,c(φ,ψ))2ˉqn,cφ2(φ,ψ)+2ˉqn,cψ2(φ,ψ))2k1/4B(¯qn,c(φ,ψ))(φ+2δ4)×(A(5c/6)B(5c/6)(3k1/4δ226e2δ4)+4k1/4δ24)χ[2δ4,0](φ)2k1/4B(¯qn,c(φ,ψ))(φ+2δ4)×(3e2δ4A(5c/6)B(5c/6)+4k1/4δ24)χ[2δ4,0](φ)0,(φ,ψ)(ζ0n,0)×(0,m),

    and

    2A(q_n,c)φ2(φ,ψ)+2B(q_n,c)ψ2(φ,ψ)2A(q_n,c)φ2(φ,ψ)+B(q_n,c(φ,ψ))A(q_n,c(φ,ψ))2A(q_n,c)ψ2(φ,ψ)2k1/4(φ+2δ4)(6e2δ43k1/4δ224k1/4δ24B(c/3)A(c/3))χ[2δ4,0](φ)2k1/4(φ+2δ4)(3e2δ44k1/4δ24B(c/3)A(c/3))χ[2δ4,0](φ)0,(φ,ψ)(ζ0n,0)×(0,m),

    where χ[2δ4,0](φ) is the characteristic function of the interval [2δ4,0]. Therefore, ¯qn,c and q_n,c are a supersolution and a subsolution to the problem (26)–(29), (31), respectively. Thanks to the comparison principle (Proposition 3.2 in [20]) and a standard argument in the classical theory for elliptic equations, one can complete the lemma.

    Step 2. A priori estimates of the average of solutions to the problem (26)–(29), (31).

    Lemma 3.2. Assume that n2δ4+1, c[c/3,c) and qn,cC((ζ0n,0)×(0,m))C1([ζ0n,0)×[0,m])C([ζ0n,0)×[0,m]) is a solution to the problem (26)–(29), (31). Then

    1mm0A(qn,c(φ,ψ))dψ=1mm0A(qn,c(ζ0,ψ))dψ,φ[ζ0n,ζ0]. (34)

    Furthermore, there exist three constants k2(0,1] and 0<σ1σ2 depending only on γ, τ1, τ2 and fL((l0,0)) such that if k(0,k2], then

    A(c)kσ2min{φ,ζ0}1mm0A(qn,c(φ,ψ))dψA(c)kσ1min{φ,ζ0},φ[ζ0n,0]. (35)

    Proof. The proof is similar to the proof of Lemma 3.2 in [21]. Integrating (26) over (0,m) with respect to ψ and using (28) and (29) show that

    d2dφ2m0A(qn,c(φ,ψ))dψ=fk(x)(1+(fk(x))2)3/2Qup(x)|x=Xup(φ),φ(ζ0n,0). (36)

    And (27) yields that

    ddφm0A(qn,c(ζ0n,ψ))dψ=0. (37)

    One gets from (6), (36) and (37) that

    ddφm0A(qn,c(φ,ψ))dψ=0,φ[ζ0n,ζ0], (38)

    and

    ddφm0A(qn,c(φ,ψ))dψ=φζ0fk(x)(1+(fk(x))2)3/2Qup(x)|x=Xup(s)ds=Xup(φ)l0fk(x)Φup(x)(1+(fk(x))2)3/2Qup(x)dx=Xup(φ)l0(arctanfk(x))dx=arctanfk(Xup(φ)),φ[ζ0,0]. (39)

    Thus (34) follows from (38). As in the proof of Lemma 3.2 in [21], it follows from (15) and (39) that

    1mm0A(qn,c(φ,ψ))dψ=1mm0A(qn,c(0,ψ))dψ+1m0φarctanfk(Xup(˜φ))d˜φ=A(c)+1m0φarctanfk(Xup(˜φ))d˜φ=A(c)kcf(Xup(φ))+O(k5/4),φ[ζ0,0], (40)

    where O() depend only on fL((l0,0)). Using (25), (34) and (40), we can obtain (35).

    Step 3. A priori derivative estimates of solutions to the problem (26)–(29), (31).

    Lemma 3.3. Assume that n2δ4+1, c[c/3,c), and qn,cC((ζ0n,0)×(0,m))C1([ζ0n,0)×[0,m])C([ζ0n,0)×[0,m]) is a solution to the problem (26)–(29), (31) satisfying (32) and (33). Then for k(0,1],

    |qn,cψ(φ,ψ)|kσ3(min{φ,ζ0})1/2,(φ,ψ)(ζ0n,0)×(0,m), (41)
    |A(qn,c(φ1,ψ1))A(qn,c(φ2,ψ2))|kσ4(|φ1φ2|1/2+|ψ1ψ2|),(φ1,ψ1),(φ2,ψ2)[ζ0n,0]×[0,m], (42)

    where σ3 and σ4 are positive constants depending only on γ, l0, l1, f(l0), fL((l0,0)) and (x)1/2fL((l0,0)).

    Proof. The proof is similar to Proposition 3.2 in [20]. Set

    z(φ,ψ)=B(qn,c)ψ(φ,ψ),(φ,ψ)[ζ0n,0]×[0,m].

    Then zC((ζ0n,0)×(0,m))C([ζ0n,0]×[0,m]) solves the problem

    j1(φ,ψ)2zφ2+2zψ2+j2(φ,ψ)zφ+j3(φ,ψ)zψ+j4(φ,ψ)z=0,(φ,ψ)(ζ0n,0)×(0,m), (43)
    zφ(ζ0n,ψ)=0,ψ(0,m), (44)
    z(φ,0)=0,φ(ζ0n,0), (45)
    z(φ,m)=fk(x)(1+(fk(x))2)3/2Qup(x)|x=Xup(φ),φ(ζ0n,0), (46)
    z(0,ψ)=0,ψ(0,m), (47)

    where jiC((ζ0,0)×(0,m))(1i4) are defined by

    j1=E(B(qn,c))>0,j2=E(B(qn,c))E(B(qn,c))A(qn,c)φ,j3=E(B(qn,c))E(B(qn,c))B(qn,c)ψ,j4=(E(B(qn,c))(E(B(qn,c)))2(E(B(qn,c)))2(E(B(qn,c)))3)(A(qn,c)φ)2(E(B(qn,c)))2(E(B(qn,c)))3(A(qn,c)φ)20

    and E satisfies (14). It is clear that

    14j1(φ,ψ)(φ)3/2j4(φ,ψ)(φ)1/2j1(φ,ψ)j4(φ,ψ)(φ)1/212j2(φ,ψ)(φ)1/2,(φ,ψ)(ζ0n,0)×(0,m).

    Due to (24), one can show that

    z±(φ,ψ)=±kδ6(φ)1/2,(φ,ψ)[ζ0n,0]×[0,m]

    are a supersolution and a subsolution to the problem (43)–(47), respectively. The comparison principle (Proposition 3.2 in [20]) implies that

    |z(φ,ψ)|kδ6(φ)1/2,(φ,ψ)[ζ0n,0]×[0,m]. (48)

    Define

    ˜z±(φ,ψ)=±kδ6(ζ0)1/2,(φ,ψ)[ζ0n,ζ0]×[0,m].

    It is easy to verify that ˜z± are a supersolution and subsolution to the following problem

    j1(φ,ψ)2zφ2+2zψ2+j2(φ,ψ)zφ+j3(φ,ψ)zψ+j4(φ,ψ)z=0,(φ,ψ)(ζ0n,ζ0)×(0,m),zφ(ζ0n,ψ)=0,ψ(0,m),z(φ,0)=0,φ(ζ0n,ζ0),z(φ,m)=0,φ(ζ0n,ζ0),z(ζ0,ψ)=z(ζ0,ψ),ψ(0,m),

    respectively. The comparison principle shows that

    |z(φ,ψ)|kδ6(ζ0)1/2,(φ,ψ)[ζ0n,ζ0]×[0,m],

    which, together with (48), leads to (41). Finally, (42) can be proved in the same way as the proof of Proposition 3.2 in [20].

    Step 4. Well-posedness of the truncated problem (26)–(30).

    Lemma 3.4. Assume that n2δ4+1. There exists a constant 0<k3min{k1,k2} depending only on γ, τ1, τ2, l0, l1, f(l0), fL((l0,0)) and (x)1/2fL((l0,0)), such that if k(0,k3], then the problem (26)–(30) admits a unique solution qnC((ζ0n,0)×(0,m))C1([ζ0n,0)×[0,m])C([ζ0n,0]×[0,m]) satisfies

    |qnψ(φ,ψ)|kσ3(min{φ,ζ0})1/2,(φ,ψ)(ζ0n,0)×(0,m), (49)
    |A(qn(φ1,ψ1))A(qn(φ2,ψ2))|kσ4(|φ1φ2|1/2+|ψ1ψ2|),(φ1,ψ1),(φ2,ψ2)[ζ0n,0]×[0,m], (50)
    cσ6k1/2(min{φ,ζ0})1/2qn(φ,ψ)cσ5k1/2(min{φ,ζ0})1/2,(φ,ψ)[ζ0n,0]×[0,m], (51)

    where 0<σ5σ6 are constants depending only on γ, τ1, τ2, l0, l1, f(l0), fL((l0,0)) and (x)1/2fL((l0,0)).

    Proof. The uniqueness result follows from Proposition 3.2 in [20]. For 0<kmin{k1,k2}, set

    Ck={c[c/3,c):the problem (26)–(29), (31) admits a solutionqn,cC((ζ0n,0)×(0,m))C1([ζ0n,0]×[0,m])with (32) and (33)}.

    It follows from Lemma 3.1 and the comparison principle (Proposition 3.2 in [20]) that Ck is a nonempty interval. Assume that cCk. For φ[ζ0n,0], thanks to cCk, (13) and (35), there exists a number ψφ(0,m) such that

    qn,c(φ,ψφ)c(kσ1N2)1/2(min{φ,ζ0})1/2,

    which, together with (41), yields

    qn,c(φ,ψ)=qn,c(φ,ψφ)+ψψφqn,cψ(φ,˜ψ)d˜ψc((σ1N2)1/2k1/2σ3δ2)k1/2(min{φ,ζ0})1/2,(φ,ψ)[ζ0n,0]×[0,m]. (52)

    Choose

    σ5=(σ14N2)1/2,k3=min{k1,k2,σ14σ23δ22N2,σ45δ2416}.

