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ABSTRACT. In this paper, we study the Banach s-probability space (A ®c¢
LS, Tg) generated by a fixed unital C*-probability space (A, ¢4), and the
semicircular elements ©,, ; induced by p-adic number fields Qp, forallp € P, j €
Z, where P is the set of all primes, and Z is the set of all integers. In particular,
from the order-preserving shifts g X h4+ on P X Z, and *-homomorphisms 6

on A, we define the corresponding *-homomorphisms U(lf 1y on A ®c LS, and

consider free-distributional data affected by them.

1. Introduction. The main purposes of this paper are (i) to re-consider
(weighted-) semicircular elements in a certain Banach x-probability space induced
by measurable functions on p-adic number fields Qp, for primes p, and to study
free-probabilistic properties of the Banach x-probability space LS = (LS, 7°) gen-
erated by those mutually-free, (weighted-)semicircular elements, (ii) to extend the
structure LS to the tensor product Banach x-probability space,
(A®cLS, pa®1°)

for an arbitrarily fixed wunital C*-probability space (A, pa), and investigate
(weighted-)semicircular elements of this new Banach #-probabilistic structure, (iii)
to consider certain *-homomorphisms acting on A ®c LS induced by shifting pro-
cesses on the Cartesian product set P x Z, and to investigate how such *-homomor-
phisms affect the free probability on A ®c LS, and (iv) by extending such x-
homomorphisms of (iii) to certain *-homomorphisms induced by *-homomorphisms
acting on A, to study how such generalized morphisms distort the free probability
on A ®c LS.

The main results of this paper are interesting not only in applied number the-
ory, but also in free-probabilistic operator theory. From number-theoretic ob-
jects, primes and corresponding p-adic number fields, the free-probabilistic objects,
(weighted-)semicircular elements, are well-constructed; and the operator-theoretic
objects, *-homomorphisms and corresponding Banach-space operators, are acting
on such (weighted-)semicircular elements well; and the structures and properties
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of them are characterized and shown. Moreover, under tensor product, operator-
algebraic properties of tensor product structures, and free-distributional information
are studied operator-algebraically. So, our works provide new connections among
number theory, free probability, operator theory, and operator algebra theory. i.e.,
the main results would be applicable to statistical quantum physics, studying anal-
ysis on certain physical structures over the non-Archimedean structures (having
“very small” distances, or metrics).

For more about number-theoretic motivations of our proceeding works, see e.g.,
[16], [17], [18], [19], [31] and [32]. And, for more about statistical analysis, see [1],
2], [3], [4], [5], [6], [15], [21], [22] and [25]. Also, for free probability theory, see e.g.,
[26], [27], [28], [29], [30], [24], [20], [33], [34] and [35].

Relations between primes and operators have been studied in various different
approaches. For instance, we studied how primes act on certain operator algebras
and dynamical systems, as operators, with help of p -adic, and Adelic analysis (e.g.,
9]).

In [8] and [12], we studied weighted-semicircular elements, and corresponding
semicircular elements induced by measurable functions on p-adic number fields Q,,
for p € P. The main results of these papers show that p-adic analysis allows us
to have the (weighted-)semicircular law(s), statistically. As applications of [8] and
[12], free stochastic calculus for our (weighted-)semicircular law(s) was considered
in [11]. And we globalize the (weighted-)semicircularity of [8] and [11] to those
induced by Adelic analysis in [10].

In this paper, we are interested in how the (weighted-)semicircular law(s) on
(A®cLS, g4 @ 1Y) is (are) affected, or distorted by certain *-homomorphisms
acting on A ®c LS.

2. Preliminaries. In this section, we briefly mention about backgrounds of our
proceeding works.

2.1. Free probability. Free probability is the noncommutative operator-algebraic
version of classical measure theory and statistics. The classical independence is
replaced by the freemess by replacing measures on sets to linear functionals on
noncommutative algebras (e.g., [26], [29], [30], [33] and [35]). It has various appli-
cations not only in pure mathematics (e.g., [23], [25], [27], [28], [24] and [20]), but
also in related fields (e.g., [3] through [12]). In particular, we here use combinatorial
approach of Speicher (e.g., [29] and [30]).

In the text, without introducing detailed definitions and combinatorial back-
grounds, free moments and free cumulants of operators will be computed. Also, we
deal free product *-probability spaces, without detailed introduction.

Notation and Assumption. As in the “traditional” free probability theory, the
pairs (B, ¢p) of noncommutative algebras B, and fixed linear functionals pp on
B are said to be (noncommutative) free probability spaces. However, for our pur-
poses, even though a given algebra A is commutative, we will call a pair (A, )
of a commutative algebra A and a linear functional i on A, a free probability
space, “non-traditionally” (e.g., see [8] through [12]). The freeness on such a non-
traditional free probability space (A, ) is trivial by the commutativity of A, but
(traditional) free probability theory well-covers functional-and-statistical analysis
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on A, for ¥. So, without loss of much generality, we call the pairs (B, ¢g) of (non-
commutative, or commutative) algebras B, and linear functionals ¢p on B, free
probability spaces, below. O

2.2. Analysis on Q,. For more about p-adic analysis, see [31] and [32] (also, see
[17] and [22]). Let Q, be the p-adic number fields for p € P. Recall that Q, are
the maximal p-norm-topology closures in the normed space (Q, |.|,)) of all rational
numbers, where |.| p are the non-Archimedean norms, called p-norms on Q, for all p
e P.

For any fixed p € P, the Banach space Q, forms a field algebraically under the
p-adic addition and the p-adic multiplication in the sense of [32], i.e., Q, is a Banach
field.

Also, such a Banach field Q,, is understood as a measure space

Qp = (va U(Qp)7 Mp)a

equipped with the left-and-right additive invariant Haar measure p, on the o-
algebra o (Qp) , satisfying that

pip (Zp) = 1,
where Z,, is the unit disk of Q,,

Z,? (zeQ,: 2], <1} inQ,
consisting of all p-adic integers of Q,, for all p € P (e.g., [31] and [32]).
As a topological space, the p-adic number field Q, contains its basis elements,
Up =p*Z, = {p*2 € Q, : z € Z,}, (1)
for all k € Z. (e.g., [32]).
By understanding Q, as a measure space, one can establish a *-algebra M, over
C as a *-algebra,

Mp =Cl{xs: S €a(Q)}]

consisting of p,-measurable functions f,
f= > tsxs (tse€C),
Sea(Qp)
where the sum Y is the finite sum, and xg are the usual characteristic functions
of S.
On My, one can naturally define a linear functional ¢, by the p-adic integral,
ie.,

on(F) = Jo, F iy, VF € M, (2)
Define now subsets 9y of Q, by
Ok = Uy \ Uk1, for all k € Z. (3)

We call these p,-measurable subsets O, of (3), the k-th boundaries (of the basis
elements Uy, of (1)), for all k& € Z. By the basis property of the subsets U of (1),
one obtains that

@ = hez Oy (4)
where U means the disjoint union. Also, by measure-theoretic data, one has
tp (Ok) = pp (Ur) — pp (Upy1) = #_#, (5)
for all k € Z.
Note that, by (4), if S € 6(Q)), then there exists a subset Ag of Z, such that
As={jeZ:5n0; # 2} (6)

Thus, by (6), one obtains the following proposition.
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Proposition 2.1. Let S € 0(Q,), and let xg € M,,. Then there exist r; € R, such
that
0<r; <1inR, forallj € Ag,
and (7)
ep(xs) = Jo, Xs dup = 3 7 (p% - pj%) 7
JEAs

where Ag is in the sense of (6).

Proof. The computation (7) is shown by (5). See [8], [9], [10], [11] and [12] for
details. 0

3. Free-probabilistic models on M,. Throughout this section, fix a prime p
€ P, and let Q, be the corresponding p-adic number field, and let M, be the
p-adic *-algebra of Q,. In this section, let’s establish a suitable (non-traditional)
free-probabilistic model on M,,.

Let Uy = p*Z, be the basis elements (1), and J, their boundaries (3) of Q,, i.e.,

O = Ug \ Ugy1, for all k € Z. (8)
Define a linear functional ¢, : M, — C by the p-adic integral (2),
wp (f) = pr f duyp, for all f € M,,. (9)

Definition 3.1. The pairs (M,, ¢,) are called p-adic (non-traditional free) -
probability spaces, for all p € P.

Then, by (7) and (9), one obtains that
1 1

¥p (XU]-) = P and ¢p (Xaj) = pj%,
since
Ay, ={k €Z:k >j},and Ay, = {j},
for all j € Z.

Proposition 3.1. Let S; € 0(Qy), and let x5, € (Mp, ¢p), forl =1, ..., N, for
N € N. Let

N
Ag, . sy = zD1ASl in Z,

where Ag, are in the sense of (7), forl =1, ..., N. Then there exist r; € R, such
that

O S ,rj S 1 Zn R, \V/j (S ASl,...,SN7
and "

N
op (lEIlXSl> = 2 " (p% N pﬂ%)
Proof. The formula (10) is proven by (7), since

N
II = in M,,.
l=1XSl Xlg S, P

1

See [8] through [12], for details. O
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4. Representations of (M,, ¢,). Fix a prime p € P. Let (M,, ¢,) be the p-
adic *-probability space. By understanding Q, as a measure space, construct the
L2-space,

def
Hy, = L*(Qp, 0(Qp), 1p) = L*(Q,), (11)
over C, equipped with its inner product <,>s,
def %
(fi, fa)a = Jo, Fr £5 dpp, (12)

for all f1, fo € H,, inducing the L?-norm,

1£ll, /T Ty for all f € H,, (12

where <, >5 is the inner product (12) on H,.
Definition 4.1. We call the Hilbert space H), of (11), the p-adic Hilbert space.

By the definition (11) of the p-adic Hilbert space H,, our *-algebra M,, acts on
H,, via an algebra-action o,
aP(f)(h) = fh, for all h € Hp, (13)
for all f € M,. i.e., by (13), for any f € M, the image oP(f) is a well-defined
multiplication operator on H, with its symbol f, satisfying
aP(fif2) = aP(f1)aP(f2) on Hy, V1, fa € My,
and (14)

(@P(f)" = a(f*) on Hy, Vf € M,,.

Notation. Denote o?(f) by a?, for all f € M,. Also, for convenience, denote af
simply by of, for all S € 0 (Q,). O

Proposition 4.1. The pair (Hp, o) is a well-determined Hilbert-space represen-
tation of M.

