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Abstract. In this paper, we study the Banach ∗-probability space (A ⊗C
LS, τ0A) generated by a fixed unital C∗-probability space (A, ϕA), and the

semicircular elements Θp,j induced by p-adic number fields Qp, for all p ∈ P, j ∈
Z, where P is the set of all primes, and Z is the set of all integers. In particular,

from the order-preserving shifts g × h± on P × Z, and ∗-homomorphisms θ

on A, we define the corresponding ∗-homomorphisms σ1:θ
(±,1) on A⊗C LS, and

consider free-distributional data affected by them.

1. Introduction. The main purposes of this paper are (i) to re-consider
(weighted-)semicircular elements in a certain Banach ∗-probability space induced
by measurable functions on p-adic number fields Qp, for primes p, and to study
free-probabilistic properties of the Banach ∗-probability space LS = (LS, τ0) gen-
erated by those mutually-free, (weighted-)semicircular elements, (ii) to extend the
structure LS to the tensor product Banach ∗-probability space,(

A⊗C LS, ϕA ⊗ τ0
)

for an arbitrarily fixed unital C∗-probability space (A, ϕA), and investigate
(weighted-)semicircular elements of this new Banach ∗-probabilistic structure, (iii)
to consider certain ∗-homomorphisms acting on A ⊗C LS induced by shifting pro-
cesses on the Cartesian product set P×Z, and to investigate how such ∗-homomor-
phisms affect the free probability on A ⊗C LS, and (iv) by extending such ∗-
homomorphisms of (iii) to certain ∗-homomorphisms induced by ∗-homomorphisms
acting on A, to study how such generalized morphisms distort the free probability
on A⊗C LS.

The main results of this paper are interesting not only in applied number the-
ory, but also in free-probabilistic operator theory. From number-theoretic ob-
jects, primes and corresponding p-adic number fields, the free-probabilistic objects,
(weighted-)semicircular elements, are well-constructed; and the operator-theoretic
objects, ∗-homomorphisms and corresponding Banach-space operators, are acting
on such (weighted-)semicircular elements well; and the structures and properties
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of them are characterized and shown. Moreover, under tensor product, operator-
algebraic properties of tensor product structures, and free-distributional information
are studied operator-algebraically. So, our works provide new connections among
number theory, free probability, operator theory, and operator algebra theory. i.e.,
the main results would be applicable to statistical quantum physics, studying anal-
ysis on certain physical structures over the non-Archimedean structures (having
“very small” distances, or metrics).

For more about number-theoretic motivations of our proceeding works, see e.g.,
[16], [17], [18], [19], [31] and [32]. And, for more about statistical analysis, see [1],
[2], [3], [4], [5], [6], [15], [21], [22] and [25]. Also, for free probability theory, see e.g.,
[26], [27], [28], [29], [30], [24], [20], [33], [34] and [35].

Relations between primes and operators have been studied in various different
approaches. For instance, we studied how primes act on certain operator algebras
and dynamical systems, as operators, with help of p -adic, and Adelic analysis (e.g.,
[9]).

In [8] and [12], we studied weighted-semicircular elements, and corresponding
semicircular elements induced by measurable functions on p-adic number fields Qp,
for p ∈ P. The main results of these papers show that p-adic analysis allows us
to have the (weighted-)semicircular law(s), statistically. As applications of [8] and
[12], free stochastic calculus for our (weighted-)semicircular law(s) was considered
in [11]. And we globalize the (weighted-)semicircularity of [8] and [11] to those
induced by Adelic analysis in [10].

In this paper, we are interested in how the (weighted-)semicircular law(s) on(
A⊗C LS, ϕA ⊗ τ0

)
is (are) affected, or distorted by certain ∗-homomorphisms

acting on A⊗C LS.

2. Preliminaries. In this section, we briefly mention about backgrounds of our
proceeding works.

2.1. Free probability. Free probability is the noncommutative operator-algebraic
version of classical measure theory and statistics. The classical independence is
replaced by the freeness by replacing measures on sets to linear functionals on
noncommutative algebras (e.g., [26], [29], [30], [33] and [35]). It has various appli-
cations not only in pure mathematics (e.g., [23], [25], [27], [28], [24] and [20]), but
also in related fields (e.g., [3] through [12]). In particular, we here use combinatorial
approach of Speicher (e.g., [29] and [30]).

In the text, without introducing detailed definitions and combinatorial back-
grounds, free moments and free cumulants of operators will be computed. Also, we
deal free product ∗-probability spaces, without detailed introduction.

Notation and Assumption. As in the “traditional” free probability theory, the
pairs (B, ϕB) of noncommutative algebras B, and fixed linear functionals ϕB on
B are said to be (noncommutative) free probability spaces. However, for our pur-
poses, even though a given algebra A is commutative, we will call a pair (A, ψ)
of a commutative algebra A and a linear functional ψ on A, a free probability
space, “non-traditionally” (e.g., see [8] through [12]). The freeness on such a non-
traditional free probability space (A, ψ) is trivial by the commutativity of A, but
(traditional) free probability theory well-covers functional-and-statistical analysis
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on A, for ψ. So, without loss of much generality, we call the pairs (B, ϕB) of (non-
commutative, or commutative) algebras B, and linear functionals ϕB on B, free
probability spaces, below.

2.2. Analysis on Qp. For more about p-adic analysis, see [31] and [32] (also, see
[17] and [22]). Let Qp be the p-adic number fields for p ∈ P. Recall that Qp are
the maximal p-norm-topology closures in the normed space (Q, |.|p) of all rational

numbers, where |.|p are the non-Archimedean norms, called p-norms on Q, for all p
∈ P.

For any fixed p ∈ P, the Banach space Qp forms a field algebraically under the
p-adic addition and the p-adic multiplication in the sense of [32], i.e., Qp is a Banach
field.

Also, such a Banach field Qp is understood as a measure space

Qp = (Qp, σ (Qp) , µp) ,
equipped with the left-and-right additive invariant Haar measure µp on the σ-
algebra σ (Qp) , satisfying that

µp (Zp) = 1,

where Zp is the unit disk of Qp,

Zp
def
= {x ∈ Qp : |x|p ≤ 1} in Qp,

consisting of all p-adic integers of Qp, for all p ∈ P (e.g., [31] and [32]).
As a topological space, the p-adic number field Qp contains its basis elements,

Uk = pkZp = {pkx ∈ Qp : x ∈ Zp}, (1)
for all k ∈ Z. (e.g., [32]).

By understanding Qp as a measure space, one can establish a ∗-algebra Mp over
C as a ∗-algebra,

Mp = C [{χS : S ∈ σ(Qp)}]
consisting of µp-measurable functions f,

f =
∑

S∈σ(Qp)

tS χS (tS ∈ C),

where the sum
∑

is the finite sum, and χS are the usual characteristic functions
of S.

On Mp, one can naturally define a linear functional ϕp by the p-adic integral,
i.e.,

ϕp(f) =
∫
Qp

f dµp, ∀f ∈ Mp. (2)

Define now subsets ∂k of Qp by
∂k = Uk \ Uk+1, for all k ∈ Z. (3)

We call these µp-measurable subsets ∂k of (3), the k-th boundaries (of the basis
elements Uk of (1)), for all k ∈ Z. By the basis property of the subsets Uk of (1),
one obtains that

Qp = t
k∈Z

∂k, (4)

where t means the disjoint union. Also, by measure-theoretic data, one has

µp (∂k) = µp (Uk) − µp (Uk+1) = 1
pk
− 1

pk+1 , (5)

for all k ∈ Z.
Note that, by (4), if S ∈ σ(Qp), then there exists a subset ΛS of Z, such that

ΛS = {j ∈ Z : S ∩ ∂j 6= ∅}. (6)
Thus, by (6), one obtains the following proposition.
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Proposition 2.1. Let S ∈ σ(Qp), and let χS ∈ Mp. Then there exist rj ∈ R, such
that

0 ≤ rj ≤ 1 in R, for all j ∈ ΛS ,

and (7)

ϕp(χS) =
∫
Qp

χS dµp =
∑
j∈ΛS

rj

(
1
pj −

1
pj+1

)
,

where ΛS is in the sense of (6).

Proof. The computation (7) is shown by (5). See [8], [9], [10], [11] and [12] for
details.

3. Free-probabilistic models on Mp. Throughout this section, fix a prime p
∈ P, and let Qp be the corresponding p-adic number field, and let Mp be the
p-adic ∗-algebra of Qp. In this section, let’s establish a suitable (non-traditional)
free-probabilistic model on Mp.

Let Uk = pkZp be the basis elements (1), and ∂k, their boundaries (3) of Qp, i.e.,
∂k = Uk \ Uk+1, for all k ∈ Z. (8)

Define a linear functional ϕp : Mp → C by the p-adic integral (2),

ϕp (f) =
∫
Qp

f dµp, for all f ∈ Mp. (9)

Definition 3.1. The pairs (Mp, ϕp) are called p-adic (non-traditional free) ∗-
probability spaces, for all p ∈ P.

Then, by (7) and (9), one obtains that

ϕp
(
χUj

)
= 1

pj , and ϕp
(
χ∂j
)

= 1
pj −

1
pj+1 ,

since

ΛUj = {k ∈ Z : k ≥ j}, and Λ∂j = {j},
for all j ∈ Z.

Proposition 3.1. Let Sl ∈ σ(Qp), and let χSl
∈ (Mp, ϕp) , for l = 1, ..., N, for

N ∈ N. Let

ΛS1,...,SN
=

N
∩
l=1

ΛSl
in Z,

where ΛSl
are in the sense of (7), for l = 1, ..., N. Then there exist rj ∈ R, such

that

0 ≤ rj ≤ 1 in R, ∀j ∈ ΛS1,...,SN
,

and (10)

ϕp

(
N

Π
l=1
χSl

)
=

∑
j∈ΛS1,...,SN

rj

(
1
pj −

1
pj+1

)
.

Proof. The formula (10) is proven by (7), since

N

Π
l=1
χSl

= χ N
∩

l=1
Sl

in Mp.

See [8] through [12], for details.
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4. Representations of (Mp, ϕp). Fix a prime p ∈ P. Let (Mp, ϕp) be the p-
adic ∗-probability space. By understanding Qp as a measure space, construct the
L2-space,

Hp
def
= L2 (Qp, σ(Qp), µp) = L2 (Qp) , (11)

over C, equipped with its inner product <,>2,

〈f1, f2〉2
def
=
∫
Qp

f1 f
∗
2 dµp, (12)

for all f1, f2 ∈ Hp, inducing the L2-norm,

‖f‖2
def
=
√
〈f, f〉2, for all f ∈ Hp, (12)′

where <,>2 is the inner product (12) on Hp.

Definition 4.1. We call the Hilbert space Hp of (11), the p-adic Hilbert space.

By the definition (11) of the p-adic Hilbert space Hp, our ∗-algebra Mp acts on
Hp, via an algebra-action αp,

αp(f) (h) = fh, for all h ∈ Hp, (13)
for all f ∈ Mp. i.e., by (13), for any f ∈ Mp, the image αp(f) is a well-defined
multiplication operator on Hp with its symbol f, satisfying

αp(f1f2) = αp(f1)αp(f2) on Hp, ∀f1, f2 ∈ Mp,

and (14)

(αp(f))
∗

= α(f∗) on Hp, ∀f ∈ Mp.

Notation. Denote αp(f) by αpf , for all f ∈ Mp. Also, for convenience, denote αpχS

simply by αpS , for all S ∈ σ (Qp) .

Proposition 4.1. The pair (Hp, α
p) is a well-determined Hilbert-space represen-

tation of Mp.

Proof. The proof is done by (14) (e.g., see [8] and [12]).

Definition 4.2. Let

Mp
def
= αp (Mp)

‖.‖
= C

[
αpf : f ∈Mp

]‖.‖
(15)

in B(Hp), where X
‖.‖

mean the operator-norm closures of subsets X of B(Hp). This
C∗-algebra Mp of (15) is called the p-adic C∗-algebra of (Mp, ϕp) .

5. Free-probabilistic models on Mp. Throughout this section, let’s fix a prime
p ∈ P. Let (Mp, ϕp) be the corresponding p-adic ∗-probability space, and Mp,
the p-adic C∗-algebra of (15). Define a linear functional ϕpj : Mp → C by a linear
morphism,

ϕpj (a)
def
=
〈
a(χ∂j ), χ∂j

〉
2
, ∀a ∈ Mp, (16)

for all j ∈ Z, where <,>2 is the inner product (12) on the p-adic Hilbert space Hp

of (11).