    For 0<kk3, one gets from cCk, (23) and (52) that

    c/4qn,c(φ,ψ)cσ5k1/2(min{φ,ζ0})1/2,(φ,ψ)[ζ0n,0]×[0,m], (53)
    qn,c(ζ0n,ψ)c2k3/4,ψ[0,m]. (54)

    It follows from cCk, (31) and (42) that

    |A(qn,c(φ,ψ))A(c)|kσ4(φ)1/2,ψ[0,m]. (55)

    Thanks to (53)–(55), one can prove from the comparison principle (Proposition 3.2 in [20]) and the continuous dependence of solutions to the problem (26)–(29), (31) that Ck=[c/3,c) for 0<kk3.

    Let 0<kk3. For c/3c1<c2<c, the comparison principle (Proposition 3.2 in [20]) gives

    qn,c1(φ,ψ)qn,c2(φ,ψ),(φ,ψ)[ζ0n,0]×[0,m].

    Set

    qn(φ,ψ)=limccqn,c(φ,ψ),(φ,ψ)[ζ0n,0]×[0,m].

    Due to (41), (42) and (53), it is clear that qn is a solution to the problem (26)–(30), and qn satisfies (49), (50) and the second inequality in (51). For φ[ζ0n,0], it follows from (35) and (13) that there exists a number ˜ψφ(0,m) such that

    qn(φ,˜ψφ)c(kσ2N1)1/2(min{φ,ζ0})1/2.

    This estimate above and (49) yield

    qn(φ,ψ)=qn(φ,˜ψφ)+ψ˜ψφqnψ(φ,˜ψ)d˜ψc((σ2N1)1/2+k1/2σ3δ2)k1/2(min{φ,ζ0})1/2,(φ,ψ)[ζ0n,0]×[0,m].

    Hence the first inequality in (51) holds for σ6=(σ2/N1)1/2+σ3δ2. Finally, the Schauder theory for elliptic equations shows that qnC((ζ0n,0)×(0,m))C1([ζ0n,0)×[0,m])C([ζ0n,0]×[0,m]).

    Let us establish the existence of the solution to the problem (16)–(19).

    Proposition 1. Assume that k(0,k3], then the problem (16)–(19) admits a solution qC((,0)×(0,m))C1((,0)×[0,m])C((,0]×[0,m]) satisfies

    |qψ(φ,ψ)|kσ3(min{φ,ζ0})1/2,(φ,ψ)(,0)×(0,m), (56)
    |A(q(φ1,ψ1))A(q(φ2,ψ2))|kσ4(|φ1φ2|1/2+|ψ1ψ2|),(φ1,ψ1),(φ2,ψ2)(,0]×[0,m], (57)
    cσ6k1/2(min{φ,ζ0})1/2q(φ,ψ)cσ5k1/2(min{φ,ζ0})1/2,(φ,ψ)(,0]×[0,m], (58)

    where σ3, σ4, σ5 and σ6 are given in Lemmas 3.3 and 3.4. Furthermore,

    1mm0A(q(φ,ψ))dψ=A(q),φ(,ζ0], (59)

    where

    q=A1(1mm0A(q(ζ0,ψ))dψ)[cσ6k1/2(ζ0)1/2,cσ5k1/2(ζ0)1/2]. (60)

    Proof. For any n>2δ4+1, the truncated problem (26)–(30) admits a unique solution

    q_n\in C^\infty((\zeta_0-n,0)\times(0,m)) \cap C^1([\zeta_0-n,0)\times[0,m]) \cap C^{1/2}([\zeta_0-n,0]\times[0,m])

    satisfying (49)–(51). Therefore, there exists a subsequence of \{q_n\} weakly star convergenting to a function q in L^\infty((-\infty,0)\times(0,m)) , and q satisfies (58). It is not hard to check that q is a solution to the problem (16)–(19), and q satisfies (56)–(58). Finally, the Schauder theory for elliptic equations yields that

    q\in C^\infty((-\infty,0)\times(0,m))\cap C^1((-\infty,0)\times[0,m])\cap C((-\infty,0]\times[0,m]).

    Integrating (16) over (0,m) with respect to \psi and using (6), (17) and (18) lead to that

    \frac{{\rm d}^2}{{\rm d}\varphi^2}\int_0^m A(q(\varphi,\psi)){\rm d}\psi = 0, \quad\varphi\in(-\infty,\zeta_0),

    and then there exists some constant C such that

    \begin{align} \frac{{\rm d}}{{\rm d}\varphi}\int_0^m A(q(\varphi,\psi)){\rm d}\psi = C, \quad\varphi\in(-\infty,\zeta_0), \end{align} (61)

    which implies that

    \begin{align} \int_0^m A(q(\varphi,\psi)){\rm d}\psi = \int_0^m A(q(\zeta_0,\psi)){\rm d}\psi+C(\varphi-\zeta_0), \quad\varphi\in(-\infty,\zeta_0). \end{align} (62)

    It follows from (57) and (62) that

    \begin{align*} |C||\varphi-\zeta_0| &\leq \int_0^m|A(q(\varphi,\psi))-A(q(\zeta_0,\psi))| {\rm d}\psi \\ &\leq k\sigma_4\delta_2|\varphi-\zeta_0|^{1/2}, \quad\varphi\in(-\infty,\zeta_0), \end{align*}

    that is,

    \begin{align} |C|\leq k\sigma_4\delta_2|\varphi-\zeta_0|^{-1/2}, \quad\varphi\in(-\infty,\zeta_0). \end{align} (63)

    One can get C = 0 by taking \varphi\to-\infty in (63), and then (61) implies that

    \frac{1}{m}\int_0^m A(q(\varphi,\psi)){\rm d}\psi = \frac{1}{m}\int_0^m A(q(\zeta_0,\psi)){\rm d}\psi,\quad\varphi\in(-\infty,\zeta_0].

    Therefore, (59) holds.

    The solution to the problem (16)–(19) has the following regularity and asymptotic behavior.

    Proposition 2. Assume that q is a solution to the problem (16)–(19) satisfying Proposition 1. Then q\in C^{1/2}([2\zeta_0,0]\times[0,m]) and

    \begin{align} \Big|\frac{\partial q}{\partial \varphi}(\varphi,\psi)\Big| \leq\sigma_7k^{1/4}(-\varphi)^{-1/2},\quad (\varphi,\psi)\in[2\zeta_0,0)\times(0,m), \end{align} (64)

    where \sigma_7 is a positive constants depending only on \gamma , \tau_1 , \tau_2 , l_0 , l_1 , f(-l_0) , \|f'\|_{L^\infty((-l_0,0))} and \|(-x)^{-1/2}f''\|_{L^\infty((-l_0,0))} . Moreover, it holds that

    \begin{align} \begin{split} \Big|\frac{\partial q}{\partial \varphi}(\varphi,\psi)\Big| \leq\sigma_8k^{1/2}(-\varphi)^{-2},\quad &\Big|\frac{\partial q}{\partial \psi}(\varphi,\psi)\Big| \leq\sigma_8k(-\varphi)^{-2}, \\ &(\varphi,\psi)\in(-\infty,2\zeta_0)\times(0,m), \end{split} \end{align} (65)

    and hence

    \begin{align} \|q(\varphi,\psi)-q_\infty\|_ {L^\infty((-\infty,\zeta)\times(0,m))} \leq\sigma_9k(-\zeta)^{-2}, \quad\zeta\in(-\infty,2\zeta_0), \end{align} (66)

    where q_\infty is given in (60), and \sigma_8,\,\sigma_9>0 depend only on \gamma , \tau_1 , \tau_2 , l_0 , l_1 , f(-l_0) , \|f'\|_{L^\infty((-l_0,0))} and \|(-x)^{-1/2}f''\|_{L^\infty((-l_0,0))} .

    Proof. Similarly to the proof of Proposition 4.1 in [18], one can prove that q\in C^{1/2}([2\zeta_0,0]\times[0,m]) and satisfies (64).

    In the remaining of the proof, we use \mu_i\,(1\leq i\leq11) to denote a generic positive constant depending only on \gamma , \tau_1 , \tau_2 , l_0 , l_1 , f(-l_0) , \|f'\|_{L^\infty((-l_0,0))} and \|(-x)^{-1/2}f''\|_{L^\infty((-l_0,0))} . It follows from (59) that for any \varphi\in(-\infty,\zeta_0] , there exists a number \psi_\varphi\in(0,m) such that

    q(\varphi,\psi_\varphi) = q_\infty,

    which, together with (56), yields

    \begin{align} \|q(\varphi,\psi)-q_\infty\|_{L^\infty((-\infty,\zeta_0)\times(0,m))} \leq\int_0^m\Big\|\frac{\partial q}{\partial \psi}\Big\| _{L^\infty((-\infty,\zeta_0)\times(0,m))}{\rm d}\psi \leq\mu_1k. \end{align} (67)

    Note that q\in C^\infty((-\infty,0)\times(0,m))\cap C^1((-\infty,0)\times[0,m])\cap C((-\infty,0]\times[0,m]) solves

    \begin{align*} &\frac{\partial}{\partial \varphi}\Big(a(\varphi,\psi)\frac{\partial q}{\partial \varphi}\Big) +\frac{\partial}{\partial \psi}\Big(b(\varphi,\psi)\frac{\partial q}{\partial \psi}\Big) = 0, &&(\varphi,\psi)\in(-\infty,\zeta_0)\times(0,m), \\ &\frac{\partial q}{\partial \psi}(\varphi,0) = 0, &&\varphi\in(-\infty,\zeta_0), \\ &\frac{\partial q}{\partial \psi}(\varphi,m) = 0, &&\varphi\in(-\infty,\zeta_0), \end{align*}

    where

    a(\varphi,\psi) = A'(q(\varphi,\psi)),\quad b(\varphi,\psi) = B'(q(\varphi,\psi)),\quad (\varphi,\psi)\in(-\infty,\zeta_0)\times(0,m).

    Fix integer n\geq2 . Introducing

    \left\{\begin{array}{ll} \hat{\varphi} = k^{-1/4}(\varphi-n\zeta_0)/n, &\quad\varphi\in[4n\zeta_0,n\zeta_0/2], \\ \hat{\psi} = \psi/n, &\quad\psi\in[0,m], \end{array}\right.

    and setting

    \hat{q}(\hat{\varphi},\hat{\psi}) = q(n\zeta_0+k^{1/4}n\hat{\varphi},n\hat{\psi})-q_\infty, \quad(\hat{\varphi},\hat{\psi})\in [3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2]\times[0,m/n].