Proof. The proof is done by (14) (e.g., see [8] and [12]). O
Definition 4.2. Let
Il
M, ) = ¢ (o < e My (15)

in B(H,), where X' mean the operator-norm closures of subsets X of B(H,,). This
C*-algebra M, of (15) is called the p-adic C*-algebra of (M, ¢,).

5. Free-probabilistic models on M,,. Throughout this section, let’s fix a prime
p € P. Let (M,, ¢p) be the corresponding p-adic *-probability space, and My,
the p-adic C*-algebra of (15). Define a linear functional gp? : M, — C by a linear
morphism,

def
90? (a) = <a(xaj), Xaj>2 , Va € My, (16)

for all j € Z, where <, >4 is the inner product (12) on the p-adic Hilbert space H,
of (11).
Definition 5.1. Let j € Z, and let ¢, be the linear functional (16) on the p-adic C*-
algebra M,,. Then the pair (M,, @?) is said to be the j-th p-adic (non-traditional)
C*-probability space.

Now, fix j € Z, and take the j-th p-adic C*-probability space (Mp, @?) . For §
€ 0(Qp), and an element oy € M, one has that
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o) = (&(xo,), X0, )y = bp (SN )

=rs (& - ), a7

by (3.8), for some 0 <rg <1in R.
Proposition 5.1. Let 0y be the k-th boundaries (8) of Qp, for all k € Z. Then
@ ((03)") = 0 (& = 54), (18)

for allm € N, for k € Z.
Proof. By (17), one has that

o (ah,) = bk (p% - zﬂ%) , for all k € N. (19)

Since agk are projections in M), in the sense that:
(a5,)" = af, = (ah,)" in My,

the formula (18) holds by (19), for all k € Z. O

6. Semigroup C*-subalgebras &, of M,. Let M, be the p-adic C*-algebra for
p € P. Take projections

Ppi = O‘gj € Mp, (20)
induced by boundaries 9; of Qy, for all j € Z. We now restrict our interests to these
projections P, ; of M,.

Definition 6.1. Fix p € P. Let &, be the C*-subalgebra

Sy = C" ({Bpj}tiez) = CUP }iez] of My, (21)
where P, ; are projections (20), for all j € Z. We call this C*-subalgebra &, the
p-adic boundary (C*-)subalgebra of M,.

Every p-adic boundary subalgebra &, satisfies the following structure theorem.
Proposition 6.1. Let G, be the p-adic boundary subalgebra (21) of the p-adic
C*-algebra M,,. Then

Gp =° & (C ’ Pp,j) r=° (C@Zv (22)
in M,.

Proof. Tt suffices to show that the generating projections {P, ;};cz of &, are mu-
tually orthogonal from each other. But, one can get that, for any j;, jo € Z,

. . — P -5 AP =4 . .
Py Ppj, = (Xﬁflﬂafz) = szo‘a;’l = 041,52 Pp.j1>

in &,,. Therefore, the structure theorem (22) holds. See [8] for more details. O

7. Weighted-semicircularity. Let M, be the p-adic C*-algebra, and let &, be
the boundary subalgebra (21) of M), satistying the structure theorem (22). Through-
out this section, let’s fix a prime p. Recall that if {P, r}rez are the generating
projections (20) of &,, then

& (Pox) = ik (35 — 5 ) Vi k€ 2, (23)
by (18).

Let ¢ be the Fuler totient function, which is an arithmetic function
¢:N—= C,
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defined by (24)
o(n) ={keN:k <n, ged(n, k) =1},

for all n € N, where | X| mean the cardinalities of sets X, and gcd means the greatest
common divisor. Then

oa)=q-1=q(1-1),vaeP, (25)
by (24).
So, one can get that

W (Pog) =% (1-3)

:L(l—l> _ 9
pJ+1 D p1+1 9
by (23) and (25), for j € Z.
Motivated by (26), define the new linear functionals 77 : &, — C, by linear
morphisms,

(26)

Tf = ﬁ <p§’ on &, (27)

satisfying that:

Sk S5k
7 (Pok) = 55 5 (Fpg) = 3
for all j, k € Z.

Proposition 7.1. Let &,(j) = (&, 77) be a (non-traditional) C*-probability space,

and let P, 1 be the generating projections of &y, for all k € Z. Then

7 (P;fk) = g—;’i, for alln € N. (28)
Proof. The free-moment formula (28) is proven by (27). O

7.1. Semicircular and weighted-semicircular elements. Let (A4, ¢) be a (tra-
ditional, or non-traditional) topological *-probability space (C*-probability space,
or W*-probability space, or Banach x-probability space, etc.) equipped with a
(noncommutative, resp., commutative) topological x-algebra A (C*-algebra, resp.,
W*-algebra, resp., Banach #-algebra), and a (bounded, or unbounded) linear func-
tional ¢ on A.

Definition 7.1. Let a be a self-adjoint operator in (A, ¢). This operator a is said
to be semicircular in (A, ¢), if

p(a") = wpez, for alln € N,
where (29)

1 if n is even
“n =90 ifnis odd,

for all n € N, where ¢; are the k-th Catalan number,
_ 1 2\ _ 1 e @R
% =%\ k) T FHIG)? T FGEFDD

for all k € Ng = N U {0}.

It is well-known that, if k,(...) is the free cumulant on A in terms of ¢ (in the
sense of [29] and [30]), then a self-adjoint operator a is semicircular in (A, @), if
and only if
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1 ifn=2
kol a, a, ... ,al = { 0 otherwise, (30)
n-times

for all n € N (e.g., see [12]). The above characterization (30) of the semicircularity
(29) is obtained by the Mdbius inversion of [29] and [30]. Thus, the semicircular
operators a of (A, ) can be re-defined by the self-adjoint operators satisfying the
free-cumulant characterization (30).

Motivated by (30), one can define so-called the weighted-semicircular elements.

Definition 7.2. Let a € (4, ¢) be a self-adjoint operator. It is said to be weighted-
semicircular in (A4, ¢) with its weight to (in short, tg-semicircular), if there exists
to € C* = C\ {0}, such that

o to Zf n =2
Fon N E { 0 otherwise, (31)
n-times

for all n € N, where k,(...) is the free cumulant on A in terms of .

By the definition (31), and by the Mobius inversion of [29] and [30], we obtain
the following free-moment characterization (32) of (31): A self-adjoint operator a
in a *-probability space (A, @) is to-semicircular, if and only if there exists ¢y € C*,
such that N

o) = wo th e, (32)
where w, are in the sense of (29), for all n € N.

7.2. Tensor product banach x-algebra £5,. Let &,(k) = (&, 77) be a (non-
traditional) C*-probability space for p € P, k € Z. Throughout this section, we fix
p € P, k € Z, and the corresponding C*-probability space &, (k).

Define now bounded linear transformations c, and a, “acting on the C*-algebra
G,,” by linear morphisms satisfying,

¢p (Bpj) = Ppj+1,

and (33)
ap (Pp,;) = Bpj—1,

on G, for all j € Z.

By (33), one can understand c, and a, as bounded operators contained in the
operator space B(S,), consisting of all bounded linear operators on &, by regarding
S, as a Banach space (e.g., [15]). Under this sense, the operators ¢, and a,, of (33)
are understood as well-defined Banach-space operators on &,.

Definition 7.3. The Banach-space operators c, and a, on &, in the sense of
(33) are called the p-creation, respectively, the p-annihilation on &,. Define a new
Banach-space operator [, by
I, =cp+a, on G, (34)
We call this operator I, of (34), the p-radial operator on &,,.

Let [, be the p-radial operator (34) in B(&,). Construct a Banach algebra £,
by
L, = Cllp] in B(&,), (35)
equipped with the inherited operator-norm ||.|| of B(&,), defined by
IT|| = sup{[|Tz|lg, : 2 € & s.t., [lz]lg, = 1},

where
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[2llg, = sup{llz(R)lly : h € Hy s.t. Al =1},

is the C*-norm on &,, where ||.||, is the L?-norm on the p-adic Hilbert space H,,
= L2(Qp)~

On the Banach algebra £, of (35), define a unary operation (*) by

Dhco Sk by € Ly D00 B Uy € L, (36)

where s € C, with their conjugates 53 € C.

Then the operation (36) is a well-defined adjoint on £, (e.g., [8] and [12]). So,
equipped with the adjoint (36), this Banach algebra £, of (35) forms a Banach
*-algebra embedded in the topological vector space B(S,).

Definition 7.4. Let £, be a Banach x-algebra (35) for a fixed p € P. We call £,
the p-radial (Banach--)algebra on &,,.

Let £, be the p-radial algebra on the boundary subalgebra &,. Construct now

the tensor product *-algebra £&,, by
£6, = £, ®c6,, (37)

where ®c is the tensor product of Banach x-algebras.

Take now a generating element [ ® P, ;, for some n € Ny, and j € Z, where P,
are the generating projections (20) of &, with axiomatization:

lg = lg,, the identity operator of &,

in B(&,), for all j € Z.

Define now a bounded linear morphism E, : £&, — &,, by a linear transformation
satisfying that:

j+1)k+1

E, (l]; ® Pp,j) = p[gﬁ ZS(Pp,j)v (38)

for all kK € Ny, j € Z, where [g} is the minimal integer greater than or equal to &

for all k£ € Np. ’
By the cyclicity (35) of the tensor factor £, of £&,, and by the structure the-
orem (22) of &, the above morphism E, of (38) is indeed a well-defined linear
transformation.
Now, consider how our p-radial operator I, = ¢, + a, acts on &,. Observe first
that

Cpay (P j) = Ppj = apcy (Ppj),
for all j € Z, p € P, implying that
cpa, = lg, = a,c, on G, (39)
Lemma 7.2. Let c,, a, be the p-creation, respectively, the p-annihilation on &,.
Then

cray = (ca,)" = 1, = (ayc,)" = ajcy,
and (40)
cylay? = ag?eyt, on 6y,
for all n, ny, no € N.
Proof. The formulas in (40) holds by (39). O

By (40), one can have that

n n n n n—
Iy =(cp+ay)” = Zk_0< k ) cpap ",
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with identity: (41)

for all n € N, where

(Z):M(T:’lk)!,forallkgneNo.

By (41), one obtains the following proposition.

Proposition 7.3. Let I, € £, be the p-radial operator on &,. Then

(42) 12™=1 does not contain ls,-term, and
(43) I2™ contains its s, -term, ( 27:: > ls,,
for all m € N.