Definition 5.1. Let j ∈ Z, and let ϕpj be the linear functional (16) on the p-adic C∗-

algebra Mp. Then the pair
(
Mp, ϕ

p
j

)
is said to be the j-th p-adic (non-traditional)

C∗-probability space.

Now, fix j ∈ Z, and take the j-th p-adic C∗-probability space
(
Mp, ϕ

p
j

)
. For S

∈ σ (Qp) , and an element αpS ∈ Mp, one has that
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ϕpj (α
p
S) =

〈
αpS(χ∂j ), χ∂j

〉
2

= µp (S ∩ ∂j)

= rS

(
1
pj −

1
pj+1

)
, (17)

by (3.8), for some 0 ≤ rS ≤ 1 in R.

Proposition 5.1. Let ∂k be the k-th boundaries (8) of Qp, for all k ∈ Z. Then

ϕpj
((
αp∂k
)n)

= δj,k

(
1
pj −

1
pj+1

)
, (18)

for all n ∈ N, for k ∈ Z.

Proof. By (17), one has that

ϕpj
(
αp∂k
)

= δj,k

(
1
pj −

1
pj+1

)
, for all k ∈ N. (19)

Since αp∂k are projections in Mp, in the sense that:(
αp∂k
)2

= αp∂k =
(
αp∂k
)∗

in Mp,

the formula (18) holds by (19), for all k ∈ Z.

6. Semigroup C∗-subalgebras Sp of Mp. Let Mp be the p-adic C∗-algebra for
p ∈ P. Take projections

Pp,j = αp∂j ∈ Mp, (20)

induced by boundaries ∂j of Qp, for all j ∈ Z. We now restrict our interests to these
projections Pp,j of Mp.

Definition 6.1. Fix p ∈ P. Let Sp be the C∗-subalgebra

Sp = C∗ ({Pp,j}j∈Z) = C [{Pp,j}j∈Z] of Mp, (21)
where Pp,j are projections (20), for all j ∈ Z. We call this C∗-subalgebra Sp, the
p-adic boundary (C∗-)subalgebra of Mp.

Every p-adic boundary subalgebra Sp satisfies the following structure theorem.

Proposition 6.1. Let Sp be the p-adic boundary subalgebra (21) of the p-adic
C∗-algebra Mp. Then

Sp
∗-iso
= ⊕

j∈Z
(C · Pp,j)

∗-iso
= C⊕Z, (22)

in Mp.

Proof. It suffices to show that the generating projections {Pp,j}j∈Z of Sp are mu-
tually orthogonal from each other. But, one can get that, for any j1, j2 ∈ Z,

Pp,j1Pp,j2 = αp
(
χ∂p

j1
∩∂p

j2

)
= δj1,j2α

p
∂p
j1

= δj1,j2Pp,j1 ,

in Sp. Therefore, the structure theorem (22) holds. See [8] for more details.

7. Weighted-semicircularity. Let Mp be the p-adic C∗-algebra, and let Sp be
the boundary subalgebra (21) ofMp, satisfying the structure theorem (22). Through-
out this section, let’s fix a prime p. Recall that if {Pp,k}k∈Z are the generating
projections (20) of Sp, then

ϕpj (Pp,k) = δj,k

(
1
pj −

1
pj+1

)
, ∀j, k ∈ Z, (23)

by (18).
Let φ be the Euler totient function, which is an arithmetic function

φ : N → C,
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defined by (24)

φ(n) = |{k ∈ N : k ≤ n, gcd(n, k) = 1}| ,
for all n ∈ N, where |X| mean the cardinalities of sets X, and gcd means the greatest
common divisor. Then

φ(q) = q − 1 = q
(

1− 1
q

)
, ∀q ∈ P, (25)

by (24).
So, one can get that

ϕpj (Pp,j) = 1
pj

(
1− 1

p

)
= p

pj+1

(
1− 1

p

)
= φ(p)

pj+1 ,

(26)

by (23) and (25), for j ∈ Z.
Motivated by (26), define the new linear functionals τpj : Sp → C, by linear

morphisms,
τpj = 1

φ(p) ϕ
p
j on Sp, (27)

satisfying that:

τpj (Pp,k) =
δj,k
φ(p) ϕ

p
j (Pp,j) =

δj,k
pj+1 ,

for all j, k ∈ Z.

Proposition 7.1. Let Sp(j) = (Sp, τ
p
j ) be a (non-traditional) C∗-probability space,

and let Pp,k be the generating projections of Sp, for all k ∈ Z. Then

τpj

(
Pnp,k

)
=

δj,k
pj+1 , for all n ∈ N. (28)

Proof. The free-moment formula (28) is proven by (27).

7.1. Semicircular and weighted-semicircular elements. Let (A, ϕ) be a (tra-
ditional, or non-traditional) topological ∗-probability space (C∗-probability space,
or W ∗-probability space, or Banach ∗-probability space, etc.) equipped with a
(noncommutative, resp., commutative) topological ∗-algebra A (C∗-algebra, resp.,
W ∗-algebra, resp., Banach ∗-algebra), and a (bounded, or unbounded) linear func-
tional ϕ on A.

Definition 7.1. Let a be a self-adjoint operator in (A, ϕ). This operator a is said
to be semicircular in (A, ϕ), if

ϕ(an) = ωncn
2
, for all n ∈ N,

where (29)

ωn =

{
1 if n is even
0 if n is odd,

for all n ∈ N, where ck are the k-th Catalan number,

ck = 1
k+1

(
2k
k

)
= 1

k+1
(2k)!

(k!)2
= (2k)!

k!(k+1)! ,

for all k ∈ N0 = N ∪ {0}.

It is well-known that, if kn(...) is the free cumulant on A in terms of ϕ (in the
sense of [29] and [30]), then a self-adjoint operator a is semicircular in (A, ϕ), if
and only if
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kn

a, a, ......, a︸ ︷︷ ︸
n-times

 =

{
1 if n = 2
0 otherwise,

(30)

for all n ∈ N (e.g., see [12]). The above characterization (30) of the semicircularity
(29) is obtained by the Möbius inversion of [29] and [30]. Thus, the semicircular
operators a of (A, ϕ) can be re-defined by the self-adjoint operators satisfying the
free-cumulant characterization (30).

Motivated by (30), one can define so-called the weighted-semicircular elements.

Definition 7.2. Let a ∈ (A, ϕ) be a self-adjoint operator. It is said to be weighted-
semicircular in (A, ϕ) with its weight t0 (in short, t0-semicircular), if there exists
t0 ∈ C× = C \ {0}, such that

kn

a, a, ...., a︸ ︷︷ ︸
n-times

 =

{
t0 if n = 2
0 otherwise,

(31)

for all n ∈ N, where kn(...) is the free cumulant on A in terms of ϕ.

By the definition (31), and by the Möbius inversion of [29] and [30], we obtain
the following free-moment characterization (32) of (31): A self-adjoint operator a
in a ∗-probability space (A, ϕ) is t0-semicircular, if and only if there exists t0 ∈ C×,
such that

ϕ(an) = ωn t
n
2
0 cn

2
, (32)

where ωn are in the sense of (29), for all n ∈ N.

7.2. Tensor product banach ∗-algebra LSp. Let Sp(k) = (Sp, τ
p
k ) be a (non-

traditional) C∗-probability space for p ∈ P, k ∈ Z. Throughout this section, we fix
p ∈ P, k ∈ Z, and the corresponding C∗-probability space Sp(k).

Define now bounded linear transformations cp and ap “acting on the C∗-algebra
Sp,” by linear morphisms satisfying,

cp (Pp,j) = Pp,j+1,

and (33)

ap (Pp,j) = Pp,j−1,

on Sp, for all j ∈ Z.
By (33), one can understand cp and ap as bounded operators contained in the

operator space B(Sp), consisting of all bounded linear operators on Sp, by regarding
Sp as a Banach space (e.g., [15]). Under this sense, the operators cp and ap of (33)
are understood as well-defined Banach-space operators on Sp.

Definition 7.3. The Banach-space operators cp and ap on Sp in the sense of
(33) are called the p-creation, respectively, the p-annihilation on Sp. Define a new
Banach-space operator lp by

lp = cp + ap on Sp. (34)
We call this operator lp of (34), the p-radial operator on Sp.

Let lp be the p-radial operator (34) in B(Sp). Construct a Banach algebra Lp
by

Lp = C[lp] in B(Sp), (35)
equipped with the inherited operator-norm ‖.‖ of B(Sp), defined by

‖T‖ = sup{‖Tx‖Sp
: x ∈ Sp s.t., ‖x‖Sp

= 1},
where
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‖x‖Sp
= sup{‖x(h)‖2 : h ∈ Hp s.t. ‖h‖2 = 1},

is the C∗-norm on Sp, where ‖.‖2 is the L2-norm on the p-adic Hilbert space Hp

= L2(Qp).
On the Banach algebra Lp of (35), define a unary operation (∗) by∑∞

k=0 sk l
k
p ∈ Lp 7−→

∑∞
k=0 sk l

k
p ∈ Lp, (36)

where sk ∈ C, with their conjugates sk ∈ C.
Then the operation (36) is a well-defined adjoint on Lp (e.g., [8] and [12]). So,

equipped with the adjoint (36), this Banach algebra Lp of (35) forms a Banach
∗-algebra embedded in the topological vector space B(Sp).

Definition 7.4. Let Lp be a Banach ∗-algebra (35) for a fixed p ∈ P. We call Lp,
the p-radial (Banach-∗-)algebra on Sp.

Let Lp be the p-radial algebra on the boundary subalgebra Sp. Construct now
the tensor product ∗-algebra LSp by

LSp = Lp ⊗CSp, (37)
where ⊗C is the tensor product of Banach ∗-algebras.

Take now a generating element lnp ⊗Pp,j , for some n ∈ N0, and j ∈ Z, where Pp,j
are the generating projections (20) of Sp, with axiomatization:

l0p = 1Sp
, the identity operator of Sp,

in B(Sp), for all j ∈ Z.
Define now a bounded linear morphism Ep : LSp→Sp by a linear transformation

satisfying that:

Ep
(
lkp ⊗ Pp,j

)
=

(pj+1)
k+1

[ k2 ]+1
lkp(Pp,j), (38)

for all k ∈ N0, j ∈ Z, where
[
k
2

]
is the minimal integer greater than or equal to k

2 ,
for all k ∈ N0.

By the cyclicity (35) of the tensor factor Lp of LSp, and by the structure the-
orem (22) of Sp, the above morphism Ep of (38) is indeed a well-defined linear
transformation.

Now, consider how our p-radial operator lp = cp + ap acts on Sp. Observe first
that

cpap (Pp,j) = Pp,j = apcp (Pp,j) ,

for all j ∈ Z, p ∈ P, implying that
cpap = 1Sp

= apcp on Sp. (39)

Lemma 7.2. Let cp, ap be the p-creation, respectively, the p-annihilation on Sp.
Then

cnpanp = (cpap)
n

= 1Sp
= (apcp)

n
= anpcnp ,

and (40)

cn1
p an2

p = an2
p cn1

p , on Sp,

for all n, n1, n2 ∈ N.

Proof. The formulas in (40) holds by (39).

By (40), one can have that

lnp = (cp + ap)
n

=
∑n
k=0

(
n
k

)
ckpa

n−k
p ,
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with identity: (41)

c0
p = 1Sp

= a0
p,

for all n ∈ N, where (
n
k

)
= n!

k!(n−k)! , for all k ≤ n ∈ N0.

By (41), one obtains the following proposition.

Proposition 7.3. Let lp ∈ Lp be the p-radial operator on Sp. Then
(42) l2m−1

p does not contain 1Sp-term, and

(43) l2mp contains its 1Sp
-term,

(
2m
m

)
· 1Sp

,

for all m ∈ N.

Proof. The proofs of (42) and (43) are done by straightforward computations (41),
with help of (40). See [8] for details.

7.3. Weighted-semicircular elements Qp,j in LSp. Fix p ∈ P, and let LSp be
the tensor product Banach ∗-algebra (37), and let Ep : LSp → Sp be the linear
transformation (38). Throughout this section, let

Qp,j = lp ⊗ Pp,j ∈ LSp, (44)
for j ∈ Z, where Pp,j are projections (20) generating Sp. Observe that

Qnp,j = (lp ⊗ Pp,j)n

= lnp ⊗ Pnp,j = lnp ⊗ Pp,j ,
(45)

for all n ∈ N, for all j ∈ Z.
By (37) and (45), these operators Qp,j of (44) generate LSp, for all j ∈ Z.