    One can verify that

    \hat{q}\in C^\infty((3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2)\times(0,m/n))\cap C^1([3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2]\times[0,m/n])

    solves

    \begin{align} &\frac{\partial}{\partial \hat{\varphi}} \Big(k^{-1/2}\hat{a}(\hat{\varphi},\hat{\psi}) \frac{\partial \hat{q}}{\partial \hat{\varphi}}\Big) +\frac{\partial}{\partial \hat{\psi}} \Big(\hat{b}(\hat{\varphi},\hat{\psi}) \frac{\partial \hat{q}}{\partial \hat{\psi}}\Big) = 0, && \\ & &&(\hat{\varphi},\hat{\psi}) \in(3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2)\times(0,m/n), \end{align} (68)
    \begin{align} &\frac{\partial \hat{q}}{\partial \hat{\psi}}(\hat{\varphi},0) = 0, &&\hat{\varphi}\in (3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2), \end{align} (69)
    \begin{align} &\frac{\partial \hat{q}}{\partial \hat{\psi}}(\hat{\varphi},m/n) = 0, &&\hat{\varphi} \in(3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2), \end{align} (70)

    where

    \begin{align*} \hat{a}(\hat{\varphi},\hat{\psi}) = a(n\zeta_0+k^{1/4}n\hat{\varphi},n\hat{\psi}),\quad &\hat{b}(\hat{\varphi},\hat{\psi}) = b(n\zeta_0+k^{1/4}n\hat{\varphi},n\hat{\psi}), \\ &(\hat{\varphi},\hat{\psi})\in [3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2]\times[0,m/n]. \end{align*}

    Extending the problem (68)–(70) into the domain [3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2]\times[0,2m] yields

    \begin{align*} &\frac{\partial}{\partial \check{\varphi}} \Big(k^{-1/2}\check{a}(\check{\varphi},\check{\psi}) \frac{\partial \check{q}}{\partial \check{\varphi}}\Big) +\frac{\partial}{\partial \check{\psi}} \Big(\check{b}(\check{\varphi},\check{\psi}) \frac{\partial \check{q}}{\partial \check{\psi}}\Big) = 0, && \\ & &&(\check{\varphi},\check{\psi}) \in(3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2)\times(0,2m), \\ &\frac{\partial \check{q}}{\partial \check{\psi}}(\check{\varphi},0) = 0, &&\check{\varphi}\in(3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2), \\ &\frac{\partial \check{q}}{\partial \check{\psi}}(\check{\varphi},2m) = 0, &&\check{\varphi}\in(3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2), \end{align*}

    where for (\check{\varphi},\check{\psi}) \in[3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2] \times[(i-1)m/n,im/n]\; (1\leq i\leq2n) ,

    \begin{align*} \check{a}(\check{\varphi},\check{\psi}) & = \left\{\begin{array}{ll} \hat{a}(\check{\varphi},\check{\psi}-(i-1)m/n), &\quad\hbox{if $i$ is odd}, \\ \hat{a}(\check{\varphi},im/n-\check{\psi}), &\quad\hbox{if $i$ is even}, \end{array}\right. \\ \check{b}(\check{\varphi},\check{\psi}) & = \left\{\begin{array}{ll} \hat{b}(\check{\varphi},\check{\psi}-(i-1)m/n), &\quad\hbox{if $i$ is odd}, \\ \hat{b}(\check{\varphi},im/n-\check{\psi}), &\quad\hbox{if $i$ is even}. \end{array}\right. \end{align*}

    Duo to (13), (51) and (67), one gets that

    \begin{align*} \mu_2k^{1/2}\leq\check{a}(\check{\varphi},\check\psi)\leq\mu_3k^{1/2},\quad &\mu_2\leq\check{b}(\check{\varphi},\check\psi)\leq\mu_3,\quad \\ &(\check{\varphi},\check{\psi})\in [-4k^{-1/4},3k^{-1/4}\varepsilon/(4n)]\times[0,2m], \end{align*}

    and

    \|\check{q}\|_{L^\infty ((3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2) \times(0,2m))}\leq\mu_1k.

    It follows from the Hölder continuity estimates for uniformly elliptic equations that there exists a number \beta\in(0,1) such that

    [\check{q}]_{\beta;(5k^{-1/4}\zeta_0/2,-k^{-1/4}\zeta_0/4) \times(0,2m)} \leq\mu_4\|\check{q}\|_{L^\infty ((3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2) \times(0,2m))} \leq\mu_5k,

    which implies

    \begin{align*} [\check{a}]_{\beta;(5k^{-1/4}\zeta_0/2,-k^{-1/4}\zeta_0/4)\times(0,2m)} &\leq\mu_6k, \\ [\check{b}]_{\beta;(5k^{-1/4}\zeta_0/2,-k^{-1/4}\zeta_0/4)\times(0,2m)} &\leq\mu_6k. \end{align*}

    The Schauder estimates on uniformly elliptic equations imply that

    \begin{align} \|\check{q}\|_{C^{1,\beta}((2k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/8) \times(0,2m))} &\leq\mu_7\|\check{q}\|_{L^\infty ((5k^{-1/4}\zeta_0/2,-k^{-1/4}\zeta_0/4)\times(0,2m))} \\ &\leq\mu_8k. \end{align} (71)

    Transforming (71) into the (\varphi,\psi) plane, one can get that

    \begin{align} \begin{split} \Big\|\frac{\partial q}{\partial \varphi}\Big\|_{L^\infty((3n\zeta_0,3n\zeta_0/4)\times(0,m))} &\leq\mu_9k^{3/4}n^{-1}, \\ \Big\|\frac{\partial q}{\partial \psi}\Big\|_{L^\infty((3n\zeta_0,3n\zeta_0/4)\times(0,m))} &\leq\mu_9kn^{-1}. \end{split} \end{align} (72)

    Similar to (67), we have from (72) that

    \begin{align} \|q(\varphi,\psi)-q_\infty\|_{L^\infty((3n\zeta_0,3n\zeta_0/4)\times(0,m))} &\leq\int_0^m\Big\|\frac{\partial q_{n}}{\partial \psi}\Big\| _{L^\infty((3n\zeta_0,3n\zeta_0/4)\times(0,m))}{\rm d}\psi \\ &\leq\mu_{10}kn^{-1}. \end{align} (73)

    Using (73) and the same operation on q leads to that

    \begin{align*} \begin{split} \Big\|\frac{\partial q}{\partial \varphi}\Big\|_{L^\infty((2n\zeta_0,n\zeta_0)\times(0,m))} &\leq\mu_{11}k^{1/2}n^{-2}, \\ \Big\|\frac{\partial q}{\partial \psi}\Big\|_{L^\infty((2n\zeta_0,n\zeta_0)\times(0,m))} &\leq\mu_{11}kn^{-2}, \end{split} \end{align*}

    Then the arbitrariness of n\geq2 leads to (65), and hence (66) holds.

    Remark 1. Through the similar process of the proof of Proposition 2, one can show that for any positive integer \lambda , it holds that

    \begin{align*} \Big|\frac{\partial q}{\partial \varphi}(\varphi,\psi)\Big| \leq\sigma_8'k^{1-\lambda/4}(-\varphi)^{-\lambda},\quad &\Big|\frac{\partial q}{\partial \psi}(\varphi,\psi)\Big| \leq\sigma_8'k(-\varphi)^{-\lambda}, \\ &(\varphi,\psi)\in(-\infty,2\zeta_0)\times(0,m) \end{align*}

    and

    \|q(\varphi,\psi)-q_\infty\|_ {L^\infty((-\infty,\zeta)\times(0,m))} \leq\sigma_9'k(-\zeta)^{-\lambda}, \quad\zeta\in(-\infty,2\zeta_0),

    where \sigma_8',\,\sigma_9'>0 depend only on \lambda , \gamma , l_0 , l_1 , f(-l_0) , \|f'\|_{L^\infty((-l_0,0))} and \|(-x)^{-1/2}f''\|_{L^\infty((-l_0,0))} .

    The solution to the problem (16)–(19) is also unique for small k .

    Proposition 3. There exists a constant k_4\in(0,1] depending only on \gamma , \tau_1 , \tau_2 , l_0 , l_1 , f(-l_0) , \|f'\|_{L^\infty((-l_0,0))} and \|(-x)^{-1/2}f''\|_{L^\infty((-l_0,0))} , such that if k\in(0,k_4] , then the problem (16)–(19) admits at most one solution q\in C^\infty((-\infty,0)\times(0,m)) \cap C^1((-\infty,0)\times[0,m]) \cap C((-\infty,0]\times[0,m]) satisfying (58).

    Proof. In the proof, we use \nu_i\,(1\leq i\leq5) to denote a generic positive constant depending only on \gamma , \tau_1 , \tau_2 , l_0 , l_1 , f(-l_0) , \|f'\|_{L^\infty((-l_0,0))} and \|(-x)^{-1/2}f''\|_{L^\infty((-l_0,0))} . Let q^{(1)},\,q^{(2)}\in C^\infty((-\infty,0)\times(0,m)) \cap C^1((-\infty,0)\times[0,m]) \cap C((-\infty,0]\times[0,m]) be two solution to the problem (16)–(19) satisfying (58). Define

    w_i(\varphi,\psi) = A(q^{(i)}(\varphi,\psi)),\quad (\varphi,\psi)\in(-\infty,0]\times[0,m],\quad i = 1,\,2.

    Then w_i\,(i = 1,\,2) solves

    \begin{align*} &\frac{\partial^{2} w_{i}}{\partial \varphi^{2}} +\frac{\partial^{2} B\left(A^{-1}\left(w_{i}\right)\right)}{\partial \psi^{2}} = 0, &&(\varphi,\psi)\in(-\infty,0)\times(0,m), \\ &\frac{\partial w_{i}}{\partial \psi}(\varphi,0) = 0, &&\varphi\in(-\infty,0), \\ &\frac{\partial B\left(A^{-1}\left(w_{i}\right)\right)}{\partial \psi}(\varphi,m) = \frac{f''_k(x)}{(1+(f'_k(x))^2)^{3/2}Q_{\rm up}(x)}\Big|_{x = X_{\rm up}(\varphi)}, && \\ &&&\varphi\in(-\infty,0), \\ &w_i(0,\psi) = 0, &&\psi\in(0,m). \end{align*}

    Set

    w(\varphi,\psi) = w_1(\varphi,\psi)-w_2(\varphi,\psi),\quad (\varphi,\psi)\in(-\infty,0]\times[0,m].