Proof. The proofs of (42) and (43) are done by straightforward computations (41),
with help of (40). See [8] for details. O

7.3. Weighted-semicircular elements @), ; in £&5,. Fix p € P, and let £85, be
the tensor product Banach *-algebra (37), and let E, : £5, — &, be the linear
transformation (38). Throughout this section, let
Qpj =l ® Bpj € £6p, (44)
for j € Z, where P, ; are projections (20) generating &,,. Observe that
i =Up®B;)"

P-J n TL’ n (45)
=L ® P =1l ® P,

for all n € N, for all j € Z.
By (37) and (45), these operators (), ; of (44) gencrate £6,, for all j € Z.

Consider now that, if @, ; € £&, is in the sense of (44) for j € Z, then

j+1yntl

By (@) = gy & (Poa) (46)

by (38) and (45), for all n € N.
For any fixed j € Z, define a linear functional TZ?J- on £6, by
70 =T} o E, on £&,, (47)
where 77 is a linear functional (27) on &,,.

By the linearity of both ij and E,, the morphism TS_V ; of (47) is a well-defined
linear functional on £&,,. So, the pair (26,,, Tz())’j
x-probability space.

By (46) and (47), if @p,; is in the sense of (44), then

) forms a (non-traditional) Banach

0 n Pt n P (In
Tp,j ( PJ) = [%]+1 7j (lp (PPJ))v (48)
for all n € N.
Theorem 7.4. Let Qp; =1, ® Pp; € (SGP,TSJ) , for a fized j € Z. Then Q). ;
8 p2(j+1)—semicircular m (SGP, TS’]') . More precisely, one obtains that
70 (Qp ;) = wa (PPUHV) * cy, (49)
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for all n € N, where w,, are in the sense of (7.1.5). Equivalently, if k%P7 (...) is the
free cumulant on £68,, in terms of the linear functional Tg’j of (48), then

, 12 iy =9

10:p.J e i | = (p ) o= 50

n Qp.j» fQP’J, { 0 otherwise, (50)
n-times

for alln € N.

Proof. The formula (49) is proven by the straightforward computations from (48)
with help of (28), (42) and (43). Also, the formula (50) is obtained by the Mobius
inversion of [12] from (49). See [8] and [12] for more details. O

8. Semicircularity on £65. Let £85, and T]?J be in the sense of (37), respectively,
(47). Then, one has the corresponding non-traditional Banach #-probability spaces,

£6,()) = (£6, 72,). (51)
forallp e P, j € Z.

Let Qpx = I, ® P, i, be the generating elements (44) of the Banach *-probability
space £6,(j) of (51), for p € P, k € Z. Then the “j-th” generating element Q,, ;
satisfies the p2U+1)_semicircularity:

O B p2Uth) ifp =2
k7 (@pjr wer @pg) = { 0 otherwise,
and (52)

05 (@) = wa (20FD) g,

forallp € P, j € Z, for all n € N, by (49) and (50).

8.1. Free product banach x-probability space (£6, 7'0). By (51), we have
the family
{SGP(j) = (261,, T£7j) pEP, jE Z}
of (non-traditional) Banach x-probability spaces.
From this family, one can define the (traditional) free product Banach x-probability
space,

= * £6,, * ng
pEP, jEL pEP, jELZ

in the sense of [29], [30], [33] and [35].

The structures £65,(j) of (51) are the free blocks of this free product *-probability
space (£6, 79) of (53). Note that the structure (53) is a well-determined (tradi-
tional) noncommutative Banach #-probability space.

Definition 8.1. The Banach *-probability space £6 denote (EG, TO) of (53) is
called the free Adelic filterization.

Let £6 be the free Adelic filterization. Then, we obtain a subset
Q={Qp;=lL,®PF,; € SGp(j)}pep, jez (54)

of £8, consisting of p?U*D-semicircular elements Qp,; in the free blocks £&,(j) of
£6, forallp e P, jeZ.
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Remark here that, by the choice of Q) ; in the family Q of (54), all entries @, ;
are taken from the mutually-distinct free blocks £6,(j) of £6, for allp € P, j €
Z. It means that all elements @), ; of @ are mutually free from each other in the
free Adelic filterization £6.

Theorem 8.1. Let Q,; € Q in the free Adelic filterization £& of (53), where Q
is the family (54), for p € P, j € Z. Then the operators

Opj = pj%Qp,j € £6 (55)
satisfy
(GZ;]) = Wn Cg,
and (56)

1 ifn=2
k2 Op.js Opjs s Opyj :{ 0 otherwise,

n-times

for alln € N, where k9(...) is the free cumulant on £& in terms of °. Equivalently,
the operators ©, ; of (55) are semicircular in £8, for allp € P, j € 7Z.

Proof. Let ©, ; = pj%prj be in the sense of (55), where Q, ; € Q, forallp € P, j
€ Z, in the free Adelic filterization £&, where Q is the family (54). Since @, j are
contained in the mutually distinct free blocks £6,(j) of £&, the operators O ;
contained in £6,(j) in £6, for all n € N, as free reduced words with their length 1
Thus, one has that

w0 (0p,) =2, (05,) = 70, (e as,)

= ()" @) = () (wap00ey)
by the p?U+D_semicircularity of Q,; € Q in £6,(j)

= wp Cz, (57)
for all n € N. Therefore, by (29) and (30), the operators ©, ; are semicircular in
£6, forallp e P, jeZ.

Also, by (31) and (57), one obtains the free cumulant formula in (56) by the
Mobius inversion of [29] and [30]. O

The above theorem shows that, from the family Q of (54) consisting of p?U+1)-
semicircular elements @, ; € £&,(j), one can construct the corresponding semicir-
cular elements ©,, ; of (55) in the free Adelic filterization £&, for all p € P, j € Z,
by (57). Let

X ={6,;€LE,(j)lpeP, j€L}. (58)

Recall that a subset S = {a;}tea of an arbitrary #-probability space (B, ¢p) is
said to be a free family, if all elements a; € S are free from each other in (B, ¢g)
(e.g., [33] and [35]).

Definition 8.2. Let S = {a;}1ca be a free family in a *-probability space (B,
©p). This family S is said to be a free semicircular family, if every element a; of
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S is semicircular, for all ¢ € A. Similarly, the family S is called a free weighted-
semicircular family, if all elements a; of S are weighted-semicircular, for all ¢ €

A.
So, we obtain the following result.

Theorem 8.2. Let £6 be the free Adelic filterization (53).
(59) The family Q of (54) is a free weighted-semicircular family in £6.
(60) The family X of (58) is a free semicircular family in £6.

Proof. The proofs of (59) and (60) are done by (52), (53), (54), (56) and (58). See
[8] for details. O

8.2. Free-semicircular Adelic filterization LS. Let £& be the free Adelic fil-
terization (53), and let Q be the free weighted-semicircular family (59), and X, the
free semicircular family (60) in £6&. We now focus on the Banach %-subalgebra LS
of £6 generated by the free family Q,

B Ls ¥ T[Q] c ¢, (61)
where X are the Banach-topology closures of subsets X of £6.
By (61), we obtain the corresponding Banach x-probability space,

LS %% (LS, 79), (62)
as a free-probabilistic sub-structure of the free Adelic filterization £&, where 70 is
the restricted linear functional 79 |5 on LS.

Definition 8.3. Let LS = (LS, 7°) be the Banach *-probability space (62) in the
free Adelic filterization £6 of (53). Then it is called the (free-)semicircular Adelic
filterization (of £6, generated by the free semicircular family X of (59)).

Let LS be the semicircular Adelic filterization (62). Then it satisfies the following
structure theorem.

Theorem 8.3. Let LS be the semicircular Adelic filterization (62) of the free Adelic
filterization £&. Then the Banach x-algebra LS satisfies that

R N ()

(63)

*.:iso(c{ N {@M-}}

pEP,JEL
in £8, where the free product (x) in the first isomorphic relation of (63) means
the free-probability-theoretic free product of [12] and [14] (with respect to the linear
functional T° of (62)), and the free product (x) in the second isomorphic relation of
(63) means the pure-algebraic free product inducing “finite” noncommutative free
words in the free semicircular family ©.

Proof. By the definition (62) of our semicircular Adelic filterization LS, we have

LS = C[X] = C[{@,; € X :pe P, j € Z)]

= el M@l = . CHQn, o

peEP, JEL pEP, JEL

since X' is a free family in £8, equivalently, since @ ; are contained in the mutually
distinct free blocks £6,(j) of £6, for allp € P, j € Z.
Note that, every p?*1_semicircular element Q, ; € X of £& is identified with
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Qp; =p' 1O, forallp e P, j € Z,

and hence, the free blocks C[{Q) ;}] of (64) generating the semicircular Adelic
filterization LS are identical to

CHQpuH = CHp70,,1] = C0,, 7, (61y
forallpe P, j € Z.

Therefore, by (64), the first x-isomorphic relation of (63) holds.

Also, by (64), all elements T of LS are the limits of linear combinations of
noncommutative free reduced words in X', under Banach-topology for LS. Since all
noncommutative free words in & have their unique free-reduced-word forms in LS
(as operators under operator-multiplication on LS), one obtains that

pGPTjEZ(C {©,,}] = C[{free words in X'}]

(65)

e[ o]

€P, jEL

Therefore, by (64), (64)" and (65), the second *-isomorphic relation of (63) holds
true, too. O

In the middle of the proof of (63), one can get the set-equality,

Ls “ T[Q] = T[], in £6. (66)

9. Semicircular A-tensor Adelic filterization LS. Let LS = (LS, 7°) be the
semicircular Adelic filterization generated by the free semicircular family X" of (60).
Let (A, ¢4) be an arbitrary (traditional) unital C*-probability space satisfying

pa(la) =1,
where 14 is the unit (or the multiplication-identity) of the C*-algebra A.

Define the tensor product Banach x-algebra LS4 by

LS4 % A ¢ LS, (67)

where ®¢ is the tensor product of Banach *-algebras.

On this new Banach x-algebra LS4 of (67), define a linear functional 74 by a
linear morphism satisfying that

Ta(@a®T) = 1°(pa(a)T), (68)

for all @ € (A4, p4a), and T € LS (under linearity).

By the definition (68) of the linear functional T4,

Ta(a®@T) = 1°(T)pala) = pal(a)T(T),

for all a € (A4, pa), T € LS.

Then the Banach *-probability space

LSy 2 (LS4, 7a) (69)
is well-defined, where LS4 and 74 are in the sense of (67), respectively, (68).