Consider now that, if Qp,j ∈ LSp is in the sense of (44) for j ∈ Z, then

Ep
(
Qnp,j

)
=

(pj+1)
n+1

[n
2 ]+1

lnp (Pp,j) , (46)

by (38) and (45), for all n ∈ N.
For any fixed j ∈ Z, define a linear functional τ0

p,j on LSp by

τ0
p,j = τpj ◦ Ep on LSp, (47)

where τpj is a linear functional (27) on Sp.

By the linearity of both τpj and Ep, the morphism τ0
p,j of (47) is a well-defined

linear functional on LSp. So, the pair
(
LSp, τ

0
p,j

)
forms a (non-traditional) Banach

∗-probability space.
By (46) and (47), if Qp,j is in the sense of (44), then

τ0
p,j

(
Qnp,j

)
=

(pj+1)
n+1

[n
2 ]+1

τpj
(
lnp (Pp,j)

)
, (48)

for all n ∈ N.

Theorem 7.4. Let Qp,j = lp ⊗ Pp,j ∈
(
LSp, τ

0
p,j

)
, for a fixed j ∈ Z. Then Qp,j

is p2(j+1)-semicircular in
(
LSp, τ

0
p,j

)
. More precisely, one obtains that

τ0
p,j

(
Qnp,j

)
= ωn

(
p2(j+1)

)n
2 cn

2
, (49)
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for all n ∈ N, where ωn are in the sense of (7.1.5). Equivalently, if k0,p,j
n (...) is the

free cumulant on LSp in terms of the linear functional τ0
p,j of (48), then

k0,p,j
n

Qp,j , ......, Qp,j︸ ︷︷ ︸
n-times

 =

{ (
pj+1

)2
if n = 2

0 otherwise,
(50)

for all n ∈ N.

Proof. The formula (49) is proven by the straightforward computations from (48)
with help of (28), (42) and (43). Also, the formula (50) is obtained by the Möbius
inversion of [12] from (49). See [8] and [12] for more details.

8. Semicircularity on LS. Let LSp and τ0
p,j be in the sense of (37), respectively,

(47). Then, one has the corresponding non-traditional Banach ∗-probability spaces,
LSp(j) =

(
LSp, τ

0
p,j

)
, (51)

for all p ∈ P, j ∈ Z.
Let Qp,k = lp⊗Pp,k be the generating elements (44) of the Banach ∗-probability

space LSp(j) of (51), for p ∈ P, k ∈ Z. Then the “j-th” generating element Qp,j
satisfies the p2(j+1)-semicircularity:

k0,p,j
n (Qp,j , ..., Qp,j) =

{
p2(j+1) if n = 2
0 otherwise,

and (52)

τ0
p,j

(
Qnp,j

)
= ωn

(
p2(j+1)

)n
2 cn

2
,

for all p ∈ P, j ∈ Z, for all n ∈ N, by (49) and (50).

8.1. Free product banach ∗-probability space
(
LS, τ0

)
. By (51), we have

the family {
LSp(j) =

(
LSp, τ

0
p,j

)
: p ∈ P, j ∈ Z

}
of (non-traditional) Banach ∗-probability spaces.

From this family, one can define the (traditional) free product Banach ∗-probability
space,

(
LS, τ0

) def
= ?

p∈P, j∈Z
LSp(j),

=

(
?

p∈P, j∈Z
LSp, ?

p∈P, j∈Z
τ0
p,j

) (53)

in the sense of [29], [30], [33] and [35].
The structures LSp(j) of (51) are the free blocks of this free product ∗-probability

space (LS, τ0) of (53). Note that the structure (53) is a well-determined (tradi-
tional) noncommutative Banach ∗-probability space.

Definition 8.1. The Banach ∗-probability space LS
denote

=
(
LS, τ0

)
of (53) is

called the free Adelic filterization.

Let LS be the free Adelic filterization. Then, we obtain a subset
Q = {Qp,j = lp ⊗ Pp,j ∈ LSp(j)}p∈P, j∈Z (54)

of LS, consisting of p2(j+1)-semicircular elements Qp,j in the free blocks LSp(j) of
LS, for all p ∈ P, j ∈ Z.
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Remark here that, by the choice of Qp,j in the family Q of (54), all entries Qp,j
are taken from the mutually-distinct free blocks LSp(j) of LS, for all p ∈ P, j ∈
Z. It means that all elements Qp,j of Q are mutually free from each other in the
free Adelic filterization LS.

Theorem 8.1. Let Qp,j ∈ Q in the free Adelic filterization LS of (53), where Q
is the family (54), for p ∈ P, j ∈ Z. Then the operators

Θp,j = 1
pj+1Qp,j ∈ LS (55)

satisfy

τ0
(
Θn
p,j

)
= ωn cn

2
,

and (56)

k0
n

Θp,j , Θp,j , ..., Θp,j︸ ︷︷ ︸
n-times

 =

{
1 if n = 2
0 otherwise,

for all n ∈ N, where k0
n(...) is the free cumulant on LS in terms of τ0. Equivalently,

the operators Θp,j of (55) are semicircular in LS, for all p ∈ P, j ∈ Z.

Proof. Let Θp,j = 1
pj+1Qp,j be in the sense of (55), where Qp,j ∈ Q, for all p ∈ P, j

∈ Z, in the free Adelic filterization LS, where Q is the family (54). Since Qp,j are
contained in the mutually distinct free blocks LSp(j) of LS, the operators Θn

p,j are
contained in LSp(j) in LS, for all n ∈ N, as free reduced words with their length-1.
Thus, one has that

τ0
(
Θn
p,j

)
= τ0

p,j

(
Θn
p,j

)
= τ0

p,j

(
1

pn(j+1)Q
n
p,j

)
=
(

1
pj+1

)n
τ0
p,j

(
Qnp,j

)
=
(

1
pj+1

)n (
ωnp

n(j+1)cn
2

)
by the p2(j+1)-semicircularity of Qp,j ∈ Q in LSp(j)

= ωn cn
2
, (57)

for all n ∈ N. Therefore, by (29) and (30), the operators Θp,j are semicircular in
LS, for all p ∈ P, j ∈ Z.

Also, by (31) and (57), one obtains the free cumulant formula in (56) by the
Möbius inversion of [29] and [30].

The above theorem shows that, from the family Q of (54) consisting of p2(j+1)-
semicircular elements Qp,j ∈ LSp(j), one can construct the corresponding semicir-
cular elements Θp,j of (55) in the free Adelic filterization LS, for all p ∈ P, j ∈ Z,
by (57). Let

X = {Θp,j ∈ LSp(j) |p ∈ P, j ∈ Z} . (58)
Recall that a subset S = {at}t∈∆ of an arbitrary ∗-probability space (B, ϕB) is

said to be a free family, if all elements at ∈ S are free from each other in (B, ϕB)
(e.g., [33] and [35]).

Definition 8.2. Let S = {at}t∈∆ be a free family in a ∗-probability space (B,
ϕB). This family S is said to be a free semicircular family, if every element at of
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S is semicircular, for all t ∈ ∆. Similarly, the family S is called a free weighted-
semicircular family, if all elements at of S are weighted-semicircular, for all t ∈
∆.

So, we obtain the following result.

Theorem 8.2. Let LS be the free Adelic filterization (53).
(59) The family Q of (54) is a free weighted-semicircular family in LS.
(60) The family X of (58) is a free semicircular family in LS.

Proof. The proofs of (59) and (60) are done by (52), (53), (54), (56) and (58). See
[8] for details.

8.2. Free-semicircular Adelic filterization LS. Let LS be the free Adelic fil-
terization (53), and let Q be the free weighted-semicircular family (59), and X , the
free semicircular family (60) in LS. We now focus on the Banach ∗-subalgebra LS
of LS generated by the free family Q,

LS def
= C [Q] ⊂ LS, (61)

where X are the Banach-topology closures of subsets X of LS.
By (61), we obtain the corresponding Banach ∗-probability space,

LS denote
=

(
LS, τ0

)
, (62)

as a free-probabilistic sub-structure of the free Adelic filterization LS, where τ0 is
the restricted linear functional τ0 |LS on LS.
Definition 8.3. Let LS =

(
LS, τ0

)
be the Banach ∗-probability space (62) in the

free Adelic filterization LS of (53). Then it is called the (free-)semicircular Adelic
filterization (of LS, generated by the free semicircular family X of (59)).

Let LS be the semicircular Adelic filterization (62). Then it satisfies the following
structure theorem.

Theorem 8.3. Let LS be the semicircular Adelic filterization (62) of the free Adelic
filterization LS. Then the Banach ∗-algebra LS satisfies that

LS ∗-iso
= ?

p∈P, j∈Z

(
C [{Θp,j}]

)
∗-iso
= C

[
?

p∈P,j∈Z
{Θp,j}

]
,

(63)

in LS, where the free product (?) in the first isomorphic relation of (63) means
the free-probability-theoretic free product of [12] and [14] (with respect to the linear
functional τ0 of (62)), and the free product (?) in the second isomorphic relation of
(63) means the pure-algebraic free product inducing “finite” noncommutative free
words in the free semicircular family Θ.

Proof. By the definition (62) of our semicircular Adelic filterization LS, we have

LS = C [X ] = C [{Qp,j ∈ X : p ∈ P, j ∈ Z}]

∗-iso
= ?

p∈P, j∈Z
C [{Qp,j}] = ?

p∈P, j∈Z
C [{Qp,j}], (64)

since X is a free family in LS, equivalently, since Qp,j are contained in the mutually
distinct free blocks LSp(j) of LS, for all p ∈ P, j ∈ Z.

Note that, every p2(j+1)-semicircular element Qp,j ∈ X of LS is identified with
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Qp,j = pj+1Θp,j , for all p ∈ P, j ∈ Z,

and hence, the free blocks C [{Qp,j}] of (64) generating the semicircular Adelic
filterization LS are identical to

C [{Qp,j}] = C [{pj+1Θp,j}] = C [{Θp,j}], (64)′

for all p ∈ P, j ∈ Z.
Therefore, by (64), the first ∗-isomorphic relation of (63) holds.
Also, by (64), all elements T of LS are the limits of linear combinations of

noncommutative free reduced words in X , under Banach-topology for LS. Since all
noncommutative free words in X have their unique free-reduced-word forms in LS
(as operators under operator-multiplication on LS), one obtains that

?
p∈P, j∈Z

C [{Θp,j}]
∗-iso
= C[{free words in X}]

= C
[

?
p∈P, j∈Z

{Θp,j}
]
.

(65)

Therefore, by (64), (64)′ and (65), the second ∗-isomorphic relation of (63) holds
true, too.

In the middle of the proof of (63), one can get the set-equality,

LS def
= C [Q] = C [X ], in LS. (66)

9. Semicircular A-tensor Adelic filterization LSA. Let LS = (LS, τ0) be the
semicircular Adelic filterization generated by the free semicircular family X of (60).
Let (A, ϕA) be an arbitrary (traditional) unital C∗-probability space satisfying

ϕA(1A) = 1,

where 1A is the unit (or the multiplication-identity) of the C∗-algebra A.
Define the tensor product Banach ∗-algebra LSA by

LSA
def
= A ⊗C LS, (67)

where ⊗C is the tensor product of Banach ∗-algebras.
On this new Banach ∗-algebra LSA of (67), define a linear functional τA by a

linear morphism satisfying that
τA (a⊗ T ) = τ0 (ϕA(a)T ), (68)

for all a ∈ (A, ϕA), and T ∈ LS (under linearity).
By the definition (68) of the linear functional τA,

τA (a⊗ T ) = τ0(T )ϕA(a) = ϕA(a)τ0(T ),

for all a ∈ (A, ϕA), T ∈ LS.
Then the Banach ∗-probability space

LSA
denote

= (LSA, τA) (69)
is well-defined, where LSA and τA are in the sense of (67), respectively, (68).

Definition 9.1. Let LSA = (LSA, τA) be the Banach ∗-probability space (69)
induced by a fixed unital C∗-probability space (A, ϕA) and the semicircular Adelic
filterization LS. Then we call LSA, the semicircular A-tensor(-Adelic) filterization
(of (A, ϕA)).