    It is easy to show that w solves

    \begin{align} &\frac{\partial^{2} w}{\partial \varphi^{2}} +\frac{\partial^{2}}{\partial \psi^{2}}(h(\varphi,\psi)w) = 0, &&(\varphi,\psi)\in(-\infty,0)\times(0,m), \end{align} (74)
    \begin{align} &\frac{\partial w}{\partial \psi}(\varphi,0) = 0, &&\varphi\in(-\infty,0), \end{align} (75)
    \begin{align} &\frac{\partial(h w)}{\partial \psi}(\varphi,m) = 0, &&\varphi\in(-\infty,0), \end{align} (76)
    \begin{align} &w(0,\psi) = 0, &&\psi\in(0,m), \end{align} (77)

    where

    \begin{align*} h(\varphi,\psi) & = \int_0^1 \frac{B'(A^{-1}(\eta w_1(\varphi,\psi) +(1-\eta)w_2((\varphi,\psi))))} {A'(A^{-1}(\eta w_1(\varphi,\psi) +(1-\eta)w_2((\varphi,\psi))))}{\rm d}\eta, \\ & \quad (\varphi,\psi)\in(-\infty,0)\times(0,m). \end{align*}

    Thanks to (56), (58), (64) and (65), direct calculations yield

    \begin{gather} \nu_1k^{1/2}\langle-\varphi\rangle^{1/2} \leq h(\varphi,\psi)\leq \nu_1k^{1/2}\langle-\varphi\rangle^{1/2}, \quad(\varphi,\psi)\in(-\infty,0)\times(0,m), \end{gather} (78)
    \begin{gather} \Big|\frac{\partial h}{\partial \psi}(\varphi,\psi)\Big| \leq\left\{\begin{array}{ll} \nu_2(-\varphi)^{-1/2}, \quad(\varphi,\psi)\in[2\zeta_0,0)\times(0,m), \\ \nu_2(-\varphi)^{-2}, \quad(\varphi,\psi)\in(-\infty,2\zeta_0)\times(0,m), \end{array}\right. \end{gather} (79)
    \begin{gather} \Big|\frac{\partial w}{\partial \varphi}(\varphi,\psi)\Big| \leq\nu_2k(-\varphi)^{-2}, \quad(\varphi,\psi)\in(-\infty,2\zeta_0)\times(0,m), \end{gather} (80)

    where \langle-\varphi\rangle = \min\{-\varphi,-2\zeta_0\} . Fix \zeta<2\zeta_0-1 . Multiplying (74) by -w , then integrating over (\zeta,0)\times(0,m) by parts and using (75)–(77), we have

    \begin{align*} &\int_\zeta^0\int_0^m\Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\psi{\rm d}\varphi +\int_\zeta^0\int_0^mh(\varphi,\psi)\Big(\frac{\partial w}{\partial \psi}\Big)^2 {\rm d}\psi{\rm d}\varphi \\ = \,&-\int_\zeta^0\int_0^m\frac{\partial h}{\partial \psi}(\varphi,\psi) w\frac{\partial w}{\partial \psi}{\rm d}\psi{\rm d}\varphi -\int_0^mw(\zeta,\psi)\frac{\partial w}{\partial \varphi}(\zeta,\psi) {\rm d}\psi, \end{align*}

    which, together with (78)–(80), yields

    \begin{align*} &\int_\zeta^0\int_0^m\Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\psi{\rm d}\varphi +k^{-1/2}\int_\zeta^0\int_0^m \langle-\varphi\rangle^{1/2}\Big(\frac{\partial w}{\partial \psi}\Big)^2 {\rm d}\psi{\rm d}\varphi \\ \leq\,&\nu_3\int_{2\zeta_0}^0\int_0^m(-\varphi)^{-1/2} \Big|w\frac{\partial w}{\partial \psi}\Big|{\rm d}\psi{\rm d}\varphi +\nu_3\int_\zeta^{2\zeta_0}\int_0^m(-\varphi)^{-2} \Big|w\frac{\partial w}{\partial \psi}\Big|{\rm d}\psi{\rm d}\varphi \\ &\qquad+\nu_3k(-\zeta)^{-2} \int_0^m|w(\zeta,\psi)|{\rm d}\psi. \end{align*}

    Then the Hölder's inequality gives

    \begin{align} &\int_\zeta^0\int_0^m\Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\psi{\rm d}\varphi +k^{-1/2}\int_\zeta^0\int_0^m \langle-\varphi\rangle^{1/2}\Big(\frac{\partial w}{\partial \psi}\Big)^2 {\rm d}\psi{\rm d}\varphi \\ \leq\,&\nu_4k^{1/2}\int_{2\zeta_0}^0\int_0^m (-\varphi)^{-1/2}w^2{\rm d}\psi{\rm d}\varphi +\nu_4k^{1/2}\int_\zeta^{2\zeta_0}\int_0^m (-\varphi)^{-4}w^2{\rm d}\psi{\rm d}\varphi \\ &\qquad+\nu_4k(-\zeta)^{-2} \int_0^m|w(\zeta,\psi)|{\rm d}\psi. \end{align} (81)

    It follows from the Hölder's inequality and Cauchy inequality that

    \begin{align} \int_{2\zeta_0}^0\int_0^m (-\varphi)^{-1/2}w^2{\rm d}\psi{\rm d}\varphi &\leq\int_{2\zeta_0}^0\int_0^m(-\varphi)^{-1/2} \bigg(\int_\varphi^0\frac{\partial w}{\partial \varphi}(s,\psi) {\rm d}s\bigg)^2{\rm d}\psi{\rm d}\varphi \\ &\leq\int_{2\zeta_0}^0(-\varphi)^{1/2} {\rm d}\varphi \int_{\zeta_0}^0\int_0^m \Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\varphi{\rm d}\psi \\ &\leq(-2\zeta_0)^{3/2}\int_\zeta^0\int_0^m \Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\varphi{\rm d}\psi, \end{align} (82)
    \begin{align} \int_\zeta^{2\zeta_0}\int_0^m (-\varphi)^{-4}w^2{\rm d}\psi{\rm d}\varphi &\leq\int_\zeta^{2\zeta_0}\int_0^m(-\varphi)^{-4} \bigg(\int_\varphi^0\frac{\partial w}{\partial \varphi}(s,\psi) {\rm d}s\bigg)^2{\rm d}\psi{\rm d}\varphi \\ &\leq\int_\zeta^{2\zeta_0}(-\varphi)^{-3} {\rm d}\varphi \int_\zeta^0\int_0^m\Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\psi{\rm d}\varphi \\ &\leq(-2\zeta_0)^{-2} \int_\zeta^0\int_0^m\Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\psi{\rm d}\varphi, \end{align} (83)

    and

    \begin{align} \int_0^m|w(\zeta,\psi)|{\rm d}\psi &\leq\dfrac{m}{2}+\dfrac{1}{2} \int_0^mw^2(\zeta,\psi){\rm d}\psi \\ &\leq\dfrac{\delta_2}{2}+\int_0^m \bigg(\int_\zeta^0\Big|\frac{\partial w}{\partial \varphi}\Big| {\rm d}\varphi\bigg)^2{\rm d}\psi \\ &\leq\dfrac{\delta_2}{2}+(-\zeta) \int_\zeta^0\int_0^m \Big(\frac{\partial w}{\partial \varphi}\Big)^2{\rm d}\varphi{\rm d}\psi. \end{align} (84)

    Substituting (82)–(84) into (81) to get

    \begin{align} &\int_\zeta^0\int_0^m\Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\psi{\rm d}\varphi +k^{-1/2}\int_\zeta^0\int_0^m \langle-\varphi\rangle^{1/2}\Big(\frac{\partial w}{\partial \psi}\Big)^2 {\rm d}\psi{\rm d}\varphi \\ \leq\,&\nu_5k^{1/2}\int_\zeta^0\int_0^m\Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\psi{\rm d}\varphi +\nu_5k(-\zeta)^{-2} +\nu_5k(-\zeta)^{-1}\int_\zeta^0\int_0^m \Big(\frac{\partial w}{\partial \varphi}\Big)^2{\rm d}\varphi{\rm d}\psi \\ \leq\,&2\nu_5k^{1/2}\int_\zeta^0\int_0^m\Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\psi{\rm d}\varphi +\nu_5k(-\zeta)^{-2}. \end{align} (85)

    Choose k_4 = 1/(16\nu_5^2+1) . For any k\in(0,k_4] , (85) implies

    \begin{align} \int_\zeta^0\int_0^m\Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\psi{\rm d}\varphi +k^{-1/2}\int_\zeta^0\int_0^m \langle-\varphi\rangle^{1/2}\Big(\frac{\partial w}{\partial \psi}\Big)^2 {\rm d}\psi{\rm d}\varphi \leq2\nu_5k^{1/2}(-\zeta)^{-2}. \end{align} (86)

    Taking \zeta\to-\infty in (86) to get

    \int_{-\infty}^0\int_0^m\Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\psi{\rm d}\varphi +k^{-1/2}\int_{-\infty}^0\int_0^m \langle-\varphi\rangle^{1/2}\Big(\frac{\partial w}{\partial \psi}\Big)^2 {\rm d}\psi{\rm d}\varphi \leq0,

    which implies

    \begin{align} \frac{\partial w}{\partial \varphi}(\varphi,\psi) = \frac{\partial w}{\partial \psi}(\varphi,\psi) = 0, \quad(\varphi,\psi)\in(-\infty,0)\times(0,m). \end{align} (87)

    It follows (77) and (87) that

    w(\varphi,\psi) = 0,\quad (\varphi,\psi)\in(-\infty,0]\times[0,m].

    Therefore, q^{(1)} = q^{(2)} .

    First we prove the existence of the solution to the problem (16)–(20) by a fixed point argument.