Definition 9.1. Let LS4 = (LS4, 74) be the Banach s-probability space (69)
induced by a fixed unital C*-probability space (A, v4) and the semicircular Adelic
filterization LS. Then we call LS 4, the semicircular A-tensor(-Adelic) filterization

(of (A, ¢a)).

On the semicircular A-tensor filterization LS 4, we obtain the following free dis-
tributional data.
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Proposition 9.1. Let Q,; € Q, and ©,; € X in LS, and a € (4, pa), inducing
Ty =a®Qpj, and X, ; = a ® Oy j, (70)
in the semicircular A-tensor filterization LS4 of (69). Then
7a (7)) = (wnp0Veg) pala™),
and (71)
a ((X5;)") = (wncg) pala™),
for alln € N.
Proof. The proof of the free-distributional data (71) are shown by the weighted-
semicircularity on the free weighted-semicircular family Q, and the semicircularity

on the free semicircular family X in LS. Indeed, if T} ; and X ; are in the sense of
(70), then

Ta ((T;;)") = ma (a" @ Qp ;) = wala™) (Q5 ;)
and
4 ((X5;)") = ma(a"®@65,) = pala™)r (6}),
for all n € N, by (68). O

By the above proposition, we obtain the following free-probabilistic information
on the semicircular A-tensor filterization LS 4.

Theorem 9.2. Let LSy = (LS4, 74) be the semicircular A-tensor filterization, and
let Tj; and X7 ; be free random variables (70) in LS 4. Suppose a is a self-adjoint
operator of (A, @a), satisfying

pa (@) = (pa(a)™, with pa(a?) € C*, (72)
for alln € N. Then T} ; is (p(j+1)<pA(a))2-semicircular, and X7 ; is pa(a)?-semi-
circular in LS 4.

Proof. Let a € (A, ¢4) be a self-adjoint free random variable satisfying (72). Then,
by the self-adjointness, the operators T)'; and X7 ; of (70) are self-adjoint in LS4,
too. Indeed, one has that

(T;,{j)* =a"®Q;, =T¢

D’
and
(X5,) =a"®6;;,=X7,,
in ]LSA.

Also, we have that ‘
74 ((T7;)") = (wap"V ey ) pa(a™)
= wpp" U g4 (a) s

(

and (73)
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for all n € N, by (71) and (72).

Therefore, if a free random variable a € (A, p4) satisfies the additional condition
(72), then T} ; is (pj“(pA(a))2—semicircular, and X7 ; is ¢ 4(a)?-semicircular in the
semicircular A-tensor filterization LS4, by (73). O

The following corollary is a direct consequence of the above theorem.

Corollary 9.3. Let LS4 be the semicircular A-tensor filterization (69) of (A, va).
(74) The operator T;‘; in the sense of (70) is p?U+ _semicircular in LS 4.
(75) The operator X;:; in the sense of (70) is semicircular in LS 4.
(76) If the linear functional pa : A — C is a state in the sense that

pa(a1a2) = pa(ar)palaz), Vai, az € A,
and if a € (A, pa) is a self-adjoint free random variable with ps(a) € C*, then the
operator T} ; of (70) is (pj+1<p,4(a))Q—semicircular, and the operator X3 ; of (70) is
oa(a)?-semicircular in LS 4.

Proof. Let 14 be the unit of (A, ¢4). Since our fixed C*-probability space (4, v4)
is unital in the sense that p4(14) = 1, one has

pa (1) = pala) =1 =1" = (pa(1a))",

for all n € N. Therefore, this self-adjoint free random variable 14 satisfies the condi-
tion (72). Thus, by (73), the operator T;}’;- is p2U+1_semicircular, and the operator
X;:;- is semicircular in LS 4. It proves the statements (74) and (75), respectively.

Assume now that the linear functional ¢ 4 is a state on A, equivalently, assume
@ 4 is a multiplicative linear functional on A. Then, for any self-adjoint free random
variable a € (A, p4) with p4(a) € C*,

wa(a™) = @a(a)™, for allm € N.
So, it satisfies the condition (72). Therefore, the statement (76) holds by (73). O

In the above theorem and corollary, we considered the free-distributional infor-
mation of the generating operators, on the semicircular A-tensor filterization LS 4.

Theorem 9.4. Let LS4 be the semicircular A-tensor filterization (69) of a unital
C* -probability space (A, va). Then

LSy "2k (48cTHE,))

(77)

S ()]
where Z in the first x-isomorphic relation of (77) are the Banach-topology closures
of subsets Z of the semicircular Adelic filterization LS, and Y in the second x-
isomorphic relation of (77) are the Banach-topology closures of subsets Y of LSy,
where A[Y] mean the polynomial rings (and hence, algebras, in this case) generated

by the subsets Y over A in LS,4.

Proof. By the definition (69) of the semicircular A-tensor filterization LS4,
LSy ¥ A@cLS = A®c ( » C [{@pyj}])

pEP, J

by (63) and (66)
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e (AecTHEN) . AEL

pEP, JEL pEP, JEL

(e.g., see [29], [30], [33] and [35]). Therefore, the free-structure theorem (77) holds.
O

As corollary, one obtains the following structure theorems.

Corollary 9.5. Let LS4 be the semicircular A-tensor filterization of (A, wa).

(78) If A is a direct product C*-algebra @ Ay of its C*-subalgebras {Ag}ren,
keA
where & is the direct product of C*-algebras, and A is a countable (finite, or infinite)
index set, then

LS, = EBC( * Ak[{@py}])

keA \PEP, jEL

*dso (@C Ak[{@pa}]) J

pEP, JEL \keA
where @¢ is the direct product of Banach %-algebras.

(79) If A is a tensor product C*-algebra ®AAk of its C*-subalgebras { Ay }ren,
ke

where ® is the tensor product of C*-algebras, then

LS, *':“”®<c< * Ak[{@m}])

keA \PEP, JEL

wiso (@ccAk[{@m}])’

PEP, JEL \keA
where Q¢ 1s the tensor product of Banach *-algebras.

(80) Let (A, pa) be the fixed unital C*-probability space. For the linear functional
wa, assume that the C*-algebra A is a free product C*-algebra of its C*-subalgebras
{Ak}k€A~ Then

A .
kEA, pé'P, JEZ k [{@p’] }]

Proof. The proofs of the statements (78), (79) and (80) are done by (77). Indeed,
one has that: if A = & Ay, then
keA

LS, *%°

MO0 = (8,4 6,

"2 e (A [(Op ) = ©c Ax[(Ops)],
kEA keA

forallp e P, j € Z.
Similarly, if A = ® A, then
keA

AT(O Y "= @2 Ac{Oy,l;
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and if A = x A, then
keA

ATO,0 2 x A1)
forallp e P, j € Z. O

Our results of this section illustrate that the free probability on LS4 is charac-
terized by the both free probability on (A, v4), and that on the semicircular Adelic
filterization LS. In particular, such a characterization is analyzed by the formula
(71), and the structure theorem (77).

10. Shifts on P acting on LS. Throughout this section, we fix a unital C*-
probability space (A, ¢4), and the corresponding semicircular A-tensor filterization
LS4 = (LS4, 74) of (A4, va). Also, let

X5 =a®6y; (81)
be free random variables (70), generating LS4, for all a € (4, p4), and ©,; € X C
LS, where LS is the semicircular Adelic filterization and X is the free semicircular
family (60). Indeed, all operators X7 ; formed by (81) generate LS4, by (63) and
(66).

Define a subset X4 of LS4 by

Xy (Xa, € LS, : X2, is in the sense of (81)}. (82)
Then, as we discussed above this subset X4 of (82) generates LSy, i.e.,
LS4 = C[X4], (83)

set-theoretically, by (63), (66) and (67).
Suppose a given C*-algebra A is generated by a subset B of A, i.e., by (83), if
— A
A=C[B] ,
where vt mean the C*-topology closures of subsets Y of A, then one can re-define
the generator set X4 of (82) by
Xa = {X;ﬁj €lSas:a€B,0,; € X}
However, now, we take a C*-algebra A arbitrarily. So, in the following text, we
understand the generator set X4 of LS4 as in the general sense of (82).
In this section, we consider how our free-distributional data on LS 4 are affected
(or distorted) by certain shift processes on the set P of all primes.

10.1. Shifts on P. Let P be the set of all primes in N. Note that the set P is a
totally ordered set (or, in short, TOset) under the usual inequality (<). So, one can
index P orderly by
P={p1 <p2<ps<ps<--},
with (84)
P1=2,p2=3,p3=5,ps =7, ps =11, ..., etc..
From below, the set P is understood as the TOset (84).
Define now an injective functional g : P — P by
9(px) = pry1, for all k € N. (85)
For the injection g of (85), we define g™ : P — P by
g" =gogogo---og,
| S
n-times

with axiomatization: (86)
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= idp, the identity map on P,
for all n € Ny, where (o) is the usual functional composition.
By (86), clearly, g* = g, in the sense of (85), and
9" (k) = Pr+n in P, for all k € N,
for all n € Ny. For example,
g(2) =3, ¢*(3) =7, ¢°(5) = 19, etc..

Definition 10.1. Let g™ be in the sense of (86) for all n € Ng. Then these functions
g™ on P are said to be n-shifts on P, for all n € Ny. In particular, the 1-shift g =
g* of (85) is simply called the shift on P.

10.2. Prime-shift *-homomorphisms on LS 4. Let LS4 be our semicircular A-
tensor filterization, and let g be the shift (85) on the TOset P of (84), inducing
the n-shifts g™ of (86) on P. Define a x-homomorphism G4 on LS4 by a bounded
“multiplicative” linear transformation satisfying

GA( Xa ):Xg(p)g_a@’@g(p)m (87)
for all X7, € Xa, where X4 is the generator set (82) of LS4, where g = g' is the
shift (8 ) on P.

By the multiplicativity, the morphism G 4 of (87) satisfies that: if
S = H (sz,az) l’

in LS4, for ny, ..., ny € N, as a free reduced words with its length-N (in the sense
of (77)) for N € N, then

N ng N a ng
Ga(s) =G 1 (5,0 ) = HL.Ga ((X31,)")
by the multiplicativity of G 4
N n
I (Ga (X505))"

s}
by the multiplicativity of G 4

N ar ng N ny
= lﬂl (Xg(pl%jl) = lgl (al ® Gg(pz)’jz)

by (87)
N
. - lgl ( ® 69(101)73;)
ie.,
N a ny
Gal5) = R (Xg(m),jz) ’ (88)
inLS4.