On the semicircular A-tensor filterization LSA, we obtain the following free dis-
tributional data.
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Proposition 9.1. Let Qp,j ∈ Q, and Θp,j ∈ X in LS, and a ∈ (A, ϕA), inducing
T ap,j = a ⊗ Qp,j , and Xa

p,j = a ⊗ Θp,j , (70)
in the semicircular A-tensor filterization LSA of (69). Then

τA
((
T ap,j

)n)
=
(
ωnp

n(j+1)cn
2

)
ϕA(an),

and (71)

τA
((
Xa
p,j

)n)
=
(
ωncn

2

)
ϕA(an),

for all n ∈ N.

Proof. The proof of the free-distributional data (71) are shown by the weighted-
semicircularity on the free weighted-semicircular family Q, and the semicircularity
on the free semicircular family X in LS. Indeed, if T ap,j and Xa

p,j are in the sense of
(70), then

τA
((
T ap,j

)n)
= τA

(
an ⊗Qnp,j

)
= ϕA(an)τ0

(
Qnp,j

)
,

and

τA
((
Xa
p,j

)n)
= τA

(
an ⊗Θn

p,j

)
= ϕA(an)τ0

(
Θn
p,j

)
,

for all n ∈ N, by (68).

By the above proposition, we obtain the following free-probabilistic information
on the semicircular A-tensor filterization LSA.

Theorem 9.2. Let LSA = (LSA, τA) be the semicircular A-tensor filterization, and
let T ap,j and Xa

p,j be free random variables (70) in LSA. Suppose a is a self-adjoint
operator of (A, ϕA), satisfying

ϕA
(
a2n
)

= (ϕA(a))
2n
, with ϕA(a2) ∈ C×, (72)

for all n ∈ N. Then T ap,j is
(
p(j+1)ϕA(a)

)2
-semicircular, and Xa

p,j is ϕA(a)2-semi-
circular in LSA.

Proof. Let a ∈ (A, ϕA) be a self-adjoint free random variable satisfying (72). Then,
by the self-adjointness, the operators T ap,j and Xa

p,j of (70) are self-adjoint in LSA,
too. Indeed, one has that (

T ap,j
)∗

= a∗ ⊗Q∗p,j = T ap,j ,

and (
Xa
p,j

)∗
= a∗ ⊗Θ∗p,j = Xa

p,j ,

in LSA.
Also, we have that
τA
((
T ap,j

)n)
=
(
ωnp

n(j+1)cn
2

)
ϕA(an)

= ωnp
n(j+1)ϕA(a)ncn

2

= ωn
(
p2(j+1)ϕA(a)2

)n
2 cn

2
,

and (73)

τA
((
Xa
p,j

)n)
=
(
ωncn

2

)
ϕA(an)

= ωnϕA(a)ncn
2

= ωn
(
ϕA(a)2

)n
2 cn

2
,
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for all n ∈ N, by (71) and (72).
Therefore, if a free random variable a ∈ (A, ϕA) satisfies the additional condition

(72), then T ap,j is
(
pj+1ϕA(a)

)2
-semicircular, and Xa

p,j is ϕA(a)2-semicircular in the
semicircular A-tensor filterization LSA, by (73).

The following corollary is a direct consequence of the above theorem.

Corollary 9.3. Let LSA be the semicircular A-tensor filterization (69) of (A, ϕA).
(74) The operator T 1A

p,j in the sense of (70) is p2(j+1)-semicircular in LSA.
(75) The operator X1A

p,j in the sense of (70) is semicircular in LSA.
(76) If the linear functional ϕA : A → C is a state in the sense that

ϕA (a1a2) = ϕA(a1)ϕA(a2), ∀a1, a2 ∈ A,
and if a ∈ (A, ϕA) is a self-adjoint free random variable with ϕA(a) ∈ C×, then the

operator T ap,j of (70) is
(
pj+1ϕA(a)

)2
-semicircular, and the operator Xa

p,j of (70) is

ϕA(a)2-semicircular in LSA.

Proof. Let 1A be the unit of (A, ϕA). Since our fixed C∗-probability space (A, ϕA)
is unital in the sense that ϕA(1A) = 1, one has

ϕA (1nA) = ϕA(1A) = 1 = 1n = (ϕA(1A))
n
,

for all n ∈ N. Therefore, this self-adjoint free random variable 1A satisfies the condi-
tion (72). Thus, by (73), the operator T 1A

p,j is p2(j+1)-semicircular, and the operator

X1A
p,j is semicircular in LSA. It proves the statements (74) and (75), respectively.
Assume now that the linear functional ϕA is a state on A, equivalently, assume

ϕA is a multiplicative linear functional on A. Then, for any self-adjoint free random
variable a ∈ (A, ϕA) with ϕA(a) ∈ C×,

ϕA (an) = ϕA(a)n, for all n ∈ N.

So, it satisfies the condition (72). Therefore, the statement (76) holds by (73).

In the above theorem and corollary, we considered the free-distributional infor-
mation of the generating operators, on the semicircular A-tensor filterization LSA.

Theorem 9.4. Let LSA be the semicircular A-tensor filterization (69) of a unital
C∗-probability space (A, ϕA). Then

LSA
∗-iso
= ?

p∈P, j∈Z

(
A⊗C C [{Θp,j}]

)
∗-iso
= ?

p∈P, j∈Z
A [{Θp,j}],

(77)

where Z in the first ∗-isomorphic relation of (77) are the Banach-topology closures
of subsets Z of the semicircular Adelic filterization LS, and Y in the second ∗-
isomorphic relation of (77) are the Banach-topology closures of subsets Y of LSA,
where A[Y ] mean the polynomial rings (and hence, algebras, in this case) generated
by the subsets Y over A in LSA.

Proof. By the definition (69) of the semicircular A-tensor filterization LSA,

LSA
def
= A⊗C LS ∗-iso= A⊗C

(
?

p∈P, j∈Z
C [{Θp,j}]

)
by (63) and (66)



TENSOR PRIME-INTEGER SHIFTS 755

∗-iso
= ?

p∈P, j∈Z

(
A⊗C C [{Θp,j}]

)
∗-iso
= ?

p∈P, j∈Z
A [{Θp,j}]

(e.g., see [29], [30], [33] and [35]). Therefore, the free-structure theorem (77) holds.

As corollary, one obtains the following structure theorems.

Corollary 9.5. Let LSA be the semicircular A-tensor filterization of (A, ϕA).

(78) If A is a direct product C∗-algebra ⊕
k∈∆

Ak of its C∗-subalgebras {Ak}k∈∆,

where ⊕ is the direct product of C∗-algebras, and ∆ is a countable (finite, or infinite)
index set, then

LSA
∗-iso
= ⊕C

k∈∆

(
?

p∈P, j∈Z
Ak [{Θp,j}]

)
∗-iso
= ?

p∈P, j∈Z

(
⊕C
k∈∆

Ak [{Θp,j}]
)
,

where ⊕C is the direct product of Banach ∗-algebras.

(79) If A is a tensor product C∗-algebra ⊗
k∈∆

Ak of its C∗-subalgebras {Ak}k∈∆,

where ⊗ is the tensor product of C∗-algebras, then

LSA
∗-iso
= ⊗C

k∈∆

(
?

p∈P, j∈Z
Ak [{Θp,j}]

)
∗-iso
= ?

p∈P, j∈Z

(
⊗C
k∈∆

Ak [{Θp,j}]
)
,

where ⊗C is the tensor product of Banach ∗-algebras.

(80) Let (A, ϕA) be the fixed unital C∗-probability space. For the linear functional
ϕA, assume that the C∗-algebra A is a free product C∗-algebra of its C∗-subalgebras
{Ak}k∈∆. Then

LSA
∗-iso
= ?

k∈∆, p∈P, j∈Z
Ak [{Θp,j}].

Proof. The proofs of the statements (78), (79) and (80) are done by (77). Indeed,
one has that: if A = ⊕

k∈∆
Ak, then

A [{Θp,j}]
∗-iso
=

(
⊕
k∈∆

Ak

)
[{Θp,j}]

∗-iso
= ⊕C

k∈∆
(Ak [{Θp,j}]) = ⊕C

k∈∆
Ak [{Θp,j}],

for all p ∈ P, j ∈ Z.
Similarly, if A = ⊗

k∈∆
Ak, then

A [{Θp,j}]
∗-iso
= ⊗C

k∈∆
Ak [{Θp,j}];
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and if A = ?
k∈∆

Ak, then

A [{Θp,j}]
∗-iso
= ?

k∈∆
Ak [{Θp,j}],

for all p ∈ P, j ∈ Z.

Our results of this section illustrate that the free probability on LSA is charac-
terized by the both free probability on (A, ϕA), and that on the semicircular Adelic
filterization LS. In particular, such a characterization is analyzed by the formula
(71), and the structure theorem (77).

10. Shifts on P acting on LSA. Throughout this section, we fix a unital C∗-
probability space (A, ϕA), and the corresponding semicircular A-tensor filterization
LSA = (LSA, τA) of (A, ϕA). Also, let

Xa
p,j = a⊗Θp,j (81)

be free random variables (70), generating LSA, for all a ∈ (A, ϕA), and Θp,j ∈ X ⊂
LS, where LS is the semicircular Adelic filterization and X is the free semicircular
family (60). Indeed, all operators Xa

p,j formed by (81) generate LSA, by (63) and
(66).

Define a subset XA of LSA by

XA
def
= {Xa

p,j ∈ LSA : Xa
p,j is in the sense of (81)}. (82)

Then, as we discussed above this subset XA of (82) generates LSA, i.e.,

LSA = C [XA], (83)
set-theoretically, by (63), (66) and (67).

Suppose a given C∗-algebra A is generated by a subset B of A, i.e., by (83), if

A = C[B]
A
,

where Y
A

mean the C∗-topology closures of subsets Y of A, then one can re-define
the generator set XA of (82) by

XA = {Xa
p,j ∈ LSA : a ∈ B, Θp,j ∈ X}.

However, now, we take a C∗-algebra A arbitrarily. So, in the following text, we
understand the generator set XA of LSA as in the general sense of (82).

In this section, we consider how our free-distributional data on LSA are affected
(or distorted) by certain shift processes on the set P of all primes.

10.1. Shifts on P. Let P be the set of all primes in N. Note that the set P is a
totally ordered set (or, in short, TOset) under the usual inequality (≤). So, one can
index P orderly by

P = {p1 ≤ p2 ≤ p3 ≤ p4 ≤ · · ·},
with (84)

p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, ..., etc..

From below, the set P is understood as the TOset (84).
Define now an injective functional g : P → P by

g(pk) = pk+1, for all k ∈ N. (85)
For the injection g of (85), we define gn : P → P by

gn = g ◦ g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
n-times

,

with axiomatization: (86)
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g0 = idP , the identity map on P,
for all n ∈ N0, where (◦) is the usual functional composition.

By (86), clearly, g1 = g, in the sense of (85), and

gn(pk) = pk+n in P, for all k ∈ N,
for all n ∈ N0. For example,

g(2) = 3, g2(3) = 7, g5(5) = 19, etc..

Definition 10.1. Let gn be in the sense of (86) for all n ∈ N0. Then these functions
gn on P are said to be n-shifts on P, for all n ∈ N0. In particular, the 1-shift g =
g1 of (85) is simply called the shift on P.

10.2. Prime-shift ∗-homomorphisms on LSA. Let LSA be our semicircular A-
tensor filterization, and let g be the shift (85) on the TOset P of (84), inducing
the n-shifts gn of (86) on P. Define a ∗-homomorphism GA on LSA by a bounded
“multiplicative” linear transformation satisfying

GA
(
Xa
p,j

)
= Xa

g(p),j = a⊗Θg(p),j , (87)

for all Xa
p,j ∈ XA, where XA is the generator set (82) of LSA, where g = g1 is the

shift (85) on P.
By the multiplicativity, the morphism GA of (87) satisfies that: if

S =
N

Π
l=1

(
Xal
pl,jl

)nl ,

in LSA, for n1, ..., nN ∈ N, as a free reduced words with its length-N (in the sense
of (77)) for N ∈ N, then

GA(S) = GA

(
N

Π
l=1

(
Xal
pl,jl

)nl

)
=

N

Π
l=1
GA

((
Xal
pl,jl

)nl
)

by the multiplicativity of GA

=
N

Π
l=1

(
GA

(
Xal
pl,jl

))nl

by the multiplicativity of GA

=
N

Π
l=1

(
Xal
g(pl),jl

)nl

=
N

Π
l=1

(
al ⊗Θg(pl),jl

)nl

by (87)

=
N

Π
l=1

(
anl ⊗Θnl

g(pl),jl

)
,

i.e.,

GA(S) =
N

Π
l=1

(
Xal
g(pl),jl

)nl

, (88)

in LSA.
Also, this morphism GA of (87) satisfies that

GA (S∗) = GA

(
N

Π
l=1
X
a∗N−l+1

pN−l+1,jN−l+1

)
because (

Xa
p,j

)∗
= (a⊗Θp,j)

∗
= a∗ ⊗Θp,j = Xa∗

p,j , (89)
in LSA, for all Xa

p,j ∈ XA, and hence, the above formula goes to

=
N

Π
l=1
X
a∗N−l+1

g(pN−l+1), jN−l+1
=

(
N

Π
l=1
Xal
g(pl),jl

)∗
by (88)

= (GA(S))
∗
, (90)

by (89).
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By (88) and (90), one can verify that, for all T ∈ LSA,
GA(T ∗) = GA(T )∗, in LSA. (91)

Proposition 10.1. Let GA be the multiplicative linear transformation (87) on LSA.
Then it is a ∗-homomorphism on LSA.