    Theorem 4.1. Assume that f\in C^{2,\alpha}([-l_0,0]) satisfies (5) and (6). There exists a constant k_0\in(0,1] depending only on \gamma , \tau_1 , \tau_2 , l_0 , l_1 , f(-l_0) , \|f'\|_{L^\infty((-l_0,0))} and \|(-x)^{-1/2}f''\|_{L^\infty((-l_0,0))} , such that if k\in(0,k_0] , then the problem (16)–(20) admits a solution (q,m) satisfying

    \begin{gather} q\in C^\infty((-\infty,0)\times(0,m)) \cap C^1((-\infty,0)\times[0,m]) \cap C^{1/2}((-\infty,0]\times[0,m]) \\ \Big|\frac{\partial q}{\partial \psi}(\varphi,\psi)\Big| \leq k\sigma_3(\min\{-\varphi,-\zeta_0\})^{1/2}, \quad(\varphi,\psi)\in(-\infty,0)\times(0,m), \end{gather} (88)
    \begin{gather} |A(q(\varphi_1,\psi_1))-A(q(\varphi_2,\psi_2))| \leq k\sigma_4(|\varphi_1-\varphi_2|^{1/2}+|\psi_1-\psi_2|), \\ (\varphi_1,\psi_1),\, (\varphi_2,\psi_2)\in(-\infty,0]\times[0,m], \end{gather} (89)
    \begin{gather} c_*-\sigma_6k^{1/2}(\min\{-\varphi,-\zeta_0\})^{1/2} \leq q(\varphi,\psi)\leq c_*-\sigma_5k^{1/2}(\min\{-\varphi,-\zeta_0\})^{1/2}, \\ (\varphi,\psi)\in(-\infty,0]\times[0,m], \end{gather} (90)

    where

    \begin{align} m = q_\infty\rho(q_\infty^2)(f_k(-l_0)+l_1),\quad c_*-\sigma_6k^{1/2}(-\zeta_0)^{1/2}\leq q_\infty \leq c_*-\sigma_5k^{1/2}(-\zeta_0)^{1/2}, \end{align} (91)

    and \sigma_3 , \sigma_4 , \sigma_5 , \sigma_6 are given in Lemmas 3.3 and 3.4. Furthermore,

    \begin{align} \Big|\frac{\partial q}{\partial \varphi}(\varphi,\psi)\Big| \leq\sigma_7k^{1/4}(-\varphi)^{-1/2},\quad (\varphi,\psi)\in[2\zeta_0,0)\times(0,m), \end{align} (92)

    and for any positive integer \lambda , it holds that

    \begin{align} \begin{split} \Big|\frac{\partial q}{\partial \varphi}(\varphi,\psi)\Big| \leq\sigma_8'k^{1-\lambda/4}(-\varphi)^{-\lambda},\quad &\Big|\frac{\partial q}{\partial \psi}(\varphi,\psi)\Big| \leq\sigma_8'k(-\varphi)^{-\lambda}, \\ &(\varphi,\psi)\in(-\infty,2\zeta_0)\times(0,m), \end{split} \end{align} (93)

    and

    \begin{align} \|q(\varphi,\psi)-q_\infty\|_ {L^\infty((-\infty,\zeta)\times(0,m))} \leq\sigma_9'k(-\zeta)^{-\lambda}, \quad\zeta\in(-\infty,2\zeta_0), \end{align} (94)

    where \sigma_7 , \sigma_8' and \sigma_9' are given in Proposition 2 and Remark 1. Therefore, the flow is uniformly subsonic at the far fields.

    Proof. Choose

    \begin{align*} k_0 = \min\bigg\{k_3,\,k_4,\, \frac{c_*^2}{4\sigma_6^2\delta_4},\, \frac{1}{\sigma_6^4\delta_4^2},\, \frac{N_1}{2\sigma_4\delta_5^{1/2}}\bigg\}. \end{align*}

    For k\in(0,k_0] , set

    \mathscr{Q} = \left\{(m,Q_{\rm up})\in [\delta_1,\delta_2]\times C^{1/4}((-\infty,0]):\, \hbox{$Q_{\rm up}$ satisfies $(22)$}\right\}

    with the norm

    \|(m,Q_{\rm up})\|_{\mathscr{Q}} = \max\left\{m,\, \|Q_{\rm up}\|_{L^\infty(-\infty,0)}\right\}.

    For a given (m,Q_{\rm up})\in\mathscr{Q} , it is clear that \Phi_{\rm up} , X_{\rm up} and q_\infty are well determined, and it follows from Propositions 1–3 that the problem (16)–(19) admits a unique solution q\in C^\infty((-\infty,0)\times(0,m)) \cap C^1((-\infty,0)\times[0,m]) \cap C((-\infty,0]\times[0,m]) satisfying (56)–(58) and (66). Set

    \hat{m} = q_\infty\rho(q_\infty^2)(f_k(-l_0)+l_1),\quad \widehat{Q}_{\rm up}(x) = q(\Phi_{\rm up}(x),m), \quad x\in(-\infty,0].

    From (56)–(58), (66) and the choice of k_0 , it is easy to verify that (\hat{m},\widehat{Q}_{\rm up})\in\mathscr{Q} and

    \mathcal{K}:\,\mathscr{Q}\to\mathscr{Q},\quad (m,Q_{\rm up}) \mapsto(\hat{m},\widehat{Q}_{\rm up}).

    is a self-mapping. Furthermore, one can prove the compactness of \mathcal{K} by using (56)–(58), and the continuity of \mathcal{K} by using its compactness and the uniqueness result for the problem (16)–(19). Therefore, the Schauder fixed point theorem shows that the problem (16)–(20) admits a solution (q,m) such that q\in C^\infty((-\infty,0)\times(0,m)) \cap C^1((-\infty,0)\times[0,m]) \cap C^{1/2}((-\infty,0]\times[0,m]) satisfies (88)–(94).

    From Theorem 4.1, for k\in(0,k_0] , the problem (16)–(20) admits a solution (q,m) satisfying q\in C^\infty((-\infty,0)\times(0,m)) \cap C^1((-\infty,0)\times[0,m]) \cap C^{1/2}((-\infty,0]\times[0,m]) ,

    \begin{align} \begin{split} &\max\left\{\dfrac{c_*}{2},\, c_*-M_1k^{1/2}(\min\{-\varphi,-\zeta_0\})^{1/2}\right\} \\ \le\,&q(\varphi,\psi)\le c_*-M_2k^{1/2}(\min\{-\varphi,-\zeta_0\})^{1/2}, \\ & \quad (\varphi,\psi)\in(-\infty,0)\times(0,m) \end{split} \end{align} (95)

    and

    \|q(\varphi,\psi)-q_\infty\|_{L^\infty((-\infty,\zeta)\times(0,m)} \leq M_3k(-\zeta)^{-2}, \quad\zeta < 2\zeta_0,

    where

    \begin{gather*} m = q_\infty\rho(q_\infty^2)(f_k(-l_0)+l_1), \\ \max\left\{\dfrac{c_*}{2},\,c_*-M_1k^{1/2}(-\zeta_0)^{1/2}\right\} \le q_\infty\le c_*-M_2k^{1/2}(-\zeta_0)^{1/2}, \end{gather*}

    and M_1 , M_2 , M_3 are positive constants. Indeed, this solution is also unique if k is suitably small.

    Theorem 4.2. Assume that f\in C^{2,\alpha}([-l_0,0]) satisfies (5) and (6). There exists a constant k_0'\in(0,1] depending only on \gamma , l_0 , l_1 , f(-l_0) , \|f'\|_{L^\infty((-l_0,0))} , \|(-x)^{-1/2}f''\|_{L^\infty((-l_0,0))} , M_1 and M_2 , such that if k\in(0,k_0'] , then there is at most one solution (q,m) to the problem (16)–(20) such that q\in C^\infty((-\infty,0)\times(0,m)) \cap C^1((-\infty,0)\times[0,m]) \cap C((-\infty,0]\times[0,m]) and q satisfies (95).

    Proof. In the proof, we use C_i\,(1\leq i\leq5) to denote a generic positive constant depending only on \gamma , l_0 , l_1 , f(-l_0) , \|f'\|_{L^\infty((-l_0,0))} , \|(-x)^{-1/2}f''\|_{L^\infty((-l_0,0))} , M_1 and M_2 . Let (q^{(1)},m^{(1)}) and (q^{(2)},m^{(2)}) be two solutions to the problem (16)–(20) such that q^{(i)}\in C^\infty((-\infty,0)\times(0,m^{(i)})) \cap C^1((-\infty,0)\times[0,m^{(i)}]) \cap C((-\infty,0]\times[0,m^{(i)}]) and satisfies (95) for i = 1,\,2 . Denote \Phi_{{\rm up},i} and X_{{\rm up},i} to be the associated functions defined in Section 2 corresponding to q^{(i)} for i = 1,\,2 . For i = 1,\,2 , introduce the new coordinates transformations

    \left\{\begin{array}{ll} x = X_{{\rm up},i}(\varphi),&\varphi\in(-\infty,0], \\ y = \dfrac{\psi}{m^{(i)}},&\psi\in[0,m^{(i)}], \end{array}\right.\qquad \left\{\begin{array}{ll} \varphi = \Phi_{{\rm up},i}(x),&x\in(-\infty,0], \\ \psi = m^{(i)}y,&y\in[0,1]. \end{array}\right.

    Define

    W_i(x,y) = A(q^{(i)}(\Phi_{{\rm up},i}(x),m^{(i)}y)),\quad (x,y)\in(-\infty,0]\times[0,1],\quad i = 1,\,2.

    Then W_i satisfies

    \begin{align} &\frac{\partial}{\partial x}\Big(m^{(i)}X_i(x)\frac{\partial W_{i}}{\partial x}\Big) +\frac{\partial}{\partial y}\Big(\frac{1}{m^{(i)}X_i(x)}\frac{\partial B\left(A^{-1}\left(W_{i}\right)\right)}{\partial y}\Big) = 0, && \\ &&&(x,y)\in(-\infty,0)\times(0,1), \end{align} (96)
    \begin{align} &\frac{\partial W_{i}}{\partial y}(x,0) = 0, &&x\in(-\infty,0), \end{align} (97)
    \begin{align} &\frac{1}{m^{(i)}X_i(x)}\frac{\partial B\left(A^{-1}\left(W_{i}\right)\right)}{\partial y}(x,1) = \frac{f''_k(x)}{1+(f'_k(x))^2}, &&x\in(-\infty,0), \end{align} (98)
    \begin{align} &W_i(0,y) = 0, &&y\in(0,1), \end{align} (99)

    where

    X_i(x) = \frac{1}{(1+(f'_k(x))^2)^{1/2} A^{-1}(W_i(x,{f_k(-L_0)}))},\quad x\in(-\infty,0].

    Set

    W(x,y) = W_1(x,y)-W_2(x,y),\quad (x,y)\in(-\infty,0]\times[0,1].