Also, this morphism G4 of (87) satisfies that
Ga (S*) :GA<HX“N I )

PN—1+1,JN—1+1

because
(X;,j) =(a®0,;) =a"®06,; —ngv (89)
in LSy, for all X, € X4, and hence, the above formula goes to
N * N *
= ImMXxX N o = IIXxX* .
=1 9(PN—141), IN—141 <l_1 g(;vz)m)
by (88)
= (Ga(9))", (90)

by (89).
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By (88) and (90), one can verify that, for all 7" € LS4,
GA(T*) = GA(T)*7 in ILSA. (91)

Proposition 10.1. Let G 4 be the multiplicative linear transformation (87) on LS 4.
Then it is a x-homomorphism on LS 4.

Proof. The proof is done by (91). i.e., this multiplicative linear transformation G 4
preserves adjoints in the sense of (91). Thus, it is a well-defined *-homomorphism
on LS4. O

For the x-homomorphism G4 of (87), one can have the iterated products (or
compositions) G of (n-copies of) G4, as *-homomorphisms on LSy, with G} =
G 4, for all n € Ny, with axiomatization:

GY = lis,, the identity operator on LS4,
satisfying
0 _ _ _
G (X55) = Xgowy, 5 = Xpg = s (X35)
for all X7, € X4 in LS4, where X4 is the generator set (82) of LS 4.
Then it is not difficult to check that G satisfy
G (X2)=X in LS, Vn € N, (92)

P.J g"(p% J
for all Xp; € Xy C LS4.

Definition 10.2. The *-homomorphism G4 of (87) on the semicircular A-tensor
filterization LS 4 is called the prime-shift (x-homomorphism) on LS 4. Also, the n-th
powers G7; of (92) are called the n-prime-shift(-*-homomorphism)s on LS 4, for all
n e No.

Based on our n-prime-shifts (92), we obtain the following free-distributional data.

Theorem 10.2. Let X7, € X4 be a generating operator of LS4, and let Gy be the
n-prime-shift on LS4, for n € Ng. Then

T (03 (57,))) - = (ney ) oate)

= ((x2))").

(93)

for all k € N.
Proof. Let X, € Xa inLSa, for a € (A, pa), p € P, and j € Z. Then

G (X35) = X5

g (p)g — @9 Ogn(p),; € LSa,

for any n € Ny. Thus,
k k
(Gﬁ (Xg,j)) = (a ® Qtf‘(p),j) =d' ®e} (94)

g™ (p),j’
for all £ € N.

So, one has that

- ((Gg (Xg,j))’“) =Ta <(X§n<p>,j>k>

= pa(a®)r° (elgcn(p),j> = pa(a®) <wkc§) ) (95)

by (71), for all kK € N.
Therefore, the first equality of (93) holds by (95), and the second equality of (93)
holds by (71). O

by (94)

By the above theorem, one can get the following result.
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Corollary 10.3. Let a € (A, ¢a) be a self-adjoint free random variable, and let
X, ; € Xa be a generating operator (81) of LSa. Let G} be the n-prime shifts (92)
on LS4, for n € No. Then the free distribution of X ; and the free distributions of
G} (Xg7j) are identical in LS 4, for all n € Ny.

Proof. Let a € (A, pa) be given as above. Then, by the self-adjointness of a, the
corresponding generating operator X ; is self-adjoint in LS4, too. Indeed,

(Xg2,) =a"®6;,; = X2, inLSa.

Note now that, since G% (X,?,j) = Xn(p).jo

= G4 (X

p,j) ’

(G5 (X)) =a" @6}, = X

in LS4, for all n € Ny. Therefore, the images G} (Xg’j) of our n-prime shifts G}

preserve the self-adjointness of X} ; in LS4, for all n € N.

Recall that the free distributions of self-adjoint operators are characterized by
the free-moment sequence. So, the free distribution of X ; is characterized by

(7 ((x50")) _, = (nepeatan)

)
k=1

by (71).
Also, the free distributions of G} (X; j) are characterized by

(ra ((@ax20") = (2 ((32)))

by the self-adjointness of them, and by (93), for all n € Ny.
It shows that the free distributions of G’} (X]‘i j) are all identically characterized
by the free-moment sequence,

(Ov CMOA(CL2), Oa CQ@A(Q4)a Oa CB@A(Q(S)a )a
for all n € Ny. O

Let’s generalize the above corollary. In fact, the free-distributional formula (93)
guarantees that the free distributions of the generators X ; € Xa are preserved by
the n-prime shifts G’} on LS4, for all n € Ny, since, even though a is not self-adjoint
in A, one can have

ma (G (X )") =7 (X)),

and (96)

m (@ e)) ) = (@e)”)

= (0)") =7 (((507)).
for all k£ € N, because

(Xa,) =a*®0,; = X2, in Xa,
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inLS4.
Therefore, one can verify that

74 ((GH(X2)) (Gr(X2)) o (G (X))

=74 ((Xgll(p),j) (Xg;?p),j) (Xg:zp)’j))
=74 ((“h a’...a™) ® @’;n@),j)

= (aa™...a™) 70 (@‘];"(p),j) = (ww;) wa(a™a™...a™)
by (71) S .
= pala™a™..a™)7r0 (@;f,j) =Ta (X]‘;,j X i X5 ), (97)

by (71), for all (rq, ..., rx) € {1, x}¥, for all k € N.
Therefore, one obtains the following theorem.

Theorem 10.4. Let X, € X4 be a generating operator of the semicircular A-
tensor filterization LS4, where a € (A, @a) is arbitrarily given, and let G' be the
n-prime shifts on LS4, for all n € No. Then the free distribution of X ; and the

free distributions of G} (ngj) are identically same in LS 4, for alln € Ny. i.e.,

(98) the free distribution of G’ (Xg’j) = the free distribution of X7 ;,

in LS4, for all n € Np.

Proof. Let a € (A, pa) be self-adjoint, and hence, X ; € X4, a self-adjoint gener-
ating operator of LS4. Then, by the above corollary, the free distribution of X j

and those of G} (Xg,j) are identical in LS 4, for all n € Ny.
Assume now that a is not self-adjoint in A. Then the corresponding operator
X, ; is not self-adjoint too, since
* * .
(X5;)" = X5 # X5, in LSa.

It also shows that
4 (X)) = (X55) = Xty # Xy = G4 (Kiy).

in LS 4, for all n € Np.

So, the free distribution of X denote X, ; is characterized by the “joint” free
moments,

{TA (X" X2 X7

(71,00 7i) € {1, %}F,
forall ke N ’

and similarly, the free distributions of X, depote G} (Xg’j) are characterized by
the joint free moments,

{TA (X” Xt X7

(11, i) € {1, %}¥,
() ()" <n>) ’

forall ke N
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since X, are not self-adjoint in LS4, for all n € Ny.
However, by (96) and (97), one has that

ma (X0 X2

DX X ) = Ta (XTXTELX,

(n)
for all (ry, ..., ri) € {1, %}, for all k € N, for any n € N.

Therefore, the free distributions of X(,,) are identically same with the free distri-
bution of X in LS4, for all n € Ny. O

The above theorem shows that the n-prime shifts G’} preserve the free probability
on the semicircular A-tensor filterization LS4, for all n € Ng.

Corollary 10.5. The *-homomorphisms, the n-prime shifts, G'y preserve the free
probability on LS 4, for all n € Ny.

Proof. Note that all elements T of LS4 are the limits of linear combinations of
free reduced words in the generator set X4 of LS4, by (77). And, by (98), the
free distributions for G7 (X4) are identical to those for X4 in LS4, for all n € Ny.
Therefore, the free distributions for

G", (free words in X4)

are identical to those for free words in X4, by (88) and (90), in LS 4, for all n € Ny.
It guarantees that free distribution of every element T is identical to the free dis-
tribution of G% (T'), for all T € LS4, for all n € Ny. Equivalently, the free probability
on LS, is preserved by the actions of n-prime shifts {G} },, o, - O
10.3. Free-homomorphisms on LS4. In this section, motivated by the main
results (93) and (98) of Section 10.2, we consider free-homomorphic relations on
our semicircular A-tensor filterization LS 4 under n-prime shifts G, for n € Ny.

Definition 10.3. Let (B, ¢1), and (Ba, ¢2) be topological x-probability spaces.
Suppose there exists a bounded *-homomorphism ® : By — B, and assume that
w2 (P(b)) = ¢1(b), for all b € By. (99)
Then the topological x-probability space (Bi, 1) is said to be free-homomorphic
to (Ba, ¢2). In particular, a x-homomorphism & is called a free-(*-)homomorphism
from (Bj1, ¢1) to (Ba, 2).
If ® is a *-isomorphism satisfying (99), then (B, ¢1) is said to be free-isomorphic
to (Ba, ¢2). In such a case, this *-isomorphism & is called a free-(*-)isomorphism.

By the above free-homomorphic relation (99), one can get the following result.

Theorem 10.6. Let LSy be the semicircular A-tensor filterization of (A, @a).
Then
(100) the n-prime shifts Gy are free-homomorphisms on LS4, Vn € No.

Proof. For any arbitrarily fixed n € Ny, take the n-prime shift G”; on LS 4. Then,
by (93) and (98), for any free reduced words W of LS4 in the generator set X4,
the free distributions of G” (W) are identical to the free distribution of W in LS 4.
Thus, the *-homomorphisms G} preserve the free probability on LS4, for all n €
Ny, i.e., the statement (100) holds true. O
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11. Shifts on Z acting on LS 4. Throughout this section, fix a unital C*-proba-
bility space (4, p4), and the corresponding semicircular A-tensor filterization LS 4
= (LS4, 7a) of (A, va). In Section 10, we defined the n-prime shifts G} of
(92), which are the *-homomorphism on LS4, and showed that they are free-
homomorphisms on LS4, for all n € Ny, by (100).

In this section, we consider certain shifting processes h4+ on Z, and the corre-
sponding *-homomorphisms S+ on LS4.

11.1. Shifts h4 on Z. Let Z be the set of all integers as usual. Define functions
hy and h_ on Z by the bijections on Z,

h+(]):.7+17 andh*(ﬂ):]_lv (101)
for all j € Z. By the definition (101), one can have
h+ oh_ = ’LdZ =h_o h+, (102)

where idy, is the identity map on Z.

Definition 11.1. Let hy be the bijections (101) satisfying (102). Then we call hy,
the (+)-shifts on Z.

Let hy be the (£)-shifts (101) on Z. Define the functions A’} on Z by
;LZhiOhiO--'O hi, (103)

n-times
for all n € Ny, with axiomatization:

o =idy on Z,
satisfying
RS (j) =j =h" (j), forall j € Z.
Definition 11.2. Let A} be in the sense of (103), for all n € Ny, where hy are the
(£)-shifts (102) on Z. Then they are called the n-(+)-shifts on Z, for all n € Ny.

By (101) and (103), the n-(+)-shifts h't satisfy
h%(j) = j+n, forall j € Z,
and (104)
h(j) =j—mn, forall j € Z,
for all n € Ny. Also, by (102), one has
hy oh™ =idz = h" o R}, Vn € Ny. (105)

11.2. Integer-shift x-homomorphisms on LS4. Let A%} be the n-(%)-shifts
(103) on Z, satisfying (104) and (105), for n € Ny. We now define “multiplica-
tive” linear transformations 3% and " on the semicircular A-tensor filterization
LS4 by the morphisms satisfying
B (X55) = Xpwn iy = Xp g
and (106)
B2 (X55) = Xpnn ) = Xpjons
with
0 _ _
BL(X5,) = Xp () =
for all X, € Xy, for all n € Ny, where X4 is the generator set (82) of LS4 (by
(77)).

By the multiplicativity of the morphisms 87 of (106) on LS4, if

X5 = 1s, (X55),
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N n
T = ll;[l (X;gzl,jz) ‘e LS4, for ny, ..., ny € N,
is a free reduced word with its length-N (in the sense of (77)), for X! ; € Xy, for
l=1,.., N, for N € N, then
N .
o) = oz (1 (xz,)" )
— ljy[ no((xe ™) = ﬁ n(xo m
= HBL (X5 5)") = I (BL(X )
by the multiplicativity of 57}
N ar ng N a ny
= 11;11 (Xplvhl(jl)) = ll;ll (Xpujzin) ’ (107)
in LS4, for all n € Ny. Also, the morphisms 57} satisfy
g (X)) =82 (Xp) = Xpsn
(108)

= (Xpjen) = (B2(X5,))
for all Xp; € g, in LS 4, for all n € Ng.
So, by (107) and (108), if W is a free reduced word of LS4 in X4, then

B (W) = (BL(W)",
implying that
B (T*) = (BL(T))", for all T € LSa, (109)
for all n € Ny.

Proposition 11.1. Let 5% be the n-(£)-integer shifts on LS4, for n € No. Then
they are x-isomorphisms on LS 4.

Proof. Note that the n-(4)-shifts Al are bijections on Z, for n € Ny. So, the re-
strictions 8% |x, of our n-(4)-integer shifts (106) are bijections on the generator
set X4, for n € Ng. Therefore, these morphisms 8% of (106) are bijective on LS4,
because of the generator-preserving property, for all n € Ny. Moreover, by (107)
and (109), these multiplicative linear transformations 87 are *-homomorphisms on
LS4, and hence, they are *-isomorphisms on LS 4, for all n € Ny. O

Definition 11.3. We call the x-homomorphisms 7 of (106), the n-(+)-integer-
shifts on LS4, for all n € Ng. If n = 1 in Ny, we simply call B+ = S1, the (&)-
integer-shifts on LS.

The above proposition shows a difference between our prime-shifts, and the
integer-shifts on LS 4.

Remark 11.1. Note that our n-prime shifts G”; are injective *-homomorphisms,
but not x-isomorphisms in general. In particular, if n # 0 in Ny, then they are
not #-isomorphisms on LS,4. It is easily verified because the n-shifts g™ of (86)
are injective but not bijective on the TOset P of (84), whenever n # 0 in Ny. It
also shows that G"} are free-homomorphisms, but not free-isomorphisms on LS 4, in
(100), for all n # 0 in Nj.

Now, consider how our n-(+)-integer shifts 57 affect the free probability on LS4,
for n € Np.
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Theorem 11.2. Let n € Ny, and 87, the corresponding n-(+ )-integer shifts on the
semicircular A-tensor filterization LSa. Then, for any X, ; € Xa, we have

TA ((ﬂi(Xg’j))k) = wkc§<p,4(ak) =Ty ((ngj)k) , (110)
for all k € N.

Proof. Under hypothesis, consider that

k k
ma ((Br") = 7a (X))

by (107)

= @A(ak)TO (@Ig,jﬂ:n) = wkc%go,q(ak)
by (71)

k\.0 (Qk a \k

= (pA(a )7’ (@p,j) =TA ((Xp,j) ) s

for all £ € N, for all n € Ny.
Therefore, the free-distributional data (110) is obtained. O

Similar to the proof of (98) and that of (100), we obtain the following theorem
by (110).

Theorem 11.3. Let LS4 be the semicircular A-tensor filterization, and let B be
the n-(+ )-integer shifts on LS4, for alln € Ng. Then

(111) BL are free-isomorphisms on LS 4.

Proof. By (110), the *-isomorphisms % preserves free distributions of generating
operators of LS 4, contained in X 4. Therefore, by the similar arguments of the proofs
of (98) and (100), the free probability on LS, is preserved by the action of 57, for
all n € Ng. O

12. Shifts on P xZ and *-homomorphisms on LS 4. In this section, we consider
both prime shifts, and integer shifts, which are well-defined free-homomorphisms
on the semicircular A-tensor filterization LS 4 of a fixed unital C*-probability space
(A, v4). In particular, we showed that the prime shifts are injective free-homomor-
phisms, and the integer shifts are free-isomorphisms on LS 4, by (100), respectively,
by (111).

Now, we consider certain *-homomorphisms on LS 4 induced by both prime shifts
and integer shifts. From below, for convenience, we let

NE 2 {4} x No.

12.1. Shifts on P = P x Z. Now, consider the Cartesian product set P,

PYpxaz (112)

Let g be the n-shifts on P, and let h* be the k-(e)-shifts on Z, for n € Ny, and
(e, k) € Na[, with axiomatization,
gO = idp, and h(i = idz.
Define now shifts on the set P of (112) by
Sty " gz (g ), (13)

for all ny € Ny, and (e, ny) € Noi. i.e., for any (p, j) € P,
S (0:3) = (9 (p), B22(5)) = (g™ (p), jena)
in P, where
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e — J+ng ife=+
T2 = Gy ife=—.

For example,
85_75) (35 - 1) = (92(3), hi(_l)) = (77 - 6)
in P.

Definition 12.1. Let s?elnz) be injections (113) on the set P of (112), for n; € Ny,
and (e,n2) € Ng, with identity,

S(()e,()) = idp X idz = id]p,
where idp is the identity map on P, satisfying

idp (p,j) = (p, j) in'P, for all (p,j) € P.
Then these injections s?; ny) are called the shift(-function)s on P.

12.2. Prime-integer shifts on LS4. Let P be the Cartesian product set (112),
and let s?elm) be shifts (113) on P. Then, for such a shift s?elm), one can construct
the corresponding *-homomorphism O'Elel’nz) on the semicircular A-tensor filterization
LS4, defined by the bounded multiplicative linear transformation on LS 4,

aam) =G} pr? on LS4, (114)
for all ny € Ny, and (e, nq) € Ng, where G™* are the ni-prime shifts, and 872 are
ng-(e)-integer shifts on LS 4.

Notation and Assumption. From below, for convenience, we simply write our
n-prime shifts G”; simply by G™, for all n € N. O
Since G™* are *-homomorphisms, and 37’2 are *-isomorphisms on LS4, the mor-
phism or?elm) of (114) are indeed well-defined *-homomorphisms on LS 4.
Proposition 12.1. Let a?elm) be a x-homomorphism (114) on LS. Then

o L grigne = gragm on LSy, (115)

(e,n2)

for all ny € Ny, (e,n2) € N%.
Proof. By the very definition (114),
O(eng (Xpg) = G™ (822 (X))

= G (Xe

p,jenz) = Xgmi (p), jena
= pe2 (Xgnl(p),j> = B (Gm (Xg,j))

= ﬂngnl (Xg,j) ,
for all generating operators X ; € X4.
Since all elements of LS4 are the limits of linear combinations of free reduced
words in X4 by (77), we have

o : déf G"lﬁg““ — Bézanl on ]LSA,

(e,n2

for all n; € Ny, (e, ng) € N O
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Let Hom (LS 4) be the (x-)homomorphism semigroup acting on the semicircular
A-tensor filterization LS 4, consisting of all *-homomorphisms on LS 4. Define now
the subset o(ILS4) of Hom(LS,4) by

o(LSa) = {0, i m € Ny, (e,n2) € N5}, (116)
where J?@lnz) are the x-homomorphisms (114) on LS4.

Definition 12.2. We call the x-homomorphisms 0?@1 2) of (114), the prime-integer

,N

shift(-+-homomorphism)s (in short, pi-shifts) on LS 4.

Now, let’s consider the following structure theorem of the system o (LS 4) of (116)
in the homomorphism semigroup Hom(LS4).

Theorem 12.2. Let o(LS4) be the system (116) in Hom(LS4). Then
(117)  o(LS4) is a commutative sub-monoid of Hom(LLS 4).

Proof. Let o(LS4) be the subset (116) of Hom(LLS4). Then one can obtain that

T (eina) Uécrl,kz) = (G™Br2) (G*1pF2)

by (114)
= (Gank1) (ﬂ22652)
by (115)
— (ni+k lens+rksa| — 1+k1
= Gmth 5sgn2)(en2irk2) - ?gn(eanrer)’ (118)

where sgn is the sign map on Z, satisfying

. + ifi>0
sgn(j) = { - ifj<o,
for all j € Z, and |.| means the absolute value on Z, for all ny, k1, ns, ke € Ny, and
e,r € {£}

The formula (118) shows that the product (or composition), inherited from that
on Hom(LLS4), is closed on the set o(LS,). Thus, one can consider o(LS4) as an
algebraic sub-structure (6(LS4), -) in Hom(LS4).

Observe now that

( n ng) ns :ﬂ\€1n1+€2n2| n3
ep Fez es sgn(eini+eans) 73

_ ﬂ\|61n1+e2n2|+63n3| _ ﬁ|61n1+|62n2+€3n3||

sgn(eini+eznz+tesns) sgn(eini+eana+tezns)
__ Ang leana+ezng| _ nl( no ng) ( )
T Fei1 Msgn(eanatesns) — Fer /862 es ) 119

on LSy, for (e, n;) € N(jf, for all [ = 1, 2, 3; also, one has
(G’ﬂl Gn2) G = Gmtnzgns
= mtnetns — QniGnatns (120)
= G™M(GmG™),
on LS4, for all nq, na, n3 € Ng.
So, one obtains that

ni na ns
(U(el,kl)"(ez,@)) I (es.ks)

— 0n1+n2 o3
(sgn(erki+ezkz), lerki+eaka|)” (es,k3)

by (118)
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_ _(ni+n2)+ns
T Y (sgn(erkiteakatesks), |lerki+eaka|+esks])

ni+(nz2+n3)
(sgn(e1ki+ezkatesks), |erki+|eaka+ezks]])

= o™ o2 tns
(e1,k1) ~ (sgn(ezka+tesks), |eaka+esksl)

= U?ell,kl) (J?;JCQ) 0?6337]63)) , (121)

by (119) and (120), for n; € Ny, (e;, k) € N, for all [ = 1, 2, 3.

Thus, the operation (-) on o (LS 4) is associative by (121), and hence, the algebraic
pair (0(LS4), -) forms a semigroup.

Definitely, one can take an element

Tle0y = GBY = l1s, - lis, = lig, € o(LLSa),
satisfying that (122)
Olegy 184 = 00, 3y = sy - 0 ) in 0(ILS4),

for all n € Ny, and (e, k) € NE.

So, the semigroup (c(LS4), -) contains its (-)-identity 1is, = a?e o) of (122), and
hence, it is a well-defined monoid in Hom(LLS 4).

Finally, consider that

GriGnz = Gnitne — Gna2tni — Gr:Gm,
and (123)
k1 oks _ nleikieska] _ pleskzeikq] ko ak
58115622 - 5892(1612161262162) - 5Sg2’rl(2621]€2161k)1) - 682256117

on LS4, for all nqy, no € Ny, and (el,k‘l), (62,](12) S Ng

Therefore,
n2 — 0n1+n2
(e2,k2) (sgn(eikiesks),le1kiexka]) (124)

no ni
T (ea,k2)% (e1,k1)"

ni
e, k1)

on LSy, for all ny, ny € Ny, and (e, k1), (e2,k2) € Ng, by (115) and (123).

So, the monoid (o(LS4), -) is commutative by (124). Therefore, the system
o(LSa) of (116) is a commutative sub-monoid of the homomorphism semigroup
Hom(LS,4). O

The above structure theorem (117) characterizes the algebraic structure of o(LS 4)
as a commutative monoid embedded in Hom(LS).

Definition 12.3. Let 0(LS4) be a commutative sub-monoid (116) embedded in
the homomorphism semigroup Hom(LS4). Then this monoid o(LS,4) is called the
prime-integer-shift monoid (in short, the pi-shift monoid) on LS 4.
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12.3. Free-distributional data on LS, affected by o(LS,4). Let LS4 be the
fixed semicircular A-tensor filterization of (A4, ¢4), and let o(ILS4) be the pi-shift
monoid (116) on LS4, which is a commutative sub-monoid of the homomorphism
semigroup Hom(LLS4) by (117). In this section, we consider how pi-shift monoid
o(LS4) affects the free-distributional data on LS 4.

Recall-and-note that the prime-shifts G™ are injective free-homomorphisms on
LS4, and hence, they preserves the free probability on LS 4 by (100), for all n € Ny;
and the integer-shifts 37’ are free-isomorphisms on LS 4, and hence, they preserves
the free probability on LS4, by (111), for all (e,n) € NE. So, it is not difficult to
verify that every pi-shift Tt € o(LS4) preserves the free probability on LS4, for

all n € Ny and (e, k) € Ni.
Lemma 12.3. Let o(LS4) be the pi-shift monoid (116) on the semicircular A-

tensor filterization LS4, and let
o denete Oler) € o(LS4), forn € Ny, (e, k) € N?,
be a pi-shift on LS4. Then

TA ((O(X;j))l) = wlc%LpA(al) =T ((ngj)l) , (125)
for alll € N.

Proof. Let 0 =o(, ;) € o(LS4) be a pi-shift, for n € Ny, (e, k) € Ni. Then, for any
generating operator X7, € X4 of LS4, one has

o (Xp,) = (Xg"(p),jek) '

and hence,

ra ((05,)") =7 ( (%3000) )

= pa(a)r° (92"(;7),3‘@/@) = wlc%goA(al)

!
= pala)r® (0},) = ma ((x3,)").
for all I € N.
Therefore, the free-distributional data (125) holds. O

By the above lemma, we obtain the following result.

Theorem 12.4. Let o(LS4) be the pi-shift monoid on the semicircular A-tensor
filterization LS 4. Then every pi-shift o € o(ILS4) is a free-homomorphism on LS 4.

Proof. By the similar arguments of the proofs for (100) and (111), all pi-shifts of
the pi-shift monoid o(ILS4) are free-homomorphisms on LS, by (125). O

Remark that, by the definition (114), a pi-shift Ok is nOt & free-isomorphism
on LS 4, in general. In particular, if n # 0 in Ng, then U&k) = G"B¥ is not bijective,
since G™ is not bijective on LS 4, and hence, it cannot be a free-isomorphism.

Theorem 12.5. Let o(, ;) € 0(.Sa) be a pi-shift. Then
(126) Ol k) is a free-isomorphism, if and only if n = 0 in No.
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Proof. (<) Suppose n = 0 in Ng. Then
n _ -0 _ (0pk _ k _ pk
Tlee) = Olery = G Pe = lusaPe = B,

and (¥ is a free-isomorphism by (111), in o(LS4).

(=) Assume that n # 0 in Ng. Then, as we discussed in the very above paragraph,
a& k) is not a free-isomorphism on LS 4.

Therefore, the characterization (126) holds. O

The above theorem characterizes the free-isomorphic property in the pi-shift
monoid o(LSy).

By the above two theorems, a pi shift 0?67 K € o(LS,) is either a free-homomor-
phism (if n # 0), or a free-isomorphism (if » = 0) on the semicircular A-tensor
filterization ILS 4, i.e., it preserves the free probability on LS 4.

13. A-tensor pi-shift monoids o4 (LS4). Let (A, p4) be a fixed unital C*-
probability space, and LS4 = (LS4, 74), the semicircular A-tensor filterization
of (A, va), and let o(LS4) be the pi-shift monoid on LS,4. By the main results of
Section 12, all elements of o(LS4) are free-homomorphisms in the homomorphism
semigroup Hom(LLS 4). In this section, we generalize the pi-shift monoid o(LS4) by
acting the homomorphism semigroup Hom(A) of the C*-algebra A, and construct
a new subset 04 (LS4) of Hom(LS4). We study how such a subset o4(LS,4) acts
on (the free probability on) LS,4.

13.1. The A-tensor pi-shift monoid o4(LS4). Let Hom(A) be the homomor-
phism semigroup of A, consisting of all *-homomorphisms on the C*-algebra A,
where (A, p4) is our fixed unital C*-probability space. Let 8 € Hom(A), and Tlek)
€ o(LS4), for n € Ny, (e, k) € NE. Define a *-homomorphism JEZ,Hk) on LS4 by the
morphism satisfying

U(ne:,ek) (X5,) = O—Zle:,ek) (a®Op,;)

def
= (e (0(a) ®6,5) (127)

_ .n 6(a)\ _ y0(a)
= k) (Xp,j ) = Xgn(p).gek
for all Xy € Xain LS4, where X4 is the generator set (82) of LS 4.
Let Xgll,jl € X4 in LSy, for [ = 1, 2. Then, for the morphism U("e:% of (127), one
obtains that
ol (Kol 5 Xp2 1) = (i (a1a2 ® Oy, 1,0, 5,)
Uz:,ek) (ar1a2 ® Gplelgpz,jz) if (p1,51) # (p2,J2) in P
0" (a1a2© O3 ) if (p1,51) = (p2,J2) in P
0(a1a2) ® ng(Pl),jlek@g"(Pz),jzek if (p1,j1) # (pz,jg)
0(a1a2) @ O () 7,ex if (p1,71) = (p2,J2)

by (127)
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0(a1)0(az) ® Ogn(p,),j1ekOgn (p2).jack resp.,
0(a1)f(az) ® 99”(p1),j16k@g”(p1),jlek

since § € Hom(A)

= (9(0,1) ® 99"(P1)7j16k) (9(@2) ® @ p2)1]2€k)
0(a1) 0(az)
(XQ"(ZIH)JWJC) (Xg"(lz’z)»jzek)

: ) (Xglvjl)) (UZLeak) (Xgmj’z)) )

I
VN
Q
=3
}TQ)

implying that

ot (T3) = (o124, (1)) (o5 (T2)) (128)
in ]LSA, for all T, T, € LS4.
Also, we have, for any X7 ; € Xy,

U(e k) ((Xa )*) = U(e k) (Xa ) = Xgefbtzp;,jek

_ xf@)T  _ (yba) *
B Xg"(p),jek o (Xg"(p)dek)

by (127)

since a € Hom(A)

= (J@f)k) (Xg’j))* :
opity (%) = (o24,(D) (129)

implying that

forall T € LS4.

Therefore, the morphism ag?k) of (127) is indeed a well-defined *-homomorphism
on LS4, by (128) and (129), for any 6 € Hom(A), and o, ;) € o(LSa).

Define now a subset o4(LS4) of the homomorphism semigroup Hom(LS,) of
LS4 by

O'Z:,ek) are in the sense of (127),
oa(LSa) = J"fk) for all # € Hom(A), and . (130)
U&k) € o(LSa)
Then one can get the following structure theorem.

Theorem 13.1. Let 04(LS4) be the subset (130) of Hom(ILS ). Then
(131) 04(LS4) is a noncommautative monoid, in general.

Moreover, o4(ILSa) becomes a commutative sub-monoid of Hom(LLSy), if and
only if the C*-algebra A is commutative.

Proof. Let 04(LS4) be the subset (130) of Hom(LS4). Take

denote n;:6,

o= O € ca(LS4), for i =1, 2.

Observe that, for any generating operator X ; € X4 of LSy,
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o109 (X ) = oy (X92(a) ] ) — X01(02(a))

p.J g™2(p).jezka g"1(g"2(p)),je2kze1k

9192(0.)
=X gm1tn2(p), j(sgn(jeikiezka)+)lerkieska| (132)

(n14n2):0102 ( a‘)
(sgn(erkieaka)+, |erkieakal) Jjlo

by (132). Indeed, note that if 8% are the k-(e;)-integer shifts (106) on LS4, for
(e, k) € NE, for I = 1, 2, then

k1 ko _ nleikieska]
Bellﬁej - ﬁsqn(elklezkz 6 6 on HJSA)

because

k1 Rk _ nk —
6611’6522 (X;g,j) - 6611 (Xg,j%kz) - ngjezkzelkl
‘Cgkgelk‘l ‘lelegkg
- ﬂsgn(eﬂcgelkl) ( PJ) ﬂsgn(elklerz) (XEJ)

= BezBE (X55) (133)
for all Xp; € Xa, in LSA
So, the formula (132) holds by (133). It shows that

_ _(n1+n2):6010
0109 = O—(sgn(efklegljz), lerkreaka]) € oa(LS4), (134)
too.

Therefore, under the inherited product, the algebraic pair (o4 (LS4), ) is a well-
determined algebraic sub-structure of Hom(LS4). Now, let o1 and o3 be given as

above in 04(ILS4), and let

03 = (2% | € oa(LSa).

Then ( oo
ni+nz):0102
(0102) 03 = (U(Sgn(ﬁll)61€2k2), |61k‘162k2|)) 03
by (134)
(n1+mn2)+n3:(0102)03
(sgn((e1kiexka)esks),|(e1kiexka)esks|)
by (134)

_ Jn1+(n2+n3):91 (0203)
(Sgn(81k1(62k2€3k23)), |81k1 (82k263k)3)‘)

. (na+n3):020 o
- 01 (U(?gzn(estnggljg), ‘62k263k3|)) - 01 (0—20—3) N (135)
By (135), the algebraic pair (g4 (LS), -) forms a semigroup in Hom(LS4).
Let 14 € Hom(A) be the identity map on A, which is a *-isomorphism on A.
Take U?e:lo‘; in 04(LS4). Then
o?elo“; = 1ps,, the identity map on LS4, (136)

which is a x-isomorphism in Hom(LLS 4), satisfying that
o-lis, =0 =1g, -0, Vo € UA(LSA).

Therefore, by (136), the semigroup (04(LS4), -) contains the (-)-identity, 115, =

J?é10‘37 and hence, it is a sub-monoid in Hom(LS4). i.e., the statement (131) holds.
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Definitely, by (126), an element J?elkf)‘ is not bijective on LS 4, whenever n # 0

in Np. So, the monoid o4 (LS 4) cannot be a group in Hom(LS4).

Remark that, homomorphism semigroups are not commutative in general. Since
our C*-algebra A is arbitrarily chosen, it is natural to understand the corresponding
homomorphism semigroup Hom(A) is not commutative, in general. Under this
sense, even though the pi-shift monoid (LS 4) is commutative, the monoid o 4 (LS 4)
is not commutative, in general.

However, by (134) and by the commutativity of our pi-shift monoid (LS 4), this
monoid o4 (LS4) can be commutative, if and only if the homomorphism semigroup
Hom(A) of A is commutative, if and only if A is a commutative C*-algebra. O

The above theorem characterizes the algebraic property of the subset o4 (LS4)
of (130), as a noncommutative sub-monoid of Hom(LLS4) (in general).

Definition 13.1. Let 04(LS4) be the sub-monoid (130) of Hom(LS4). We call it
the A-tensor-pi-shift monoid (acting) on LS4.

13.2. Free-distribution data on LS, affected by 04(LS4). In Section 12, we
showed that all pi-shifts in the pi-shift monoid o (LS 4) are free-homomorphisms on
LS 4, preserving the free probability on the semicircular A-tensor filterization LS 4
of a fixed unital C*-probability space (A, ¢4). In Section 13.1, we extended the
pi-shift monoid o(LS,4) to the A-tensor pi-shift monoid o4(LS,) in the sense of
(130); and we showed there that, in general, the algebraic property of o4 (LS4) is
different from that of o(ILS4) in the homomorphism semigroup Hom(LS4). So, it
is natural to consider how the free-distributional data on LS, is affected by the
action of o4 (LS4).

First of all, one can immediately obtain the following corollary of (125) and (126).
Corollary 13.2. Leto = ‘7?.3:,113 € 0A(LS4), where 14 is the identity x-isomorphism
in Hom(A). Then o is a free-homomorphism on LS 4. Moreover, o is a free-isomor-
phism, if and only if n = 0 in Ny.

Proof. Let o be given as above in the A-tensor pi-shift monoid o4 (LS 4). Then, by
definition,

a _ 1a(a) _ a - a
g (Xp,j) - Xg”A(p),jek - Xg"(p),jek - J(e,k) (XPJ) ’
for all generating operators X ; € X4 of LS4, where O’ZE, K is the pi-shift contained

in the pi-shift monoid o(LS,4) in Hom(LS,4). Therefore, we have that

o= 0("61];)‘ = 0,k on LSa. (137)
Therefore, by (125), o is a free-homomorphism on LS 4; and, by (126), it is a
free-isomorphism, if and only if n = 0 in Nj. O

By the above corollary, we have the following result.

Corollary 13.3. Let o(LS4) be the pi-shift monoid, and let c4(LS4) be the A-
tensor pi-shift monoid in the homomorphism semigroup Hom(LS4). Then

(138) o(LSa) is a commutative sub-monoid of o4(LS4),
in Hom(LS4).

Proof. The proof of (138) is done by (137). O

The above corollaries shows that “some” elements of the A-tensor pi-shift monoid
c4(LS,) preserve the free probability on LS 4, by (137) and (138).
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Lemma 13.4. Let oy = J("e:,ek) € 0a(LS4), for 6 € Hom(A). Then

a ((e0X3)) = (iey ) 0 (00a")
=4 ((ngl))l) ,

Proof. Let oy be given as above in the A-tensor pi-shift monoid o4(ILS4). Then,
for any generating operator X . € X4 of LSy,

(139)

foralll € N.

a l a !
(00 (X5,)) = (Xgef"(;),jek) = 0(0)' @ Oguy) e

_ l l
- O(a )@ 69"(11)71'616’

in LS4, for all I € N, since § € Hom(A).
Thus, one obtains that

ma ((00(x3)") = (wiey ) wa (0a")

for all I € N, by (125).
Also, one has that

() - Lot
for all | € N, too.

Therefore, the free-distributional data (139) holds. O
More general to (137) and (138), we obtain the following result.

Theorem 13.5. Let fHom(A) be the sub-semigroup of the homomorphism semi-
group Hom(A) of the fized C*-algebra A, defined by

0 is a

fHom(A) “lpe Hom(A)| free-homomorphism 3 | (140)
on A
Define a subset 01{; (LS4) of the A-tensor pi-shift monoid o 4(LS4) by
de .
o (LS4) {UZZ,% € oa(LS4) |0 € fHom(A)}. (141)

(142) af‘(]LSA) is a sub-monoid of c4(ILS4).
(143)  All elements of JQ(LSA) are free-homomorphisms on LS 4.
(144) a?fk) € UQ(LSA) is a free-isomorphism, if and only if

n = 0, and 0 is bijective on A.

Proof. Let UQ(LSA) be a subset (141) of 04(ILS4). Then, for any
o1 = ol € ol (LSy), for 1 = 1,2,

we have

_ ni1+n2:0102 let
0102 = O-(Sgn(ﬁlleka), lerkieaka]) — g, (145)

in O'A(LSA), by (134).
Remark that if #; and 05 are free-homomorphisms on A, then
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pa (0102(2)) = a (01 (02(2))) = pa (02(2)) = pa (2),

since 61, 62 € fHom(A), for x € (A, va).

It shows that if 6,1, 82 € fHom(A), then 6102 € fHom(A), where fHom(A)
is the subset (140) of Hom(A). Therefore, the *-homomorphism o of (145) is also
contained in O'IJ;(}LSA), too. i.e., GQ(LSA) is a sub-semigroup of the A-tensor pi-
shift monoid o4(LS4). It is clear that the identity x-isomorphism 14 is contained
in fHom(A), and hence, the identity O'?Ci}o/; = 1pgs, is contained in Uf;(]LSA), t00.
Thus, a£ (LS4) forms a sub-monoid of g 4(LS 4). Equivalently, the statement (142)
holds.

Now, let oy = U("e’?k) € UQ(ILSA), with 6 € fHom(A). Then

TA ((U@(ngj))l) = (wlc%) ©a (Q(al))

= (wlCé) YA (al) =TA ((Xg)j)l) , (146)

since 6 € fHom(A), for alll € N, for all X7, € X4 C LS4.

Therefore, every element of the sub-monoid ofl(ILS A) preserves the free proba-
bility on LS 4, i.e., it is a free-homomorphism on LS 4, by (146). So, the statement
(143) is proven.

Let oy be given as above in the sub-monoid UQ(LS 4) of the A-tensor pi-shift
monoid o4 (LS4). If either

by (139)

n # 0 in Ny, or € is not bijective on A,

then oy cannot be a x-isomorphism. i.e., it is a free-homomorphism, but not a
free-isomorphism on LS 4.

If n = 0, and @ is bijective on A, then 6 is a free-isomorphism on A, and hence,
og is bijective on LS 4; and since

g9 (Xg,j) = U?;?k) (X;nl,j) = ng;e)kv

we have
A ((00 (Xg,j»l) = (wlc%> ©va (9(al))
<) = (05).

for all [ € N, for all X, € X4 C LS4, and hence, it is a free-homomorphism on
LS4. ie., if n =0in Ny, and 8 € fHom(A) is bijective on A, then oy is a bijective
free-homomorphism, a free-isomorphism, on LS 4.

Therefore, the characterization (144) holds true. O

The above theorem generalizes the free-homomorphic properties (137) and (138)
in the A-tensor pi-shift monoid o 4(LS,). i.e., there exists the maximal sub-monoid
aﬁ(]LS 4) of 04(LS4), consisting of free-homomorphisms on LS4 (containing the
pi-shift monoid o(LS4)), by (142) and (143). Moreover, we characterize free-
isomorphic property of af;(LS 4) by (144).
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Definitely, if one takes an element o in 04(LS4) \ JQ(LSA), then it is a *-
momorphism in Hom(LS,4), but not a free-homomorphism on the semicircular
tensor filterization LS 4. In other words, such a *-homomorphism o distorts the

free probability on LS 4.
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