Proof. The proof is done by (91). i.e., this multiplicative linear transformation GA
preserves adjoints in the sense of (91). Thus, it is a well-defined ∗-homomorphism
on LSA.

For the ∗-homomorphism GA of (87), one can have the iterated products (or

compositions) GnA of (n-copies of) GA, as ∗-homomorphisms on LSA, with G1
A =

GA, for all n ∈ N0, with axiomatization:

G0
A = 1LSA , the identity operator on LSA,

satisfying

G0
A

(
Xa
p,j

)
= Xa

g0(p), j = Xa
p,j = 1LS

(
Xa
p,j

)
,

for all Xa
p,j ∈ XA in LSA, where XA is the generator set (82) of LSA.

Then it is not difficult to check that GnA satisfy
GnA

(
Xa
p,j

)
= Xa

gn(p), j in LS, ∀n ∈ N0, (92)

for all Xa
p,j ∈ XA ⊂ LSA.

Definition 10.2. The ∗-homomorphism GA of (87) on the semicircular A-tensor
filterization LSA is called the prime-shift (∗-homomorphism) on LSA. Also, the n-th
powers GnA of (92) are called the n-prime-shift(-∗-homomorphism)s on LSA, for all
n ∈ N0.

Based on our n-prime-shifts (92), we obtain the following free-distributional data.

Theorem 10.2. Let Xa
p,j ∈ XA be a generating operator of LSA, and let GnA be the

n-prime-shift on LSA, for n ∈ N0. Then

τA

((
GnA

(
Xa
p,j

))k)
=
(
ωkc k

2

)
ϕA(ak)

= τA

((
Xa
p,j

)k)
,

(93)

for all k ∈ N.

Proof. Let Xa
p,j ∈ XA in LSA, for a ∈ (A, ϕA), p ∈ P, and j ∈ Z. Then

GnA
(
Xa
p,j

)
= Xa

gn(p),j = a⊗Θgn(p),j ∈ LSA,

for any n ∈ N0. Thus,(
GnA

(
Xa
p,j

))k
=
(
a⊗Θgn(p),j

)k
= ak ⊗Θk

gn(p),j , (94)

for all k ∈ N.
So, one has that

τA

((
GnA

(
Xa
p,j

))k)
= τA

((
Xa
gn(p),j

)k)
by (94)

= ϕA(ak)τ0
(

Θk
gn(p),j

)
= ϕA(ak)

(
ωkc k

2

)
, (95)

by (71), for all k ∈ N.
Therefore, the first equality of (93) holds by (95), and the second equality of (93)

holds by (71).

By the above theorem, one can get the following result.
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Corollary 10.3. Let a ∈ (A, ϕA) be a self-adjoint free random variable, and let
Xa
p,j ∈ XA be a generating operator (81) of LSA. Let GnA be the n-prime shifts (92)

on LSA, for n ∈ N0. Then the free distribution of Xa
p,j and the free distributions of

GnA
(
Xa
p,j

)
are identical in LSA, for all n ∈ N0.

Proof. Let a ∈ (A, ϕA) be given as above. Then, by the self-adjointness of a, the
corresponding generating operator Xa

p,j is self-adjoint in LSA, too. Indeed,(
Xa
p,j

)∗
= a∗ ⊗Θ∗p,j = Xa

p,j in LSA.

Note now that, since GnA
(
Xa
p,j

)
= Xa

gn(p),j ,(
GnA

(
XA
p,j

))∗
= a∗ ⊗Θ∗gn(p),j = Xa

gn(p),j = GnA
(
XA
p,j

)
,

in LSA, for all n ∈ N0. Therefore, the images GnA
(
Xa
p,j

)
of our n-prime shifts GnA

preserve the self-adjointness of Xa
p,j in LSA, for all n ∈ N0.

Recall that the free distributions of self-adjoint operators are characterized by
the free-moment sequence. So, the free distribution of Xa

p,j is characterized by(
τA

((
Xa
p,j

)k))∞
k=1

=
(
ωkc k

2
ϕA(ak)

)∞
k=1

,

by (71).
Also, the free distributions of GnA

(
Xa
p,j

)
are characterized by(

τA

((
GnA(Xa

p,j)
)k))∞

k=1
=
(
τA

((
Xa
p,j

)k))∞
k=1

,

by the self-adjointness of them, and by (93), for all n ∈ N0.
It shows that the free distributions of GnA

(
Xa
p,j

)
are all identically characterized

by the free-moment sequence,(
0, c1ϕA(a2), 0, c2ϕA(a4), 0, c3ϕA(a6), ....

)
,

for all n ∈ N0.

Let’s generalize the above corollary. In fact, the free-distributional formula (93)
guarantees that the free distributions of the generators Xa

p,j ∈ XA are preserved by
the n-prime shifts GnA on LSA, for all n ∈ N0, since, even though a is not self-adjoint
in A, one can have

τA

((
GnA

(
Xa
p,j

))k)
= τA

((
Xa
p,j

)k)
,

and (96)

τA

(((
GnA

(
Xa
p,j

))∗)k)
= τA

((
GnA

(
Xa∗

p,j

))k)

= τA

((
Xa∗

p,j

)k)
= τA

(((
Xa
p,j

)∗)k)
,

for all k ∈ N, because (
Xa
p,j

)∗
= a∗ ⊗Θp,j = Xa∗

p,j in XA,
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in LSA.
Therefore, one can verify that

τA
((
GnA(Xar1

p,j )
) (
GnA(Xar2

p,j )
)
...
(
GnA(Xark

p,j )
))

= τA

((
Xar1
gn(p),j

)(
Xar2
gn(p),j

)
...
(
Xark
gn(p),j

))
= τA

(
(ar1ar2 ...ark)⊗Θk

gn(p),j

)
= ϕA (ar1ar2 ...ark) τ0

(
Θk
gn(p),j

)
=
(
ωkc k

2

)
ϕA (ar1ar2 ...ark)

by (71)
= ϕA(ar1ar2 ...ark)τ0

(
Θk
p,j

)
= τA

(
Xar1
p,j X

ar2
p,j ...X

ark
p,j

)
, (97)

by (71), for all (r1, ..., rk) ∈ {1, ∗}k, for all k ∈ N.
Therefore, one obtains the following theorem.

Theorem 10.4. Let Xa
p,j ∈ XA be a generating operator of the semicircular A-

tensor filterization LSA, where a ∈ (A, ϕA) is arbitrarily given, and let GnA be the
n-prime shifts on LSA, for all n ∈ N0. Then the free distribution of Xa

p,j and the

free distributions of GnA
(
Xa
p,j

)
are identically same in LSA, for all n ∈ N0. i.e.,

(98) the free distribution of GnA
(
Xa
p,j

)
= the free distribution of Xa

p,j ,

in LSA, for all n ∈ N0.

Proof. Let a ∈ (A, ϕA) be self-adjoint, and hence, Xa
p,j ∈ XA, a self-adjoint gener-

ating operator of LSA. Then, by the above corollary, the free distribution of Xa
p,j

and those of GnA
(
Xa
p,j

)
are identical in LSA, for all n ∈ N0.

Assume now that a is not self-adjoint in A. Then the corresponding operator
Xa
p,j is not self-adjoint too, since(

Xa
p,j

)∗
= Xa∗

p,j 6= Xa
p,j in LSA.

It also shows that

GnA (Xp,j)
∗

=
(
Xa
gn(p),j

)∗
= Xa∗

gn(p),j 6= Xa
gn(p),j = GnA (Xp,j) ,

in LSA, for all n ∈ N0.

So, the free distribution of X
denote

= Xa
p,j is characterized by the “joint” free

moments, {
τA (Xr1Xr2 ...Xrk)

∣∣∣∣ (r1, ..., rk) ∈ {1, ∗}k,
for all k ∈ N

}
,

and similarly, the free distributions of X(n)
denote

= GnA
(
Xa
p,j

)
are characterized by

the joint free moments,{
τA

(
Xr1

(n)X
t2
(n)...X

rk
(n)

) ∣∣∣∣ (r1, ..., rk) ∈ {1, ∗}k,
for all k ∈ N

}
,
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since X(n) are not self-adjoint in LSA, for all n ∈ N0.
However, by (96) and (97), one has that

τA

(
Xr1

(n)X
r2
(n)...X

rk
(n)

)
= τA (Xr1Xr2 ...Xrk) ,

for all (r1, ..., rk) ∈ {1, ∗}, for all k ∈ N, for any n ∈ N0.
Therefore, the free distributions of X(n) are identically same with the free distri-

bution of X in LSA, for all n ∈ N0.

The above theorem shows that the n-prime shifts GnA preserve the free probability
on the semicircular A-tensor filterization LSA, for all n ∈ N0.

Corollary 10.5. The ∗-homomorphisms, the n-prime shifts, GnA preserve the free
probability on LSA, for all n ∈ N0.

Proof. Note that all elements T of LSA are the limits of linear combinations of
free reduced words in the generator set XA of LSA, by (77). And, by (98), the
free distributions for GnA (XA) are identical to those for XA in LSA, for all n ∈ N0.
Therefore, the free distributions for

GnA (free words in XA)

are identical to those for free words in XA, by (88) and (90), in LSA, for all n ∈ N0.
It guarantees that free distribution of every element T is identical to the free dis-

tribution of GnA(T ), for all T ∈ LSA, for all n ∈ N0. Equivalently, the free probability
on LSA is preserved by the actions of n-prime shifts {GnA}n∈N0

.

10.3. Free-homomorphisms on LSA. In this section, motivated by the main
results (93) and (98) of Section 10.2, we consider free-homomorphic relations on
our semicircular A-tensor filterization LSA under n-prime shifts GnA, for n ∈ N0.

Definition 10.3. Let (B1, ϕ1), and (B2, ϕ2) be topological ∗-probability spaces.
Suppose there exists a bounded ∗-homomorphism Φ : B1 → B2, and assume that

ϕ2 (Φ(b)) = ϕ1(b), for all b ∈ B1. (99)
Then the topological ∗-probability space (B1, ϕ1) is said to be free-homomorphic

to (B2, ϕ2). In particular, a ∗-homomorphism Φ is called a free-(∗-)homomorphism
from (B1, ϕ1) to (B2, ϕ2).

If Φ is a ∗-isomorphism satisfying (99), then (B1, ϕ1) is said to be free-isomorphic
to (B2, ϕ2). In such a case, this ∗-isomorphism Φ is called a free-(∗-)isomorphism.

By the above free-homomorphic relation (99), one can get the following result.

Theorem 10.6. Let LSA be the semicircular A-tensor filterization of (A, ϕA).
Then

(100) the n-prime shifts GnA are free-homomorphisms on LSA, ∀n ∈ N0.

Proof. For any arbitrarily fixed n ∈ N0, take the n-prime shift GnA on LSA. Then,
by (93) and (98), for any free reduced words W of LSA in the generator set XA,
the free distributions of GnA (W ) are identical to the free distribution of W in LSA.
Thus, the ∗-homomorphisms GnA preserve the free probability on LSA, for all n ∈
N0, i.e., the statement (100) holds true.
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11. Shifts on Z acting on LSA. Throughout this section, fix a unital C∗-proba-
bility space (A, ϕA), and the corresponding semicircular A-tensor filterization LSA
= (LSA, τA) of (A, ϕA). In Section 10, we defined the n-prime shifts GnA of
(92), which are the ∗-homomorphism on LSA, and showed that they are free-
homomorphisms on LSA, for all n ∈ N0, by (100).

In this section, we consider certain shifting processes h± on Z, and the corre-
sponding ∗-homomorphisms β± on LSA.

11.1. Shifts h± on Z. Let Z be the set of all integers as usual. Define functions
h+ and h− on Z by the bijections on Z,

h+ (j) = j + 1, and h− (j) = j − 1, (101)
for all j ∈ Z. By the definition (101), one can have

h+ ◦ h− = idZ = h− ◦ h+, (102)
where idZ is the identity map on Z.

Definition 11.1. Let h± be the bijections (101) satisfying (102). Then we call h±,
the (±)-shifts on Z.

Let h± be the (±)-shifts (101) on Z. Define the functions hn± on Z by
hn± = h± ◦ h± ◦ · · · ◦ h±︸ ︷︷ ︸

n-times

, (103)

for all n ∈ N0, with axiomatization:

h0
± = idZ on Z,

satisfying

h0
+ (j) = j = h0

− (j) , for all j ∈ Z.

Definition 11.2. Let hn± be in the sense of (103), for all n ∈ N0, where h± are the
(±)-shifts (102) on Z. Then they are called the n-(±)-shifts on Z, for all n ∈ N0.

By (101) and (103), the n-(±)-shifts hn± satisfy

hn+(j) = j + n, for all j ∈ Z,
and (104)

hn−(j) = j − n, for all j ∈ Z,
for all n ∈ N0. Also, by (102), one has

hn+ ◦ hn− = idZ = hn− ◦ hn+, ∀n ∈ N0. (105)

11.2. Integer-shift ∗-homomorphisms on LSA. Let hn± be the n-(±)-shifts
(103) on Z, satisfying (104) and (105), for n ∈ N0. We now define “multiplica-
tive” linear transformations βn+ and βn− on the semicircular A-tensor filterization
LSA by the morphisms satisfying

βn+
(
Xa
p,j

)
= Xa

p,hn
+(j) = Xa

p,j+n,

and (106)

βn−
(
Xa
p,j

)
= Xa

p,hn
−(j) = Xa

p,j−n,

with

β0
±
(
Xa
p,j

)
= Xa

p,h0
±(j)

= Xa
p,j = 1LSA

(
Xa
p,j

)
,

for all Xa
p,j ∈ XA, for all n ∈ N0, where XA is the generator set (82) of LSA (by

(77)).
By the multiplicativity of the morphisms βn± of (106) on LSA, if
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T =
N

Π
l=1

(
Xal
pl,jl

)nl ∈ LSA, for n1, ..., nN ∈ N,

is a free reduced word with its length-N (in the sense of (77)), for Xal
pl,jl
∈ XA, for

l = 1, ..., N, for N ∈ N, then

βn± (T ) = βn±

(
N

Π
l=1

(
Xal
pl,jl

)nl

)

=
N

Π
l=1
βn±
((
Xal
pl,jl

)nl
)

=
N

Π
l=1

(
βn±(Xal

pl,jl
)
)nl

by the multiplicativity of βn±

=
N

Π
l=1

(
Xal
pl,hn

±(jl)

)nl

=
N

Π
l=1

(
Xal
pl,jl±n

)nl , (107)

in LSA, for all n ∈ N0. Also, the morphisms βn± satisfy

βn±

((
Xa
p,j

)∗)
= βn±

(
Xa∗

p,j

)
= Xa∗

p,j±n

=
(
Xa
p,j±n

)∗
=
(
βn±(Xa

p,j)
)∗
,

(108)

for all Xa
p,j ∈ XA, in LSA, for all n ∈ N0.

So, by (107) and (108), if W is a free reduced word of LSA in XA, then

βn± (W ∗) =
(
βn±(W )

)∗
,

implying that
βn± (T ∗) =

(
βn±(T )

)∗
, for all T ∈ LSA, (109)

for all n ∈ N0.

Proposition 11.1. Let βn± be the n-(±)-integer shifts on LSA, for n ∈ N0. Then
they are ∗-isomorphisms on LSA.

Proof. Note that the n-(±)-shifts hn± are bijections on Z, for n ∈ N0. So, the re-
strictions βn± |XA

of our n-(±)-integer shifts (106) are bijections on the generator
set XA, for n ∈ N0. Therefore, these morphisms βn± of (106) are bijective on LSA,
because of the generator-preserving property, for all n ∈ N0. Moreover, by (107)
and (109), these multiplicative linear transformations βn± are ∗-homomorphisms on

LSA, and hence, they are ∗-isomorphisms on LSA, for all n ∈ N0.

Definition 11.3. We call the ∗-homomorphisms βn± of (106), the n-(±)-integer-
shifts on LSA, for all n ∈ N0. If n = 1 in N0, we simply call β± = β1

±, the (±)-
integer-shifts on LS.

The above proposition shows a difference between our prime-shifts, and the
integer-shifts on LSA.

Remark 11.1. Note that our n-prime shifts GnA are injective ∗-homomorphisms,
but not ∗-isomorphisms in general. In particular, if n 6= 0 in N0, then they are
not ∗-isomorphisms on LSA. It is easily verified because the n-shifts gn of (86)
are injective but not bijective on the TOset P of (84), whenever n 6= 0 in N0. It
also shows that GnA are free-homomorphisms, but not free-isomorphisms on LSA, in
(100), for all n 6= 0 in N0.

Now, consider how our n-(±)-integer shifts βn± affect the free probability on LSA,
for n ∈ N0.
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Theorem 11.2. Let n ∈ N0, and βn±, the corresponding n-(±)-integer shifts on the
semicircular A-tensor filterization LSA. Then, for any Xa

p,j ∈ XA, we have

τA

((
βn±(Xa

p,j)
)k)

= ωkc k
2
ϕA(ak) = τA

((
Xa
p,j

)k)
, (110)

for all k ∈ N.

Proof. Under hypothesis, consider that

τA

((
βn±(Xa

p,j)
)k)

= τA

((
Xa
p,j±n

)k)
by (107)

= ϕA(ak)τ0
(
Θk
p,j±n

)
= ωkc k

2
ϕA(ak)

by (71)

= ϕA(ak)τ0
(
Θk
p,j

)
= τA

((
Xa
p,j

)k)
,

for all k ∈ N, for all n ∈ N0.
Therefore, the free-distributional data (110) is obtained.

Similar to the proof of (98) and that of (100), we obtain the following theorem
by (110).

Theorem 11.3. Let LSA be the semicircular A-tensor filterization, and let βn± be
the n-(±)-integer shifts on LSA, for all n ∈ N0. Then

(111) βn± are free-isomorphisms on LSA.

Proof. By (110), the ∗-isomorphisms βn± preserves free distributions of generating
operators of LSA, contained in XA. Therefore, by the similar arguments of the proofs
of (98) and (100), the free probability on LSA is preserved by the action of βn±, for
all n ∈ N0.

12. Shifts on P×Z and ∗-homomorphisms on LSA. In this section, we consider
both prime shifts, and integer shifts, which are well-defined free-homomorphisms
on the semicircular A-tensor filterization LSA of a fixed unital C∗-probability space
(A, ϕA). In particular, we showed that the prime shifts are injective free-homomor-
phisms, and the integer shifts are free-isomorphisms on LSA, by (100), respectively,
by (111).

Now, we consider certain ∗-homomorphisms on LSA induced by both prime shifts
and integer shifts. From below, for convenience, we let

N±0
denote

= {±} × N0.

12.1. Shifts on P = P × Z. Now, consider the Cartesian product set P,
P def

= P × Z. (112)
Let gn be the n-shifts on P, and let hke be the k-(e)-shifts on Z, for n ∈ N0, and

(e, k) ∈ N±0 , with axiomatization,

g0 = idP , and h0
± = idZ.

Define now shifts on the set P of (112) by

sn1

(e,n2)

def
= gn1 × hn2

e
denote

= (gn1 , hn2
e ) , (113)

for all n1 ∈ N0, and (e, n2) ∈ N±0 . i.e., for any (p, j) ∈ P,
sn1

(e,n2) (p, j) = (gn1(p), hn2
e (j)) = (gn1(p), jen2)

in P, where
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jen2 =

{
j + n2 if e = +
j − n2 if e = −.

For example,

s2
(−,5) (3, − 1) =

(
g2(3), h5

−(−1)
)

= (7, − 6)

in P.

Definition 12.1. Let sn1

(e,n2) be injections (113) on the set P of (112), for n1 ∈ N0,

and (e, n2) ∈ N±0 , with identity,

s0
(e,0) = idP × idZ = idP,

where idP is the identity map on P, satisfying

idP (p, j) = (p, j) in P, for all (p, j) ∈ P.
Then these injections sn1

(e,n2) are called the shift(-function)s on P.

12.2. Prime-integer shifts on LSA. Let P be the Cartesian product set (112),
and let sn1

(e,n2) be shifts (113) on P. Then, for such a shift sn1

(e,n2), one can construct

the corresponding ∗-homomorphism σn1

(e,n2) on the semicircular A-tensor filterization

LSA, defined by the bounded multiplicative linear transformation on LSA,
σn1

(e,n2) = Gn1

A βn2
e on LSA, (114)

for all n1 ∈ N0, and (e, n2) ∈ N±0 , where Gn1 are the n1-prime shifts, and βn2
e are

n2-(e)-integer shifts on LSA.

Notation and Assumption. From below, for convenience, we simply write our
n-prime shifts GnA simply by Gn, for all n ∈ N0.

Since Gn1 are ∗-homomorphisms, and βn2
e are ∗-isomorphisms on LSA, the mor-

phism σn1

(e,n2) of (114) are indeed well-defined ∗-homomorphisms on LSA.

Proposition 12.1. Let σn1

(e,n2) be a ∗-homomorphism (114) on LSA. Then

σn1

(e,n2)

def
= Gn1βn2

e = βn2
e Gn1 on LSA, (115)

for all n1 ∈ N0, (e, n2) ∈ N±0 .

Proof. By the very definition (114),
σn1

(e,n2)

(
Xa
p,j

)
= Gn1

(
βn2
e

(
Xa
p,j

))
= Gn1

(
Xa
p,jen2

)
= Xa

gn1 (p), jen2

= βn2
e

(
Xa
gn1 (p),j

)
= βn2

e

(
Gn1

(
Xa
p,j

))
= βn2

e Gn1
(
Xa
p,j

)
,

for all generating operators Xa
p,j ∈ XA.

Since all elements of LSA are the limits of linear combinations of free reduced
words in XA by (77), we have

σn1

(e,n2)

def
= Gn1βn2

e = βn2
e Gn1 on LSA,

for all n1 ∈ N0, (e, n2) ∈ N±0 .
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Let Hom (LSA) be the (∗-)homomorphism semigroup acting on the semicircular
A-tensor filterization LSA, consisting of all ∗-homomorphisms on LSA. Define now
the subset σ(LSA) of Hom(LSA) by

σ(LSA) = {σn1

(e,n2) : n1 ∈ N0, (e, n2) ∈ N±0 }, (116)

where σn1

(e,n2) are the ∗-homomorphisms (114) on LSA.

Definition 12.2. We call the ∗-homomorphisms σn1

(e,n2) of (114), the prime-integer

shift(-∗-homomorphism)s (in short, pi-shifts) on LSA.

Now, let’s consider the following structure theorem of the system σ(LSA) of (116)
in the homomorphism semigroup Hom(LSA).

Theorem 12.2. Let σ(LSA) be the system (116) in Hom(LSA). Then
(117) σ(LSA) is a commutative sub-monoid of Hom(LSA).

Proof. Let σ(LSA) be the subset (116) of Hom(LSA). Then one can obtain that

σn1

(e,n2) σ
k1
(r,k2) = (Gn1βn2

e )
(
Gk1βk2r

)
by (114)

=
(
Gn1Gk1

) (
βn2
e βk2r

)
by (115)

= Gn1+k1 β
|en2+rk2|
sgn(en2+rk2) = σn1+k1

sgn(en2+rk2), (118)

where sgn is the sign map on Z, satisfying

sgn(j) =

{
+ if j ≥ 0
− if j < 0,

for all j ∈ Z, and |.| means the absolute value on Z, for all n1, k1, n2, k2 ∈ N0, and
e, r ∈ {±}.

The formula (118) shows that the product (or composition), inherited from that
on Hom(LSA), is closed on the set σ(LSA). Thus, one can consider σ(LSA) as an
algebraic sub-structure (σ(LSA), ·) in Hom(LSA).

Observe now that(
βn1
e1 β

n2
e2

)
βn3
e3 = β

|e1n1+e2n2|
sgn(e1n1+e2n2) β

n3
e3

= β
||e1n1+e2n2|+e3n3|
sgn(e1n1+e2n2+e3n3) = β

|e1n1+|e2n2+e3n3||
sgn(e1n1+e2n2+e3n3)

= βn1
e1 β

|e2n2+e3n3|
sgn(e2n2+e3n3) = βn1

e1

(
βn2
e2 β

n3
e3

)
, (119)

on LSA, for (el, nl) ∈ N±0 , for all l = 1, 2, 3; also, one has
(Gn1Gn2)Gn3 = Gn1+n2Gn3

= Gn1+n2+n3 = Gn1Gn2+n3

= Gn1(Gn2Gn3),
(120)

on LSA, for all n1, n2, n3 ∈ N0.
So, one obtains that(

σn1

(e1,k1)σ
n2

(e2,k2)

)
σn3

(e3,k3)

= σn1+n2

(sgn(e1k1+e2k2), |e1k1+e2k2|)σ
n3

(e3,k3)

by (118)
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= σ
(n1+n2)+n3

(sgn(e1k1+e2k2+e3k3), ||e1k1+e2k2|+e3k3|)

= σ
n1+(n2+n3)
(sgn(e1k1+e2k2+e3k3), |e1k1+|e2k2+e3k3||)

= σn1

(e1,k1) σ
n2+n3

(sgn(e2k2+e3k3), |e2k2+e3k3|)

= σn1

(e1,k1)

(
σn2

(e2,k2) σ
n3

(e3,k3)

)
, (121)

by (119) and (120), for nl ∈ N0, (el, kl) ∈ N±0 , for all l = 1, 2, 3.
Thus, the operation (·) on σ(LSA) is associative by (121), and hence, the algebraic

pair (σ(LSA), ·) forms a semigroup.
Definitely, one can take an element

σ0
(e,0) = G0β0

e = 1LSA · 1LSA = 1LSA ∈ σ(LSA),

satisfying that (122)

σn(e,k) · 1LSA = σn(e,k) = 1LSA · σn(e,k) in σ(LSA),

for all n ∈ N0, and (e, k) ∈ N±0 .
So, the semigroup (σ(LSA), ·) contains its (·)-identity 1LSA = σ0

(e,0) of (122), and

hence, it is a well-defined monoid in Hom(LSA).
Finally, consider that

Gn1Gn2 = Gn1+n2 = Gn2+n1 = Gn2Gn1 ,

and (123)

βk1e1 β
k2
e2 = β

|e1k1e2k2|
sgn(e1k1e2k2) = β

|e2k2e1k1|
sgn(e2k2e1k1) = βk2e2 β

k1
e1 ,

on LSA, for all n1, n2 ∈ N0, and (e1, k1), (e2, k2) ∈ N±0 .
Therefore,

σn1

(e1,k1)σ
n2

(e2,k2) = σn1+n2

(sgn(e1k1e2k2),|e1k1e2k2|)
= σn2

(e2,k2)σ
n1

(e1,k1),
(124)

on LSA, for all n1, n2 ∈ N0, and (e1, k1), (e2, k2) ∈ N±0 , by (115) and (123).
So, the monoid (σ(LSA), ·) is commutative by (124). Therefore, the system

σ(LSA) of (116) is a commutative sub-monoid of the homomorphism semigroup
Hom(LSA).

The above structure theorem (117) characterizes the algebraic structure of σ(LSA)
as a commutative monoid embedded in Hom(LS).

Definition 12.3. Let σ(LSA) be a commutative sub-monoid (116) embedded in
the homomorphism semigroup Hom(LSA). Then this monoid σ(LSA) is called the
prime-integer-shift monoid (in short, the pi-shift monoid) on LSA.
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12.3. Free-distributional data on LSA affected by σ(LSA). Let LSA be the
fixed semicircular A-tensor filterization of (A, ϕA), and let σ(LSA) be the pi-shift
monoid (116) on LSA, which is a commutative sub-monoid of the homomorphism
semigroup Hom(LSA) by (117). In this section, we consider how pi-shift monoid
σ(LSA) affects the free-distributional data on LSA.

Recall-and-note that the prime-shifts Gn are injective free-homomorphisms on
LSA, and hence, they preserves the free probability on LSA by (100), for all n ∈ N0;
and the integer-shifts βne are free-isomorphisms on LSA, and hence, they preserves
the free probability on LSA, by (111), for all (e, n) ∈ N±0 . So, it is not difficult to
verify that every pi-shift σn(e,k) ∈ σ(LSA) preserves the free probability on LSA, for

all n ∈ N0 and (e, k) ∈ N±0 .

Lemma 12.3. Let σ(LSA) be the pi-shift monoid (116) on the semicircular A-
tensor filterization LSA, and let

σ
denote

= σn(e,k) ∈ σ(LSA), for n ∈ N0, (e, k) ∈ N±0 ,
be a pi-shift on LSA. Then

τA

((
σ(Xa

p,j)
)l)

= ωlc l
2
ϕA(al) = τA

((
Xa
p,j

)l)
, (125)

for all l ∈ N.

Proof. Let σ = σn(e,k) ∈ σ(LSA) be a pi-shift, for n ∈ N0, (e, k) ∈ N±0 . Then, for any

generating operator Xa
p,j ∈ XA of LSA, one has

σ
(
Xa
p,j

)l
=
(
Xa
gn(p),jek

)l
,

and hence,

τA

((
σ(Xa

p,j)
)l)

= τA

((
Xa
gn(p),jek

)l)

= ϕA(al)τ0
(

Θl
gn(p),jek

)
= ωlc l

2
ϕA(al)

= ϕA(al)τ0
(
Θl
p,j

)
= τA

((
Xa
p,j

)l)
,

for all l ∈ N.
Therefore, the free-distributional data (125) holds.

By the above lemma, we obtain the following result.

Theorem 12.4. Let σ(LSA) be the pi-shift monoid on the semicircular A-tensor
filterization LSA. Then every pi-shift σ ∈ σ(LSA) is a free-homomorphism on LSA.

Proof. By the similar arguments of the proofs for (100) and (111), all pi-shifts of
the pi-shift monoid σ(LSA) are free-homomorphisms on LSA by (125).

Remark that, by the definition (114), a pi-shift σn(e,k) is not a free-isomorphism

on LSA, in general. In particular, if n 6= 0 in N0, then σn(e,k) = Gnβke is not bijective,

since Gn is not bijective on LSA, and hence, it cannot be a free-isomorphism.

Theorem 12.5. Let σn(e,k) ∈ σ(LSA) be a pi-shift. Then

(126) σn(e,k) is a free-isomorphism, if and only if n = 0 in N0.
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Proof. (⇐) Suppose n = 0 in N0. Then

σn(e,k) = σ0
(e,k) = G0βke = 1LSAβ

k
e = βke ,

and βke is a free-isomorphism by (111), in σ(LSA).
(⇒) Assume that n 6= 0 in N0. Then, as we discussed in the very above paragraph,

σn(e,k) is not a free-isomorphism on LSA.
Therefore, the characterization (126) holds.

The above theorem characterizes the free-isomorphic property in the pi-shift

monoid σ(LSA).
By the above two theorems, a pi shift σn(e,k) ∈ σ(LSA) is either a free-homomor-

phism (if n 6= 0), or a free-isomorphism (if n = 0) on the semicircular A-tensor
filterization LSA, i.e., it preserves the free probability on LSA.

13. A-tensor pi-shift monoids σA(LSA). Let (A, ϕA) be a fixed unital C∗-
probability space, and LSA = (LSA, τA), the semicircular A-tensor filterization
of (A, ϕA), and let σ(LSA) be the pi-shift monoid on LSA. By the main results of
Section 12, all elements of σ(LSA) are free-homomorphisms in the homomorphism
semigroup Hom(LSA). In this section, we generalize the pi-shift monoid σ(LSA) by
acting the homomorphism semigroup Hom(A) of the C∗-algebra A, and construct
a new subset σA(LSA) of Hom(LSA). We study how such a subset σA(LSA) acts
on (the free probability on) LSA.

13.1. The A-tensor pi-shift monoid σA(LSA). Let Hom(A) be the homomor-
phism semigroup of A, consisting of all ∗-homomorphisms on the C∗-algebra A,
where (A, ϕA) is our fixed unital C∗-probability space. Let θ ∈ Hom(A), and σn(e,k)

∈ σ(LSA), for n ∈ N0, (e, k) ∈ N±0 . Define a ∗-homomorphism σn:θ
(e,k) on LSA by the

morphism satisfying
σn:θ

(e,k)

(
Xa
p,j

)
= σn:θ

(e,k) (a⊗Θp,j)

def
= σn(e,k) (θ(a)⊗Θp,j)

= σn(e,k)

(
X
θ(a)
p,j

)
= X

θ(a)
gn(p),jek,

(127)

for all Xa
p,j ∈ XA in LSA, where XA is the generator set (82) of LSA.

Let Xal
pl,jl
∈ XA in LSA, for l = 1, 2. Then, for the morphism σn:θ

(e,k) of (127), one

obtains that
σn:θ

(e,k)

(
Xa1
p1,j1

Xa2
p2,j2

)
= σn:θ

(e,k) (a1a2 ⊗Θp1,j1Θp2,j2)

=


σn:θ

(e,k) (a1a2 ⊗Θp1,j1Θp2,j2) if (p1, j1) 6= (p2, j2) in P

σn:θ
(
a1a2 ⊗Θ2

p1,j1

)
if (p1, j1) = (p2, j2) in P

=


θ(a1a2)⊗Θgn(p1),j1ekΘgn(p2),j2ek if (p1, j1) 6= (p2, j2)

θ(a1a2)⊗Θ2
gn(p1),j1ek

if (p1, j1) = (p2, j2)

by (127)
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=

 θ(a1)θ(a2)⊗Θgn(p1),j1ekΘgn(p2),j2ek resp.,

θ(a1)θ(a2)⊗Θgn(p1),j1ekΘgn(p1),j1ek

since θ ∈ Hom(A)

=
(
θ(a1)⊗Θgn(p1),j1ek

) (
θ(a2)⊗Θgn(p2),j2ek

)
=
(
X
θ(a1)
gn(p1),j1ek

)(
X
θ(a2)
gn(p2),j2ek

)
=
(
σn:θ

(e,k)

(
Xa
p1,j1

))(
σn:θ

(e,k)

(
Xa
p2,j2

))
,

implying that

σn:θ
(e,k) (T1T2) =

(
σn:θ

(e,k)(T1)
)(

σn:θ
(e,k)(T2)

)
, (128)

in LSA, for all T1, T2 ∈ LSA.
Also, we have, for any Xa

p,j ∈ XA,
σn:θ

(e,k)

((
Xa
p,j

)∗)
= σn:θ

(e,k)

(
Xa∗

p,j

)
= X

θ(a∗)
gn(p),jek

by (127)

= X
θ(a)∗

gn(p),jek =
(
X
θ(a)
gn(p),jek

)∗
since a ∈ Hom(A)

=
(
σn:θ

(e,k)

(
Xa
p,j

))∗
,

implying that

σn:θ
(e,k) (T ∗) =

(
σn:θ

(e,k)(T )
)∗
, (129)

for all T ∈ LSA.
Therefore, the morphism σn:θ

(e,k) of (127) is indeed a well-defined ∗-homomorphism

on LSA, by (128) and (129), for any θ ∈ Hom(A), and σn(e,k) ∈ σ(LSA).

Define now a subset σA(LSA) of the homomorphism semigroup Hom(LSA) of
LSA by

σA(LSA) =

σn:θ
(e,k)

∣∣∣∣∣∣
σn:θ

(e,k) are in the sense of (127),

for all θ ∈ Hom(A), and
σn(e,k) ∈ σ(LSA)

 . (130)

Then one can get the following structure theorem.

Theorem 13.1. Let σA(LSA) be the subset (130) of Hom(LSA). Then

(131) σA(LSA) is a noncommutative monoid, in general.

Moreover, σA(LSA) becomes a commutative sub-monoid of Hom(LSA), if and
only if the C∗-algebra A is commutative.

Proof. Let σA(LSA) be the subset (130) of Hom(LSA). Take

σl
denote

= σnl:θl
(el,kl)

∈ σA(LSA), for l = 1, 2.

Observe that, for any generating operator Xa
p,j ∈ XA of LSA,
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σ1σ2

(
Xa
p,j

)
= σ1

(
X
θ2(a)
gn2 (p),je2k2

)
= X

θ1(θ2(a))
gn1 (gn2 (p)),je2k2e1k1

= X
θ1θ2(a)

gn1+n2 (p), j(sgn(je1k1e2k2)+)|e1k1e2k2| (132)

= σ
(n1+n2):θ1θ2
(sgn(e1k1e2k2)+, |e1k1e2k2|)

(
Xa
p,j

)
,

by (132). Indeed, note that if βklel are the kl-(el)-integer shifts (106) on LSA, for

(el, kl) ∈ N±0 , for l = 1, 2, then

βk1e1 β
k2
e2 = β

|e1k1e2k2|
sgn(e1k1e2k2) = βk2e2 β

k1
e1 on LSA,

because

βk1e1 β
k2
e2

(
Xa
p,j

)
= βk1e1

(
Xa
p,je2k2

)
= Xa

p,je2k2e1k1

= β
|e2k2e1k1|
sgn(e2k2e1k1)

(
Xa
p,j

)
= β

|e1k1e2k2|
sgn(e1k1e2k2)

(
Xa
p,j

)
= βk2e2 β

k1
e1

(
Xa
p,j

)
, (133)

for all Xa
p,j ∈ XA, in LSA.

So, the formula (132) holds by (133). It shows that

σ1σ2 = σ
(n1+n2):θ1θ2
(sgn(e1k1e2k2), |e1k1e2k2|) ∈ σA(LSA), (134)

too.
Therefore, under the inherited product, the algebraic pair (σA(LSA), ·) is a well-

determined algebraic sub-structure of Hom(LSA). Now, let σ1 and σ2 be given as
above in σA(LSA), and let

σ3 = σn3:θ3
(e3,k3) ∈ σA(LSA).

Then

(σ1σ2)σ3 =
(
σ

(n1+n2):θ1θ2
(sgn(e1k1e2k2), |e1k1e2k2|)

)
σ3

by (134)

= σ
(n1+n2)+n3:(θ1θ2)θ3
(sgn((e1k1e2k2)e3k3),|(e1k1e2k2)e3k3|)

by (134)

= σ
n1+(n2+n3):θ1(θ2θ3)
(sgn(e1k1(e2k2e3k3)), |e1k1(e2k2e3k3)|)

= σ1

(
σ

(n2+n3):θ2θ3
(sgn(e2k2e3k3), |e2k2e3k3|)

)
= σ1 (σ2σ3) . (135)

By (135), the algebraic pair (σA(LS), ·) forms a semigroup in Hom(LSA).
Let 1A ∈ Hom(A) be the identity map on A, which is a ∗-isomorphism on A.

Take σ0:1A

(e,0) in σA(LSA). Then

σ0:1A

(e,0) = 1LSA , the identity map on LSA, (136)

which is a ∗-isomorphism in Hom(LSA), satisfying that

σ · 1LSA = σ = 1LSA · σ, ∀σ ∈ σA(LSA).

Therefore, by (136), the semigroup (σA(LSA), ·) contains the (·)-identity, 1LSA =
σ0:1A

(e,0) , and hence, it is a sub-monoid in Hom(LSA). i.e., the statement (131) holds.
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Definitely, by (126), an element σn:1A

(e,k) is not bijective on LSA, whenever n 6= 0

in N0. So, the monoid σA(LSA) cannot be a group in Hom(LSA).
Remark that, homomorphism semigroups are not commutative in general. Since

our C∗-algebra A is arbitrarily chosen, it is natural to understand the corresponding
homomorphism semigroup Hom(A) is not commutative, in general. Under this
sense, even though the pi-shift monoid σ(LSA) is commutative, the monoid σA(LSA)
is not commutative, in general.

However, by (134) and by the commutativity of our pi-shift monoid σ(LSA), this
monoid σA(LSA) can be commutative, if and only if the homomorphism semigroup
Hom(A) of A is commutative, if and only if A is a commutative C∗-algebra.

The above theorem characterizes the algebraic property of the subset σA(LSA)
of (130), as a noncommutative sub-monoid of Hom(LSA) (in general).

Definition 13.1. Let σA(LSA) be the sub-monoid (130) of Hom(LSA). We call it
the A-tensor-pi-shift monoid (acting) on LSA.

13.2. Free-distribution data on LSA affected by σA(LSA). In Section 12, we
showed that all pi-shifts in the pi-shift monoid σ(LSA) are free-homomorphisms on
LSA, preserving the free probability on the semicircular A-tensor filterization LSA
of a fixed unital C∗-probability space (A, ϕA). In Section 13.1, we extended the
pi-shift monoid σ(LSA) to the A-tensor pi-shift monoid σA(LSA) in the sense of
(130); and we showed there that, in general, the algebraic property of σA(LSA) is
different from that of σ(LSA) in the homomorphism semigroup Hom(LSA). So, it
is natural to consider how the free-distributional data on LSA is affected by the
action of σA(LSA).

First of all, one can immediately obtain the following corollary of (125) and (126).

Corollary 13.2. Let σ = σn:1A

(e,k) ∈ σA(LSA), where 1A is the identity ∗-isomorphism

in Hom(A). Then σ is a free-homomorphism on LSA. Moreover, σ is a free-isomor-
phism, if and only if n = 0 in N0.

Proof. Let σ be given as above in the A-tensor pi-shift monoid σA(LSA). Then, by
definition,

σ
(
Xa
p,j

)
= X

1A(a)
gn(p),jek = Xa

gn(p),jek = σn(e,k)

(
Xa
p,j

)
,

for all generating operators Xa
p,j ∈ XA of LSA, where σn(e,k) is the pi-shift contained

in the pi-shift monoid σ(LSA) in Hom(LSA). Therefore, we have that
σ = σn:1A

(e,k) = σn(e,k) on LSA. (137)

Therefore, by (125), σ is a free-homomorphism on LSA; and, by (126), it is a
free-isomorphism, if and only if n = 0 in N0.

By the above corollary, we have the following result.

Corollary 13.3. Let σ(LSA) be the pi-shift monoid, and let σA(LSA) be the A-
tensor pi-shift monoid in the homomorphism semigroup Hom(LSA). Then

(138) σ(LSA) is a commutative sub-monoid of σA(LSA),
in Hom(LSA).

Proof. The proof of (138) is done by (137).

The above corollaries shows that “some” elements of the A-tensor pi-shift monoid
σA(LSA) preserve the free probability on LSA, by (137) and (138).
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Lemma 13.4. Let σθ = σn:θ
(e,k) ∈ σA(LSA), for θ ∈ Hom(A). Then

τA

((
σθ(X

a
p,j)
)l)

=
(
ωlc l

2

)
ϕA
(
θ(al)

)
= τA

((
X
θ(a)
p,j

)l)
,

(139)

for all l ∈ N.

Proof. Let σθ be given as above in the A-tensor pi-shift monoid σA(LSA). Then,
for any generating operator Xa

p,j ∈ XA of LSA,(
σθ
(
Xa
p,j

))l
=
(
X
θ(a)
gn(p),jek

)l
= θ(a)l ⊗Θl

gn(p),jek

= θ(al)⊗Θl
gn(p),jek,

in LSA, for all l ∈ N, since θ ∈ Hom(A).
Thus, one obtains that

τA

((
σθ(X

a
p,j)
)l)

=
(
ωlc l

2

)
ϕA
(
θ(al)

)
,

for all l ∈ N, by (125).
Also, one has that

τA

((
X
θ(a)
p,j

)l)
=
(
ωlc l

2

)
ϕA
(
θ(al)

)
,

for all l ∈ N, too.
Therefore, the free-distributional data (139) holds.

More general to (137) and (138), we obtain the following result.

Theorem 13.5. Let fHom(A) be the sub-semigroup of the homomorphism semi-
group Hom(A) of the fixed C∗-algebra A, defined by

fHom(A)
def
=

θ ∈ Hom(A)

∣∣∣∣∣∣
θ is a

free-homomorphism
on A

 , (140)

Define a subset σfA(LSA) of the A-tensor pi-shift monoid σA(LSA) by

σfA(LSA)
def
=
{
σn:θ

(e,k) ∈ σA(LSA) |θ ∈ fHom(A)
}
. (141)

(142) σfA(LSA) is a sub-monoid of σA(LSA).

(143) All elements of σfA(LSA) are free-homomorphisms on LSA.
(144) σn:θ

(e,k) ∈ σ
f
A(LSA) is a free-isomorphism, if and only if

n = 0, and θ is bijective on A.

Proof. Let σfA(LSA) be a subset (141) of σA(LSA). Then, for any

σl = σnl:θl
(el,kl)

∈ σfA(LSA), for l = 1, 2,

we have

σ1σ2 = σn1+n2:θ1θ2
(sgn(e1k1e2k2), |e1k1e2k2|)

let
= σ, (145)

in σA(LSA), by (134).
Remark that if θ1 and θ2 are free-homomorphisms on A, then
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ϕA (θ1θ2(x)) = ϕA (θ1 (θ2(x))) = ϕA (θ2(x)) = ϕA (x) ,

since θ1, θ2 ∈ fHom(A), for x ∈ (A, ϕA).
It shows that if θ1, θ2 ∈ fHom(A), then θ1θ2 ∈ fHom(A), where fHom(A)

is the subset (140) of Hom(A). Therefore, the ∗-homomorphism σ of (145) is also

contained in σfA(LSA), too. i.e., σfA(LSA) is a sub-semigroup of the A-tensor pi-
shift monoid σA(LSA). It is clear that the identity ∗-isomorphism 1A is contained

in fHom(A), and hence, the identity σ0:1A

(e,0) = 1LSA is contained in σfA(LSA), too.

Thus, σfA(LSA) forms a sub-monoid of σA(LSA). Equivalently, the statement (142)
holds.

Now, let σθ = σn:θ
(e,k) ∈ σ

f
A(LSA), with θ ∈ fHom(A). Then

τA

((
σθ(X

a
p,j)
)l)

=
(
ωlc l

2

)
ϕA
(
θ(al)

)
by (139)

=
(
ωlc l

2

)
ϕA
(
al
)

= τA

((
Xa
p,j

)l)
, (146)

since θ ∈ fHom(A), for all l ∈ N, for all Xa
p,j ∈ XA ⊂ LSA.

Therefore, every element of the sub-monoid σfA(LSA) preserves the free proba-
bility on LSA, i.e., it is a free-homomorphism on LSA, by (146). So, the statement
(143) is proven.

Let σθ be given as above in the sub-monoid σfA(LSA) of the A-tensor pi-shift
monoid σA(LSA). If either

n 6= 0 in N0, or θ is not bijective on A,

then σθ cannot be a ∗-isomorphism. i.e., it is a free-homomorphism, but not a
free-isomorphism on LSA.

If n = 0, and θ is bijective on A, then θ is a free-isomorphism on A, and hence,
σθ is bijective on LSA; and since

σθ
(
Xa
p,j

)
= σ0:θ

(e,k)

(
Xa
p,j

)
= X

θ(a)
p,jek,

we have

τA

((
σθ
(
Xa
p,j

))l)
=
(
ωlc l

2

)
ϕA
(
θ(al)

)
=
(
ωlc l

2

)
ϕA(al) = τA

((
Xa
p,j

)l)
,

for all l ∈ N, for all Xa
p,j ∈ XA ⊂ LSA, and hence, it is a free-homomorphism on

LSA. i.e., if n = 0 in N0, and θ ∈ fHom(A) is bijective on A, then σθ is a bijective
free-homomorphism, a free-isomorphism, on LSA.

Therefore, the characterization (144) holds true.

The above theorem generalizes the free-homomorphic properties (137) and (138)
in the A-tensor pi-shift monoid σA(LSA). i.e., there exists the maximal sub-monoid

σfA(LSA) of σA(LSA), consisting of free-homomorphisms on LSA (containing the
pi-shift monoid σ(LSA)), by (142) and (143). Moreover, we characterize free-

isomorphic property of σfA(LSA) by (144).
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Definitely, if one takes an element σ in σA(LSA) \ σfA(LSA), then it is a ∗-
homomorphism in Hom(LSA), but not a free-homomorphism on the semicircular
A-tensor filterization LSA. In other words, such a ∗-homomorphism σ distorts the
free probability on LSA.
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