    One can verify from that W satisfies

    \begin{align} &\frac{\partial}{\partial x}\Big(m^{(1)}X_1(x)\frac{\partial W}{\partial x}\Big) +\frac{\partial}{\partial y}\Big(\dfrac{1}{m^{(1)}X_1(x)}H(x,y)\frac{\partial W}{\partial y}\Big) \\[1.5 mm] &\qquad+\frac{\partial}{\partial x}\Big(m^{(1)}X(x)\frac{\partial W_{2}}{\partial x}\Big) +\frac{\partial}{\partial x}\Big(mX_2(x)\frac{\partial W_{2}}{\partial x}\Big) \\[1.5 mm] &\qquad+\frac{\partial}{\partial y}\Big(\dfrac{1}{m^{(1)}X_1(x)}\frac{\partial Z}{\partial y}(x,y)W\Big) -\frac{\partial}{\partial y}\Big(\dfrac{m}{m^{(1)}m^{(2)}X_1(x)}\frac{\partial B\left(A^{-1}\left(W_{2}\right)\right)}{\partial y}\Big) \\[1.5 mm] &\qquad-\frac{\partial}{\partial y}\Big(\dfrac{X(x)}{m^{(2)}X_1(x)X_2(x)} \frac{\partial B\left(A^{-1}\left(W_{2}\right)\right)}{\partial y}\Big) = 0,\quad(x,y)\in(-\infty,0)\times(0,1), \end{align} (100)

    where

    \begin{gather*} m = m^{(1)}-m^{(2)}, \\ X(x) = X_1(x)-X_2(x),\quad x\in(-\infty,0], \\ H(x,y) = \int_0^1\dfrac{B'(A^{-1} (\eta W_1(x,y)+(1-\eta)W_2(x,y)))} {A'(A^{-1}(\eta W_1(x,y)+(1-\eta)W_2(x,y)))}{\rm d}\eta, \quad(x,y)\in(-\infty,0)\times(0,1). \end{gather*}

    It follows from (13), (59), (88) and (90)–(93) that

    \begin{gather} C_1k^{-1/2}\langle-x\rangle^{-1/2} \leq H(x,y)\leq C_2k^{-1/2}\langle-x\rangle^{-1/2}, \quad(x,y)\in(-\infty,0)\times(0,1), \end{gather} (101)
    \begin{gather} \Big|\frac{\partial H}{\partial y}(x,y)\Big| \leq\left\{\begin{array}{ll} C_2(-x)^{-1/2},&(x,y)\in[-L_0,0)\times(0,1), \\ C_2(-x)^{-2},&(x,y)\in(-\infty,-L_0)\times(0,1), \end{array}\right. \end{gather} (102)
    \begin{gather} \Big|\frac{\partial W_{i}}{\partial x}(x,y)\Big| \leq\left\{\begin{array}{ll} C_2k^{3/4},&(x,y)\in[-L_0,0)\times(0,1), \\ C_2k(-x)^{-2},&(x,y)\in(-\infty,-L_0)\times(0,1), \end{array}\right.\quad i = 1,\,2, \end{gather} (103)
    \begin{gather} \Big|\frac{\partial B\left(A^{-1}\left(W_{2}\right)\right)}{\partial y}(x,y)\Big| \leq\left\{\begin{array}{ll} C_2k(-x)^{1/2},&(x,y)\in[-L_0,0)\times(0,1), \\ C_2k(-x)^{-2},&(x,y)\in(-\infty,-L_0)\times(0,1), \end{array}\right. \end{gather} (104)
    \begin{gather} |X(x)|\leq\left\{\begin{array}{ll} C_2k^{-1/2}(-x)^{-1/2}|W(x,1)|, &(x,y)\in[-L_0,0)\times(0,1), \\ C_2k^{-1/2}|W(x,1)|, &(x,y)\in(-\infty,-L_0)\times(0,1), \end{array}\right. \end{gather} (105)
    \begin{gather} |m|\leq C_2\bigg(\int_{-L_0}^0\int_0^1 \Big(\frac{\partial W}{\partial x}\Big)^2{\rm d}y{\rm d}x\bigg)^{1/2}, \end{gather} (106)

    where

    \langle-x\rangle = \min\{-x,\,L_0\},\quad L_0 = 3l_0\left(1+\|f'\|_{L^\infty((-l_0,0))}^2\right)^{1/2}.

    Fix L>L_0 . Multiplying (100) by -W and then integrating by parts over (-L,0)\times(0,1) , one gets from (96)–(99) that

    \begin{align*} &\int_{-L}^0\int_0^1m^{(1)}X_1(x)\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x +\int_{-L}^0\int_0^1\frac{1}{m^{(1)}X_1(x)}H(x,y) \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x \\ = \,&-\int_{-L}^0\int_0^1m^{(1)}X(x)\frac{\partial W}{\partial x}\frac{\partial W_{2}}{\partial x} {\rm d}y{\rm d}x -\int_{-L}^0\int_0^1mX_2(x)\frac{\partial W}{\partial x}\frac{\partial W_{2}}{\partial x} {\rm d}y{\rm d}x \\ &\qquad-\int_{-L}^0\int_0^1\dfrac{1}{m^{(1)}X_1(x)} \frac{\partial H}{\partial y}(x,y)W\frac{\partial W}{\partial y}{\rm d}y{\rm d}x \\ &\qquad+\int_{-L}^0\int_0^1\dfrac{m}{m^{(1)}m^{(2)}X_1(x)} \frac{\partial B\left(A^{-1}\left(W_{2}\right)\right)}{\partial y}\frac{\partial W}{\partial y}{\rm d}y{\rm d}x \\ &\qquad+\int_{-L}^0\int_0^1 \dfrac{X(x)}{m^{(2)}X_1(x)X_2(x)}\frac{\partial B\left(A^{-1}\left(W_{2}\right)\right)}{\partial y} \frac{\partial W}{\partial y}{\rm d}y{\rm d}x \\ &\qquad+\int_0^1W(-L,y)\Big(m^{(1)}X_1(-L)\frac{\partial W_{1}}{\partial x}(-L,y) -m^{(2)}X_2(-L)\frac{\partial W_{2}}{\partial x}(-L,y)\Big){\rm d}y, \end{align*}

    which, together with (23), (90), (101) and (103), yields

    \begin{align} \begin{split} &\int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x +k^{-1/2}\int_{-L}^0\int_0^1\langle-x\rangle^{-1/2} \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x \\ \leq\,&C_3\underbrace{\int_{-L}^0\int_0^1 \Big|X(x)\frac{\partial W}{\partial x}\frac{\partial W_{2}}{\partial x}\Big| {\rm d}y{\rm d}x}_{J_1} +C_3\underbrace{\int_{-L}^0\int_0^1 \Big|m\frac{\partial W}{\partial x}\frac{\partial W_{2}}{\partial x}\Big| {\rm d}y{\rm d}x}_{J_2} \\ &\qquad+C_3\underbrace{\int_{-L}^0\int_0^1 \Big|\frac{\partial H}{\partial y}(x,y)W\frac{\partial W}{\partial y}\Big|{\rm d}y{\rm d}x}_{J_3} \\ &\qquad+C_3\underbrace{\int_{-L}^0\int_0^1 \Big|m\frac{\partial B\left(A^{-1}\left(W_{2}\right)\right)}{\partial y}\frac{\partial W}{\partial y}\Big| {\rm d}y{\rm d}x}_{J_4} \\ &\qquad+C_3\underbrace{\int_{-L}^0\int_0^1 \Big|X(x)\frac{\partial B\left(A^{-1}\left(W_{2}\right)\right)}{\partial y}\frac{\partial W}{\partial y}\Big| {\rm d}y{\rm d}x}_{J_5} \\ &\qquad+C_3k(-L)^{-2} \underbrace{\int_0^1|W(-L,y)|{\rm d}y}_{I_L}. \end{split} \end{align} (107)

    Below, let us make estimates on J_i\,(1\leq i\leq 5) and I_L in (107). The following five inequalities are necessary. From the Hölder's inequality and (99), it follows

    \begin{align} &\int_{-L_0}^0\int_0^1(-x)^{-\vartheta_1}W^2 {\rm d}y{\rm d}x \\ \leq\,&\int_{-L_0}^0\int_0^1(-x)^{-\vartheta_1} \bigg(\int_x^0\left|\frac{\partial W}{\partial x}(s,y)\right| {\rm d}s\bigg)^2{\rm d}y{\rm d}x \\ \leq\,&\int_{-L_0}^0(-x)^{1-\vartheta_1}{\rm d}x \int_{-L_0}^0\int_0^1\left(\frac{\partial w}{\partial x}\right)^2 {\rm d}y{\rm d}x \\ \leq\,&\dfrac{L_0^{2-\vartheta_1}}{2-\vartheta_1} \int_{-L}^0\int_0^1\left(\frac{\partial W}{\partial x}\right)^2 {\rm d}y{\rm d}x,\quad\vartheta_1\in[0,2), \end{align} (108)

    and

    \begin{align} &\int_{-L}^{-L_0}\int_0^1 (-x)^{-\vartheta_2}W^2{\rm d}y{\rm d}x \\ \leq\,&\int_{-L}^{-L_0}\int_0^1(-x)^{-\vartheta_2} \bigg(\int_x^0\Big|\frac{\partial W}{\partial x}(s,y)\Big|{\rm d}s \bigg)^2{\rm d}y{\rm d}x \\ \leq\,&\int_{-L}^{-L_0}(-x)^{1-\vartheta_2}{\rm d}x \int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x \\ \leq\,&\dfrac{L_0^{2-\vartheta_2}}{\vartheta_2-2} \int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x, \quad\vartheta_2\in(2,+\infty). \end{align} (109)

    Then from the Cauchy's inequality, (108) and (109), we have

    \begin{align} &\int_{-L_0}^0W^2(x,1){\rm d}x \\ \leq\,&\int_{-L_0}^0\int_0^1W^2{\rm d}y{\rm d}x +2\int_{-L_0}^0\int_0^1\Big|W\frac{\partial W}{\partial y}\Big| {\rm d}y{\rm d}x \\ \leq\,& L_0^2\int_{-L}^0\int_0^1\left(\frac{\partial W}{\partial x}\right)^2 {\rm d}y{\rm d}x +k^{1/2}L_0^{1/2}\int_{-L_0}^0\int_0^1W^2 {\rm d}y{\rm d}x \\ &\qquad+k^{-1/2}\int_{-L_0}^0\int_0^1(-x)^{-1/2} \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x \\ \leq\,&(L_0^2+L_0^{5/2})\int_{-L}^0\int_0^1 \Big(\frac{\partial W}{\partial x}\Big)^2{\rm d}y{\rm d}x \\ &\qquad+k^{-1/2}\int_{-L}^0\int_0^1\langle-x\rangle^{-1/2} \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x, \end{align} (110)
    \begin{align} &\int_{-L_0}^0(-x)^{-1}W^2(x,1){\rm d}x \\ \leq\,&\int_{-L_0}^0\int_0^1(-x)^{-1}W^2 {\rm d}y{\rm d}x +2\int_{-L_0}^0\int_0^1(-x)^{-1}\Big|W\frac{\partial W}{\partial y}\Big| {\rm d}y{\rm d}x \\ \leq\,&L_0\int_{-L_0}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x +k^{1/2}\int_{-L_0}^0\int_0^1(-x)^{-3/2}W^2 {\rm d}y{\rm d}x \\ &\qquad+k^{-1/2}\int_{-L_0}^0\int_0^1(-x)^{-1/2} \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x \\ \leq\,&(L_0+2L_0^{1/2})\int_{-L}^0\int_0^1 \Big(\frac{\partial W}{\partial x}\Big)^2{\rm d}y{\rm d}x \\ &\qquad+k^{-1/2}\int_{-L}^0\int_0^1\langle-x\rangle^{-1/2} \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x, \end{align} (111)

    and

    \begin{align} &\int_{-L}^{-L_0}(-x)^{-4}W^2(x,1){\rm d}x \\ \leq\,&\int_{-L}^{-L_0}\int_0^1 (-x)^{-4}W^2{\rm d}y{\rm d}x +2\int_{-L}^{-L_0}\int_0^1(-x)^{-4} \Big|W\frac{\partial W}{\partial y}\Big|{\rm d}y{\rm d}x \\ \leq\,& L_0^{-2}\int_{-L}^0\int_0^1 \Big(\frac{\partial W}{\partial x}\Big)^2{\rm d}y{\rm d}x +k^{1/2}L_0^{1/2}\int_{-L}^{-L_0}\int_0^1(-x)^{-8}W^2 {\rm d}y{\rm d}x \\ &\qquad+k^{-1/2}L_0^{-1/2}\int_{-L}^{-L_0}\int_0^1 \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x \\ \leq\,&(L_0^{-2}+L_0^{-5/2}) \int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x \\ &\qquad+k^{-1/2}\int_{-L}^0\int_0^1\langle-x\rangle^{-1/2} \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x. \end{align} (112)

    It follows from Cauchy's inequality with \varepsilon , (102)–(106) and (108)–(112) that

    \begin{align} J_1&\leq\varepsilon\int_{-L}^0\int_0^1 \Big(\frac{\partial W}{\partial x}\Big)^2{\rm d}y{\rm d}x +\dfrac{1}{\varepsilon}\int_{-L}^0\int_0^1 |X(x)|^2\Big|\frac{\partial W_{2}}{\partial x}\Big|^2{\rm d}y{\rm d}x \\ &\leq\varepsilon\int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x +\dfrac{C_2^2k^{1/2}}{\varepsilon}\int_{-L_0}^0 (-x)^{-1}W^2(x,1){\rm d}y{\rm d}x \\ &\qquad\quad+\dfrac{C_2^2k}{\varepsilon}\int_{-L}^{-L_0} (-x)^{-4}W^2(x,1){\rm d}y{\rm d}x \\ &\leq C_4\Big(\varepsilon+\dfrac{k^{1/2}}{\varepsilon}\Big) \int_{-L}^0\int_0^1 \Big(\frac{\partial W}{\partial x}\Big)^2{\rm d}y{\rm d}x \\ &\qquad\quad+\dfrac{C_4k^{1/2}}{\varepsilon} \cdot k^{-1/2}\int_{-L}^0\int_0^1\langle-x\rangle^{-1/2} \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x, \end{align} (113)
    \begin{align} J_2&\leq\varepsilon\int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x +\dfrac{1}{\varepsilon}\int_{-L}^0\int_0^1m^2 \Big(\frac{\partial W_{2}}{\partial x}\big)^2{\rm d}y{\rm d}x \\ &\leq\varepsilon\int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x +\dfrac{C_2^2}{\varepsilon}m^2\bigg(k^{3/2} +L_0k^2\int_{-L}^{-L_0}(-x)^{-4}{\rm d}x\bigg) \\ &\leq C_4\Big(\varepsilon+\dfrac{k^{1/2}}{\varepsilon}\Big) \int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x, \end{align} (114)
    \begin{align} J_3&\leq C_2\int_{-L_0}^0\int_0^1 (-x)^{-1/2}\Big|W\frac{\partial W}{\partial y}\Big|{\rm d}y{\rm d}x +C_2\int_{-L}^{-L_0}\int_0^1 (-x)^{-2}\Big|W\frac{\partial W}{\partial y}\Big|{\rm d}y{\rm d}x \\ &\leq\dfrac{C_2k^{1/2}}{\varepsilon}\int_{-L_0}^0\int_0^1 (-x)^{-1/2}W^2{\rm d}y{\rm d}x +\dfrac{C_2L_0^{1/2}k^{1/2}}{\varepsilon} \int_{-L}^{-L_0}\int_0^1 (-x)^{-4}W^2{\rm d}y{\rm d}x \\ &\qquad\quad+C_2\varepsilon k^{-1/2}\int_{-L}^0\int_0^1 \langle-x\rangle^{-1/2}\Big(\frac{\partial W}{\partial y}\Big)^2 {\rm d}y{\rm d}x \\ &\leq\dfrac{C_4k^{1/2}}{\varepsilon}\int_{-L}^0\int_0^1 \Big(\frac{\partial W}{\partial x}\Big)^2{\rm d}y{\rm d}x +C_4\varepsilon k^{-1/2}\int_{-L}^0\int_0^1 \langle-x\rangle^{-1/2}\Big(\frac{\partial W}{\partial y}\Big)^2 {\rm d}y{\rm d}x, \end{align} (115)
    \begin{align} J_4&\leq C_2k\int_{-L_0}^0\int_0^1 (-x)^{1/2}\Big|m\frac{\partial W}{\partial y}\Big|{\rm d}y{\rm d}x +C_2k\int_{-L}^{-L_0}\int_0^1 (-x)^{-2}\Big|m\frac{\partial W}{\partial y}\Big|{\rm d}y{\rm d}x \\ &\leq\dfrac{C_2k^{5/2}}{\varepsilon}m^2 \bigg(\int_{-L_0}^0(-x)^{3/2}{\rm d}x +\int_{-L}^{-L_0}(-x)^{-4}{\rm d}x\bigg) \\ &\qquad\quad+C_2\varepsilon k^{-1/2}\int_{-L}^0\int_0^1 \langle-x\rangle^{-1/2}\Big(\frac{\partial W}{\partial y}\Big)^2 {\rm d}y{\rm d}x \\ &\leq\dfrac{C_4k^{1/2}}{\varepsilon}\int_{-L}^0\int_0^1 \Big(\frac{\partial W}{\partial x}\Big)^2{\rm d}y{\rm d}x +C_4\varepsilon k^{-1/2}\int_{-L}^0\int_0^1 \langle-x\rangle^{-1/2}\Big(\frac{\partial W}{\partial y}\Big)^2 {\rm d}y{\rm d}x, \end{align} (116)

    and

    \begin{align} J_5&\leq C_2^2k^{1/2}\int_{-L_0}^0\int_0^1 \Big|W(x,1)\frac{\partial W}{\partial y}\Big|{\rm d}y{\rm d}x \\ &\qquad\quad+C_2^2k^{1/2}\int_{-L}^{-L_0}\int_0^1(-x)^{-2} \Big|W(x,1)\frac{\partial W}{\partial y}\Big|{\rm d}y{\rm d}x \\ &\leq\dfrac{C_2^2L_0^{1/2}k^{3/2}}{\varepsilon} \int_{-L_0}^0W^2(x,1){\rm d}x +\dfrac{C_2^2L_0^{1/2}k^{3/2}}{\varepsilon} \int_{-L}^{-L_0}(-x)^{-4}W^2(x,1){\rm d}x \\ &\qquad\quad+C_2^2\varepsilon k^{-1/2}\int_{-L}^0\int_0^1 \langle-x\rangle^{-1/2}\Big(\frac{\partial W}{\partial y}\Big)^2 {\rm d}y{\rm d}x \\ &\leq\dfrac{C_4k^{1/2}}{\varepsilon}\int_{-L}^0\int_0^1 \Big(\frac{\partial W}{\partial x}\Big)^2{\rm d}y{\rm d}x \\ &\qquad\quad+C_4\Big(\varepsilon+\dfrac{k^{1/2}}{\varepsilon}\Big) k^{-1/2}\int_{-L}^0\int_0^1 \langle-x\rangle^{-1/2}\Big(\frac{\partial W}{\partial y}\Big)^2 {\rm d}y{\rm d}x, \end{align} (117)

    where \varepsilon>0 is to be determined. Additionally,

    \begin{align} I_L&\leq1+\int_0^1W^2(-L,y){\rm d}y \\ &\leq1+\int_0^1 \bigg(\int_{-L}^0\Big|\frac{\partial W}{\partial x}\Big|{\rm d}x\bigg)^2{\rm d}y \\ &\leq1+(-L)\int_{-L}^0\int_0^1 \Big(\frac{\partial W}{\partial x}\Big)^2{\rm d}y{\rm d}x. \end{align} (118)

    Substituting (113)–(118) into (107) to get

    \begin{align} &\int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x +k^{-1/2}\int_{-L}^0\int_0^1\langle-x\rangle^{-1/2} \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x \\ \leq\,&C_5\Big(\varepsilon+\dfrac{k^{1/2}}{\varepsilon}\Big) \bigg(\int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x +k^{-1/2}\int_{-L}^0\int_0^1\langle-x\rangle^{-1/2} \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x\bigg) \\ &\qquad\quad+C_5(-L)^{-1} +C_5k\int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x. \end{align} (119)

    Choose \varepsilon = (4C_5)^{-1} and k_0' = \min\{(16C_5^2+1)^{-1},\,(4C_5+1)^{-1}\} . For any k\in(0,k_0'] , (119) implies

    \begin{align} \int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x +k^{-1/2}\int_{-L}^0\int_0^1\langle-x\rangle^{-1/2} \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x \leq 2C_5(-L)^{-1}. \end{align} (120)

    Taking L\to+\infty in (120), we obtain that

    \begin{align*} \int_{-\infty}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x +k^{-1/2}\int_{-\infty}^0\int_0^1\langle-x\rangle^{-1/2} \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x \leq0, \end{align*}

    which shows that

    \frac{\partial W}{\partial x}(x,y) = \frac{\partial W}{\partial y}(x,y) = 0,\quad (x,y)\in(-\infty,0)\times(0,1).

    Then W(x,y) = 0 follows from (99), and hence (q^{(1)},m^{(1)}) = (q^{(2)},m^{(2)}) .

    In terms of the physical variables, Theorems 4.1 and 4.2 can be transformed as

    Theorem 4.3. Assume that f\in C^{2,\alpha}([-l_0,0]) satisfies (5) and (6). There exist four constants \widetilde{k}_0\in(0,1] and \widetilde{M}_1,\,\widetilde{M}_2>0 depending only on \gamma , \tau_1 , \tau_2 , l_0 , l_1 , f(-l_0) , \|f'\|_{L^\infty((-l_0,0))} and \|(-x)^{-1/2}f''\|_{L^\infty((-l_0,0))} , such that if k\in(0,\widetilde{k}_0] then the problem (7)–(10) admits a unique solution (\varphi,S,m) satisfying \varphi\in C^3(\varOmega_k)\cap C^2(\overline{\varOmega}_k\setminus S) \cap C^1(\overline{\varOmega}_k) , S\in C^1([-l_1,0]) ,

    \begin{align*} \max\left\{\frac{c_*}{2},\,c_*-\widetilde{M}_2(k\,{\rm dist}_S(\langle x\rangle,y))^{1/2}\right\} \leq|\nabla\varphi(x,y)|\leq c_*-\widetilde{M}_1(k\,{\rm dist}_S(\langle x\rangle,y))^{1/2}, \\ (x,y)\in\varOmega_k, \end{align*}

    where {\rm dist}_S(x,y) is the distance from (x,y) to S and \langle x\rangle = \max\{x,\,-l_0\} . Moreover, for any positive integer \lambda , there exists a constant \widetilde{M}_3>0 depending only on \lambda , \gamma , \tau_1 , \tau_2 , l_0 , l_1 , f(-l_0) , \|f'\|_{L^\infty((-l_0,0))} and \|(-x)^{-1/2}f''\|_{L^\infty((-l_0,0))} , such that

    \|\varphi(x,y)-q_\infty x\|_ {C^1(\varOmega_k\cap\{x < -R\})} \leq\widetilde{M}_3kR^{-\lambda},\quad R > l_0,

    where

    \max\left\{\frac{c_*}{2},\,c_*-\widetilde{M}_2(kl_0)^{1/2}\right\} \leq q_\infty\leq c_*-\widetilde{M}_1(kl_0)^{1/2}.

    Therefore, the flow is uniformly subsonic at the far fields.



    [1] Mason SA, Garneau D, Sutton R, et al. (2016) Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environ Pollut 218: 1045-1054. doi: 10.1016/j.envpol.2016.08.056
    [2] Kolpin DW, Furlong ET, Meyer MT, et al. (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. Streams, 1999-2000: a national reconnaissance. Environ Sci Technol 36: 1202-1211.
    [3] Wu C, Zhang K, Huang X, et al. (2016) Sorption of pharmaceuticals and personal care products to polyethylene debris. Environ Sci Pollut Res 23: 8819-8826. doi: 10.1007/s11356-016-6121-7
    [4] Bakir A, Rowland SJ, Thompson RC (2014) Transport of persistent organic pollutants by microplastics in estuarine conditions. Estuar Coast Shelf Sci 140: 14-21. doi: 10.1016/j.ecss.2014.01.004
    [5] Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the "plastisphere": Microbial communities on plastic marine debris. Environ Sci Technol 47: 7137-7146. doi: 10.1021/es401288x
    [6] McCormick A, Hoellein TJ, Mason SA, et al. (2014) Microplastic is an Abundant and Distinct Microbial Habitat in an Urban River. Environ Sci Technol 48: 11863-11871. doi: 10.1021/es503610r
    [7] Chen X, Xiong X, Jiang X, et al. (2019) Sinking of floating plastic debris caused by biofilm development in a freshwater lake. Chemosphere 222: 856-864. doi: 10.1016/j.chemosphere.2019.02.015
    [8] Van Cauwenberghe L, Vanreusel A, Mees J, et al. (2013) Microplastic pollution in deep-sea sediments. Environ Pollut 182: 495-499. doi: 10.1016/j.envpol.2013.08.013
    [9] da Silva BF, Jelic A, López-serna R, et al. (2011) Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro river basin, Spain. Chemosphere 85: 1331-1339. doi: 10.1016/j.chemosphere.2011.07.051
    [10] Wolfson SJ, Porter AW, Campbell JK, et al. (2018) Naproxen Is Transformed Via Acetogenesis and Syntrophic Acetate Oxidation by a Methanogenic Wastewater Consortium. Microb Ecol 76: 362-371. doi: 10.1007/s00248-017-1136-2
    [11] Wolfson SJ, Porter AW, Villani TS, et al. (2019) Pharmaceuticals and Personal Care Products can be Transformed by Anaerobic Microbiomes in the Environment and in Waste Treatment Processes. Environ Toxicol Chem 38: 1585-1593. doi: 10.1002/etc.4406
    [12] Chang M (2015) Reducing microplastics from facial exfoliating cleansers in wastewater through treatment versus consumer product decisions. Mar Pollut Bull 101: 330-333. doi: 10.1016/j.marpolbul.2015.10.074
    [13] He Z, Minteer SD, Angenent LT (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39: 5262-5267. doi: 10.1021/es0502876
    [14] Healy JB, Young LY (1979) Anaerobic Biodegradation of Eleven Aromatic Compounds Anaerobic Biodegradation of Eleven Aromatic Compounds to Methane. Appl Environ Microbiol 38: 84-89. doi: 10.1128/AEM.38.1.84-89.1979
    [15] Owen WF, Stuckey DC, Healy JB, et al. (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13: 485-492. doi: 10.1016/0043-1354(79)90043-5
    [16] Kerkhof L, Ward BB (1993) Comparison of Nucleic Acid Hybridization and Fluorometry for Measurement of the Relationship between RNA/DNA Ratio and Growth Rate in a Marine Bacterium. Appl Environ Microbiol 59: 1303-1309. doi: 10.1128/AEM.59.5.1303-1309.1993
    [17] Wang Q, Garrity G, Tiedje J, et al. (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261-5267. doi: 10.1128/AEM.00062-07
    [18] Altschul S, Gish W, Miller W, et al. (1990) Basic local alignment search tool. J Mol Biol 215: 403-410. doi: 10.1016/S0022-2836(05)80360-2
    [19] Lahti M, Oikari A (2011) Microbial transformation of pharmaceuticals Naproxen Bisoprolol, and Diclofenac in aerobic and anaerobic environments. Arch Environ Contam Toxicol 61: 202-210. doi: 10.1007/s00244-010-9622-2
    [20] Hedderich R, Whitman WB (2006) Physiology and Biochemistry of the Methane-Producing Archaea. Prokaryotes 2: 1050-1079.
    [21] Pinnell LJ, Turner JW (2019) Shotgun metagenomics reveals the benthic microbial community response to plastic and bioplastic in a coastal marine environment. Front Microbiol 10: 1252. doi: 10.3389/fmicb.2019.01252
    [22] Kuever J, Rainey FA, Widdel F (2014) The family Desulfobacteraceae. The Prokaryotes 10: 45-73.
    [23] Leadbetter JR, Schmidt TM, Graber JR, et al. (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283: 686-689. doi: 10.1126/science.283.5402.686
    [24] Westerholm M, Roos S, Schnurer A (2010) Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter. FEMS Microbiol Lett 309: 100-104.
    [25] Kaufmann F, Wohlfarth G, Diekert G (1998) O-Demethylase from Acetobacterium dehalogenans Cloning, sequencing, and active expression of the gene encoding the corrinoid protein. Eur J Biochem 257: 515-521. doi: 10.1046/j.1432-1327.1998.2570515.x
    [26] Drake H, Küsel K, Matthies C (2006) Acetogenic Prokaryotes. Prokaryotes 2: 354-420.
    [27] Zhang L, Lyu T, Ramírez Vargas CA, et al. (2018) New insights into the effects of support matrix on the removal of organic micro-pollutants and the microbial community in constructed wetlands. Environ Pollut 240: 699-708. doi: 10.1016/j.envpol.2018.05.028
    [28] Langer S, Schropp D, Bengelsdorf FR, et al. (2014) Dynamics of biofilm formation during anaerobic digestion of organic waste. Anaerobe 29: 44-51. doi: 10.1016/j.anaerobe.2013.11.013
    [29] Habouzit F, Gévaudan G, Hamelin J, et al. (2011) Influence of support material properties on the potential selection of Archaea during initial adhesion of a methanogenic consortium. Bioresour Technol 102: 4054-4060. doi: 10.1016/j.biortech.2010.12.023
    [30] Huerta B, Rodriguez-Mozaz S, Nannou C, et al. (2016) Determination of a broad spectrum of pharmaceuticals and endocrine disruptors in biofilm from a waste water treatment plant-impacted river. Sci Total Environ 540: 241-249. doi: 10.1016/j.scitotenv.2015.05.049
    [31] Zhu Z, Wang S, Zhao F, et al. (2019) Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum. Environ Pollut 246: 509-517. doi: 10.1016/j.envpol.2018.12.044
    [32] Zinder SH, Koch M (1984) Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch Microbiol 138: 263-272. doi: 10.1007/BF00402133
    [33] Wüst PK, Horn MA, Drake HL (2009) Trophic links between fermenters and methanogens in a moderately acidic fen soil. Environ Microbiol 11: 1395-1409. doi: 10.1111/j.1462-2920.2009.01867.x
    [34] Bengelsdorf FR, Gabris C, Michel L, et al. (2015) Syntrophic microbial communities on straw as biofilm carrier increase the methane yield of a biowaste-digesting biogas reactor. AIMS Bioeng 2: 264-276. doi: 10.3934/bioeng.2015.3.264
    [35] Hossain MR, Jiang M, Wei Q, et al. (2019) Microplastic surface properties affect bacterial colonization in freshwater. J Basic Microbiol 59: 54-61. doi: 10.1002/jobm.201800174
    [36] Kirstein I V, Kirmizi S, Wichels A, et al. (2016) Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar Environ Res 120: 1-8.
    [37] Parrish K, Fahrenfeld NL (2019) Microplastic biofilm in fresh-and wastewater as a function of microparticle type and size class. Environ Sci Water Res Technol. 5: 495-505. doi: 10.1039/C8EW00712H
    [38] Cheng L, Ding C, Li Q, et al. (2013) DNA-SIP Reveals That Syntrophaceae Play an Important Role in Methanogenic Hexadecane Degradation. PLoS One 8: 1-11.
    [39] Nobu MK, Narihiro T, Hideyuki T, et al. (2015) The genome of Syntrophorhabdus aromaticivorans strain UI provides new insights for syntrophic aromatic compound metabolism and electron flow. Environ Microbiol 17: 4861-4872. doi: 10.1111/1462-2920.12444
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4918) PDF downloads(513) Cited by(7)

Figures and Tables

Figures(6)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog