Research article

Characteristics of fresh rice straw silage quality prepared with addition of lactic acid bacteria and crude cellulase

  • Received: 19 December 2021 Revised: 08 May 2022 Accepted: 24 May 2022 Published: 01 July 2022
  • The objective of this study was to determine the characteristics of fresh rice straw silage quality prepared with addition of Lactiplantibacillus plantarum 1A-2 and crude cellulase alone or in combination. Quality of the silage was observed through the chemical composition, chemical structure and in vitro digestibility. Six treatments were used in this study, i.e., 1) rice straw without any treatment as control, 2) rice straw with addition of 0.1% L. plantarum 1A-2 (LAB1), 3) rice straw with addition of 1% crude cellulase (E1), 4) rice straw with addition of 0.1% L. plantarum 1A-2 and 1% cellulase enzyme. (LAB1 E1), 5) rice straw with addition of 2% crude cellulase (E2), 6) rice straw with addition of 0.2% L. plantarum 1A-2 and 2% crude cellulase (LAB2E2). Each treatment was replicated by four times (n = 24). Ensilage was carried out for 60 days. Data obtained were analyzed by using one-way analysis of variance (ANOVA) according to complete randomized design. The result indicated that the treatments increased dry matter (DM) (p = 0.001), crude protein (p < 0.001) and lactic acid (p < 0.001). Meanwhile, reduced pH (p < 0.001) and organic acids (acetic, propionic and butyric (p < 0.001)). Total crystallinity index (TCI) of rice straw silage varied among treatments and decreased in crystallinity (%) except for LAB2E2, which showed the lowest crystalline size. The treatment increased DM digestibility (p = 0.397) with the highest in LAB2E2. There is significant effect (p < 0.001) on increasing the main SCFA products from in vitro rumen fermentation. This study suggests that addition of L. plantarum 1A-2 inoculant alone or with crude cellulase improved fresh rice straw silage quality.

    Citation: Ki A. Sarwono, Rohmatussolihat Rohmatussolihat, Muh Watman, Shanti Ratnakomala, Wulansih D. Astuti, Rusli Fidriyanto, Roni Ridwan, Yantyati Widyastuti. Characteristics of fresh rice straw silage quality prepared with addition of lactic acid bacteria and crude cellulase[J]. AIMS Agriculture and Food, 2022, 7(3): 481-499. doi: 10.3934/agrfood.2022030

    Related Papers:

    [1] Refah Alotaibi, Mazen Nassar, Ahmed Elshahhat . Reliability analysis of independent Burr-X competing risks model based on improved adaptive progressively Type-Ⅱ censored samples with applications. AIMS Mathematics, 2025, 10(7): 15302-15332. doi: 10.3934/math.2025686
    [2] Bing Long, Zaifu Jiang . Estimation and prediction for two-parameter Pareto distribution based on progressively double Type-II hybrid censored data. AIMS Mathematics, 2023, 8(7): 15332-15351. doi: 10.3934/math.2023784
    [3] Ahmed Elshahhat, Refah Alotaibi, Mazen Nassar . Statistical inference of the Birnbaum-Saunders model using adaptive progressively hybrid censored data and its applications. AIMS Mathematics, 2024, 9(5): 11092-11121. doi: 10.3934/math.2024544
    [4] Samah M. Ahmed, Abdelfattah Mustafa . Estimation of the coefficients of variation for inverse power Lomax distribution. AIMS Mathematics, 2024, 9(12): 33423-33441. doi: 10.3934/math.20241595
    [5] Magdy Nagy, Khalaf S. Sultan, Mahmoud H. Abu-Moussa . Analysis of the generalized progressive hybrid censoring from Burr Type-Ⅻ lifetime model. AIMS Mathematics, 2021, 6(9): 9675-9704. doi: 10.3934/math.2021564
    [6] Refah Alotaibi, Ahmed Elshahhat, Mazen Nassar . Analysis of Weibull stress-strength reliability using spacing function method under improved adaptive progressive censoring plan. AIMS Mathematics, 2025, 10(7): 17082-17116. doi: 10.3934/math.2025766
    [7] Ahmed R. El-Saeed, Ahmed T. Ramadan, Najwan Alsadat, Hanan Alohali, Ahlam H. Tolba . Analysis of progressive Type-Ⅱ censoring schemes for generalized power unit half-logistic geometric distribution. AIMS Mathematics, 2023, 8(12): 30846-30874. doi: 10.3934/math.20231577
    [8] Refah Alotaibi, Mazen Nassar, Ahmed Elshahhat . Reliability analysis for independent Nadarajah–Haghighi competing risks model employing improved adaptive progressively censored data. AIMS Mathematics, 2025, 10(7): 15131-15164. doi: 10.3934/math.2025679
    [9] Xue Hu, Haiping Ren . Statistical inference of the stress-strength reliability for inverse Weibull distribution under an adaptive progressive type-Ⅱ censored sample. AIMS Mathematics, 2023, 8(12): 28465-28487. doi: 10.3934/math.20231457
    [10] Haiping Ren, Jiajie Shi . A generalized Lindley distribution:Properties, estimation and applications under progressively type-Ⅱ censored samples. AIMS Mathematics, 2025, 10(5): 10554-10590. doi: 10.3934/math.2025480
  • The objective of this study was to determine the characteristics of fresh rice straw silage quality prepared with addition of Lactiplantibacillus plantarum 1A-2 and crude cellulase alone or in combination. Quality of the silage was observed through the chemical composition, chemical structure and in vitro digestibility. Six treatments were used in this study, i.e., 1) rice straw without any treatment as control, 2) rice straw with addition of 0.1% L. plantarum 1A-2 (LAB1), 3) rice straw with addition of 1% crude cellulase (E1), 4) rice straw with addition of 0.1% L. plantarum 1A-2 and 1% cellulase enzyme. (LAB1 E1), 5) rice straw with addition of 2% crude cellulase (E2), 6) rice straw with addition of 0.2% L. plantarum 1A-2 and 2% crude cellulase (LAB2E2). Each treatment was replicated by four times (n = 24). Ensilage was carried out for 60 days. Data obtained were analyzed by using one-way analysis of variance (ANOVA) according to complete randomized design. The result indicated that the treatments increased dry matter (DM) (p = 0.001), crude protein (p < 0.001) and lactic acid (p < 0.001). Meanwhile, reduced pH (p < 0.001) and organic acids (acetic, propionic and butyric (p < 0.001)). Total crystallinity index (TCI) of rice straw silage varied among treatments and decreased in crystallinity (%) except for LAB2E2, which showed the lowest crystalline size. The treatment increased DM digestibility (p = 0.397) with the highest in LAB2E2. There is significant effect (p < 0.001) on increasing the main SCFA products from in vitro rumen fermentation. This study suggests that addition of L. plantarum 1A-2 inoculant alone or with crude cellulase improved fresh rice straw silage quality.



    In the reliability and life testing experiments, censored samples are common way to save time and reduce the number of failed experimental items. Type-Ⅰ and Type-Ⅱ censoring schemes are the most common censoring schemes used in the life-testing and reliability studies. The mixture of these two schemes is called the hybrid censoring scheme. For more details about the hybrid censoring schemes, see Balakrishnan and Kundu [1]. The main disadvantage of the conventional Type-Ⅰ and Type-Ⅱ and the hybrid censoring schemes is that they do not allow the experimenter to remove the experimental items at any time point other than the terminal point. For this reason, one may use a general censoring scheme which called progressive Type-Ⅱ censoring. In this censoring scheme n items are placed on a test and the number of items to be failed, denoted by m, and the number of items that are removed at each failure time, denoted Ri, are determined in advance. At the time of the first failure x1:m:n, R1 items are randomly removed from the remaining n1 surviving items. Similarly, at the time of the second failure x2:m:n, R2 items of the remaining n2R1 items are randomly removed and so on. At the time xm:m:n, all the remaining nmR1R2Rm1 items are removed. For more information see Balakrishnan and Aggarwala [2] and Balakrishnan [3].

    Kundu and Joarder [4] introduced the Type-Ⅰ progressive hybrid censoring scheme by combining the concepts of progressive and hybrid censoring schemes. In this scheme, n items are placed on a test with the progressive censoring scheme R1,R2,,Rm and the experiment is terminated at T=min(xm:m:n,T), where T is a predetermined time. The drawback of this scheme is that the statistical inference methods will have low efficiency or may not be applicable. Since the number of failures is random and it can be zero or a very small number. To overcome this disadvantage and increase the efficiency of the statistical inference, Ng et al. [5] proposed an adaptive Type-Ⅱ progressive hybrid censoring scheme (A-II PHCS). In the A-II PHCS, the number of failures m and the progressive censoring scheme R1,R2,,Rm are predetermined and the experimental time is allowed to run over the predetermined time T with the flexibility of changing some values of Ri during the experiment. When Xm:m:m<T, then the experiment stops at this time and we will have the conventional progressive Type-Ⅱ censoring scheme. On the other hand, if XJ:m:n<T<XJ+1:m:n, where XJ:m:n is the Jth failure time occur before the predetermined time T and J+1<m, then we adjust the progressive censoring scheme by resetting RJ+1,RJ+2,,Rm1=0 and Rm=nmJi=1Ri. This adaption assures us to terminate the experiment when m is occurred, and guarantee that the total test time will not be too long away from the time T.

    Recently, many authors have studied different distributions based on A-II PHCS. For example, Lin et al. [6], discussed the estimation problem of Weibull distribution. Hemmati et al. [7], discussed the maximum likelihood and approximate maximum likelihood estimation for the log-normal distribution. Mahmoud et al. [8], studied the Bayes estimation of Pareto distribution. Ismail [9], investigated the estimation of Weibull distribution and the acceleration factor under step-stress partially accelerated life test model. AL Sobhi and Soliman [10], studied the estimation of parameters, reliability and hazard functions of the exponentiated Weibull distribution. Nassar and Abu-Kasem [11] and Nassar et al. [12] investigated the estimation problems of inverse Weibull and Weibull distributions, respectively.

    Burr [13] introduced the Burr type-XII distribution as a member of a 12 types of cumulative distribution functions. The Burr type-XII distribution has many applications in various fields including probability theory, reliability, failure time modeling and household income. A random variable X is said to have two-parameters Burr type-XII distribution, denoted by Burr(a,b), if its probability density and reliability functions are given, respectively, by

    f(x)=abxa1(1+xa)(b+1),x>0,a,b>0, (1.1)

    and

    R(x)=(1+xa)b,x>0, (1.2)

    where a and b are shape parameters. The Lomax distribution can be obtained as a special case from Burr(a,b) distribution by stting a=1. Also, when b=1, the Burr(a,b) distribution reduces to the Champernowne distribution. Evans and Ragab [14] discussed the Bayesian inferences from Burr type-XII distribution based on Type-Ⅱ censored scheme. Moore and Papadopoulos [15] used the Bayesian estimation method to estimate the Burr type-XII distribution parameters using three different loss functions. Mousa and Jaheen [16] obtained the Bayesian estimators of the Burr type-XII distribution parameters under progressive Type-Ⅱ censored scheme. Jaheen and Okasha [17] discussed the estimation problem of the Burr type-XII distribution using Bayesian and E-Bayesian estimation using Type-Ⅱ censored scheme. Hanieh and Abdolreza [18] presented the statistical inference and prediction of the Burr type-XII distribution under unified hybrid scheme. See also, Montaser [19], Jia et al. [20] and Arabi and Noori [21].

    To the best of our knowledge, the E-Bayesian estimation of the Burr(a,b) distribution under A-II PHCS has not yet been studied. The main aim of this paper is to investigate the E-Bayesian estimation of the parameter b and the reliability function of the Burr(a,b) distribution under A-II PHCS with the assumption that the parameter a is known. The maximum likelihood method, Bayesian and E-Bayesian estimations are considered using three different prior distributions. The Bayesian and E-Bayesian estimations are discussed based on squared error (SE) and LINEX loss functions. The E-Bayesian properties are studied and the E-Posterior risk is also obtained. A simulation study is conducted to compare the performance of the different estimators of the parameter b and the reliability function. Application to a real data shows that the E-Bayesian estimators perform better than the maximum likelihood and Bayesian estimators.

    The rest of this paper is organized as follows: In Section (2), we obtain the maximum likelihood and Bayesian estimations of the parameter b and the reliability function of Burr(a,b). The E-Bayesian estimation is considered in Section (3). In Section (4), we study the properties of the E-Bayesian estimation. The E-posterior risk of the E-Bayesian estimation is obtained in Section (5). A simulation study is performed in Section (6). A real data is analyzed in Section (7). Finally, the paper is concluded in Section (8).

    Based on adaptive Type-Ⅱ progressive hybrid censoring sample of size m obtained from a life test experiment of n items from the Burr(a,b) distribution, we can write the likelihood function as follows

    L(a,bx_)ambmψ(a;x_)ebP, (2.1)

    where

    x_=(x1,x2,,xm),ψ(a;x_)=mi=1(xa1i1+xai),
    PP(a;x_)=mi=1ln(1+xai)+Ji=1Riln(1+xai)+Rln(1+xam),

    where R=nmJi=1Ri, and xi=xi:m:n for simplicity of notation. Assuming that the parameter a is known, then the maximum likelihood estimate (MLE) of the parameter b is obtained as follows

    ˆbML=mP. (2.2)

    From (2.2) and the invariance property of the maximum likelihood, we can obtain the MLE of the reliability function R(x) by replacing b by its MLE in (1.2).

    In the Bayesian estimation, we assume that the parameter a is known and the parameter b follows the gamma conjugate prior distribution as proposed by Papadopoulos [15] in the following form

    g(b)=θαΓ(α)bα1ebθ,b>0, (2.3)

    where α>0 and θ>0. From (2.1) and (2.3), the posterior density of b given x_ can be written as

    q(bx_)=Abm+α1e(θ+P)b,b>0, (2.4)

    where

    A=(θ+P)m+αΓ(m+α). (2.5)

    To obtain the Bayes estimate of b, we consider two types of loss functions. The first loss function is the SE loss function and the Bayes estimate in this case is the posterior mean. The second one is the LINEX loss function with the Bayes estimate obtained as

    ˆbBL=1zlnE(ezb),z0. (2.6)

    Based on the SE loss function, we can obtain the Bayes estimate of b as follows

    ˆbBS(α,θ)=m+αθ+P, (2.7)

    while the Bayes estimate of b using the LINEX loss function can be obtained from (2.4) and (2.6) by

    ˆbBL(α,θ)=m+αzln(1+zθ+P). (2.8)

    Under the SE loss function, the Bayes estimate of the reliability function can be obtained from (1.2) and (2.4) as

    ˆRBS(x)=(θ+Pθ+P+P)m+α, (2.9)

    where

    P=ln(1+xα).

    Similarly, from (1.2), (2.4) and (2.6), the Bayes estimate of the reliability function under LINEX loss function can be obtained as follows

    ˆRBL(x)=1z[lnE(ezR(t))]=1zln[(θ+P)m+αΓ(m+α)0ezeθPbm+α1e(θ+P)bdb]=1zln[i=0(z)iΓ(i)(θ+Pθ+P+iP)m+α]. (2.10)

    Han [22] introduced the E-Bayesian (Expected Bayesian) estimation to obtain the estimate of the scale parameter of the exponential distribution based on SE loss function. He also derived the properties of the E-Bayesian estimation. For more relevant research about the E-Bayesian estimation, see Han [22,23], Okasha and Wang [24], Azimi et al. [25], Okasha [26,27,28], and Abdallah and Junping [29]. Han [22] stated that the prior distribution of α and θ should be determined to ensure that the prior distribution g(b) is a decreasing function in b. To make sure this condition is satisfied, we obtain the first derivative of g(b) with respect to b as

    dg(b)db=θαΓ(α)bα2ebθ[(α1)bθ],

    where α,θ,b>0. It is noted that when 0<α<1 and θ>0 the function dg(b)b<0, and therefore g(b) is a decreasing function of b. Suppose that α and θ are independent and have the bivariate density function

    π(α,θ)=π1(α)π2(θ),

    then, according to Han [30] the E-Bayesian estimate of the parameter b (expectation of the Bayesian estimate of b) can be obtained as follows

    ˆbEB=DˆbBS(α,θ)π(α,θ)dαdθ, (3.1)

    where ˆbEB(α,θ) is the Bayes estimate of b under any loss function. For more details about E-Bayesian estimation, see Han [22], Jaheen and Okasha [17] and Okasha [26,27,28].

    Here, we obtain the E-Bayesian estimates of the parameter b by considering three different prior distributions of the hyper-parameters α and θ. These prior distributions are selected to show the effect of the different prior distributions on the E-Bayesian estimation of the parameter b. The selected priors distributions are given by

    π1(α,θ)=1cB(u,v)αu1(1α)v1,0<α<1,0<θ<cπ2(α,θ)=2c2B(u,v)(cθ)αu1(1α)v1,0<α<1,0<θ<cπ3(α,θ)=2θc2B(u,v)αu1(1α)v1,0<α<1,0<θ<c}, (3.2)

    where B(u,v) is the beta function. These prior distributions are used by Zeinhum and Okasha [17] to guarantee that g(b) is a decreasing function in b. Now, the E-Bayesian estimates of the parameter b under SE loss function can be obtained from (2.7), (3.1) and (3.2). Using the prior distribution π1(α,θ), the E-Bayesian estimate of b under SE loss function is given by

    ˆbEBS1=DˆbBS(α,θ)π1(α,θ)dθdα=1cB(u,v)10c0(m+αθ+P)αu1(1α)v1dθdα=1c(m+uu+v)ln(1+cP). (3.3)

    Using the same approach, the E-Bayesian estimates of b based on π2(α,θ) and π3(α,θ) are given, respectively, by

    ˆbEBS2=2c(m+uu+v)[(1+Pc)ln(1+cP)1], (3.4)

    and

    ˆbEBS3=2c(m+uu+v)[1Pcln(1+cP)]. (3.5)

    The E-Bayesian estimation of b under LINEX loss function can be obtained by using the different prior distributions of the hyperparameters given in (3.2). For the prior distribution π1(α,θ) and based on (2.8) and (3.1), the E-Bayesian estimate of b is obtained as

    ˆbEBL1=DˆbBL(α,θ)π1(α,θ)dθdα=1czB(u,v)10c0(m+α)αu1(1α)v1ln(1+zθ+P)dθdα=1cz(m+uu+v)[cln(1+zc+P)+(P+z)ln(1+cP+z)Pln(1+cP)]. (3.6)

    Similarly, the E-Bayesian estimates of b using π2(α,θ) and π3(α,θ) are given, respectively, by

    ˆbEBL2=(m+uu+v)[1zln(1+zP)(P+c)2c2zln(1+cP)+(P+z+c)2c2z×ln(1+cP+z)1c] (3.7)

    and

    ˆbEBL3=(m+uu+v)[1zln(1+zc+P)+P2c2zln(1+cP)(P+z)2c2zln(1+cP+z)+1c]. (3.8)

    Based on the SE loss function, the E-Bayesian estimates of the reliability function can be derived by using the three different prior distributions of the hyper-parameters given by (3.2). For the first prior distribution π1(α,θ), the E-Bayesian estimate of the reliability function is obtained from (2.9) and (3.1) as

    ˆREBS1=DˆRBS(t)π1(α,θ)dθdα=1cB(u,v)10c0(θ+Pθ+P+P)m+ααu1(1α)v1dθdα.=1cB(u,v)c0(1+Pθ+P)m(10eαln(θ+Pθ+P+P)αu1(1α)v1dα)dθ.=1cc0(1+Pθ+P)mF1:1(u,u+v;ln(θ+Pθ+P+P))dθ, (3.9)

    where F1:1(.,.;.) is the generalized hypergeometric function. See for more details Gradshteyn and Ryzhik [31]. Similarly, the E-Bayesian estimates of the reliability function based on the prior distributions 2 and 3 are given, respectively, by

    ˆREBS2=2c2c0(cθ)(1+Pθ+P)mF1:1(u,u+v;ln(θ+Pθ+P+P))dθ, (3.10)

    and

    ˆREBS3=2c2c0θ(1+Pθ+P)mF1:1(u,u+v;ln(θ+Pθ+P+P))dθ, (3.11)

    The integrals in (3.9), (3.10) and (3.11) can not be computed in a simple closed forms. Therefore, a numerical techniques should be used to obtain the E-Bayesian estimates of the reliability functions based on the SE loss function using the different prior distributions.

    Under LINEX loss function, the E-Bayesian estimates of the reliability function using the prior distribution πi(α,θ),i=1,2,3, can be obtained from (2.10) and (3.1) as

    ˆREBLi=DˆRBL(t)πi(α,θ)dθdα. (3.12)

    The integrals in (3.12) are very complicated to obtain, so a numerical computations are used to obtain the E-Bayesian estimates of the reliability function under LINEX loss function.

    In this section, we investigate the relations among the different E-Bayesian estimates of the parameter b and the reliability function based on the SE loss function in terms of biases Bi(bEBSi) and Bi(REBSi), i=1,2,3. Moreover, we discuss the relations between the different E-Bayesian estimates of b and the reliability function under the LINEX loss function through the relations between biases, Bi(bEBli) and Bi(REBLi).

    The relations between Bi(bEBSi), Bi(bEBli), Bi(REBSi) and Bi(REBli), i=1,2,3 are described in the following theorems:

    Theorem 1. Let y=cP, c>0, 0<cP<1, and bEBSi are given by (3.3), (3.4) and (3.5).Then we have the following conclusions:

    (i) Bi(bEBS2)<Bi(bEBS1)<Bi(bEBS3),

    (ii) limy0Bi(bEBS1)=limy0Bi(bEBS2)=limy0Bi(bEBS3).

    Proof. (i) From (3.3), (3.4) and (3.5), we have

    Bi(bEBS1)Bi(bEBS2)=Bi(bEBS3)Bi(bEBS1)=1c(m+uu+v)[c+2Pcln(1+cP)2] (4.1)

    For 1<x<1, we have: ln(1+x)=xx22+x33x44+=k=1(1)k1xkk. Let y=cP, when c>0, 0<cP<1, we have:

    [(1+2y1)ln(1+y)2]=(1+2y1)(yy22+y33y44+y55)2=(yy22+y33y44+y55)+(2y+2y232y34+2y45)2=(y26y36)+(3y462y515)+=y26(1y)+y460(98y)+. (4.2)

    From (4.1) and (4.2), we have

    Bi(bEBS1)Bi(bEBS2)=Bi(bEBS3)Bi(bEBS1)>0,

    that is

    Bi(bEBS2)<Bi(bEBS1)<Bi(bEBS3).

    (ii) From (4.1) and (4.2), we get

    limy0(Bi(bEBS1)Bi(bEBS2))=limy0(Bi(bEBS3)Bi(bEBS1))=1c(m+uu+v)limy0{y26(1y)+y460(98y)+}=0.

    That is, limy0Bi(bEBS1)=limy0Bi(bEBS2)=limy0Bi(bEBS3).

    Theorem 2. Let c>0, 0<cP<1, and bEBLi are given by (3.6), (3.7) and (3.8).Then we have the following conclusions:

    (i) Bi(bEBL2)<Bi(bEBL1)<Bi(bEBL3),

    (ii) limPBi(bEBL1)=limPBi(bEBL2)=limPBi(bEBL3),

    Proof. (i) From (3.6), (3.7) and (3.8), we have

    Bi(bEBL1)Bi(bEBL2)=Bi(bEBL3)Bi(bEBL1)=1c2z(m+uu+v)[(P+z)(P+z+c)ln(1+cP+z)P(P+c)ln(1+cP)cz]. (4.3)

    Since,

    [(P+z)(P+z+c)ln(1+cP+z)P(P+c)ln(1+cP)cz]=z+(P+c2c26P+c312P2c420P3+)[P+z+c2c2(P+z)(12(1+cP+z)[13c4(P+z)+c25(P+z)])]=c2P+z(12(1+cP+z)(13c4(P+z)+c25(P+z)))(c26Pc312P2+c420P3). (4.4)

    From (4.3) and (4.4), when c>0, 0<cP<1, we have:

    Bi(bEBL1)Bi(bEBL2)=Bi(bEBL3)Bi(bEBL1)>0,

    that is

    Bi(bEBL2)<Bi(bEBL1)<Bi(bEBL3).

    (ii) From (4.3) and (4.4) we get

    limP(Bi(bEBL1)Bi(bEBL2))=limP(Bi(bEBL3)Bi(bEBL1))=1cz(m+uu+v)(limPc2P+s(12(1+cP+z)(13c4(P+z)+c25(P+z))))1cz(m+uu+v)limP(c26Pc312P2+c420P3).=0. (4.5)

    That is, limPBi(bEBL1)=limPBi(bEBL2)=limPBi(bEBL3).

    Theorem 3. Let c>0, 0<cP<1, and REBSi are given by (3.9), (3.10) and (3.11).Then we have the following conclusions:

    (i) Bi(REBS2)<Bi(REBS1)<Bi(REBS3),

    (ii) limPBi(REBS1)=limPBi(REBS2)=limPBi(REBS3)

    Proof. (i) From (3.9), (3.10) and (3.11), we have

    g(c)=Bi(REBS1)Bi(REBS2)=Bi(REBS3)Bi(REBS1)=10c0(2θc)(θ+Pθ+P+P)m+ααu1(1α)v1c2B(u,v)dθdα (4.6)

    For α(0,1), θ(0,c), (2θc)(θ+Pθ+P+P)m+α and αu1(1α)v1c2B(u,v) are continuous functions and αu1(1α)v1c2B(u,v)>0, by the generalized mean value theorem for definite integrals, there is at least one number α0(0,1) and θ0(0,c) such that

    g(c)=(2θ0c)(θ0+Pθ0+P+P)m+α010c0αu1(1α)v1c2B(u,v)dθdα=2θ0cc(θ0+Pθ0+P+P)m+α0>0. (4.7)

    Therefore, we obtain that

    Bi(REBS1)Bi(REBS2)=Bi(REBS3)Bi(REBS1)>0,

    that is

    Bi(REBS2)<Bi(REBS1)<Bi(REBS3).

    (ii) From (4.6) we get

    limP(Bi(REBS1)Bi(REBS2))=limP(Bi(REBS3)Bi(REBS1))=1c2B(u,v)limP10c0(2θc)(θ+Pθ+P+P)m+ααu1(1α)v1dθdα=1c2B(u,v)10c0(2θc)(limP(θ+Pθ+P+P)m+α)αu1(1α)v1dθdα=0. (4.8)

    That is, limPBi(REBS1)=limPBi(REBS2)=limPBi(REBS3).

    Theorem 4. Let c>0, 0<cP<1, and REBLi are given by (3.12). Then we have the following conclusions:

    (i) Bi(REBL3)<Bi(REBL2)<Bi(REBL1).

    (ii) limPBi(REBL1)=limPBi(REBL2)=limPBi(REBL3)

    Proof. (i) From (3.2) and (3.12), we have

    f(c)=Bi(REBL2)Bi(REBL3)=Bi(REBL1)Bi(REBL2)=10c0Bi(RBL(t))(π1(α,θ)π2(α,θ))dθdα=10c0Bi(RBL(t))(π3(α,θ)π1(α,θ))dθdα=1c2B(u,v)10c0(2θc)ln(i=0(δ)iΓ(i)(θ+Pθ+P+iP)m+α)αu1(1α)v1dθdα. (4.9)

    For α(0,1), θ(0,c), (2θc)ln(i=0(δ)iΓ(i)(θ+Pθ+P+iP)m+α) and αu1(1α)v1c2B(u,v) are continuous functions and αu1(1α)v1c2B(u,v)>0, by the generalized mean value theorem for definite integrals, there is at least one number α1(0,1) and θ1(0,c) such that

    f(c)=(2θ1c)ln(i=0(δ)iΓ(i)(θ1+Pθ1+P+iP)m+α1)10c0αu1(1α)v1c2B(u,v)dθdα=2θ1ccln(i=0(δ)iΓ(i)(θ1+Pθ1+P+iP)m+α1)>0. (4.10)

    Therefore, we obtain that

    Bi(REBL2)Bi(REBL3)=Bi(REBL1)Bi(REBL2)>0,

    that is

    Bi(REBL3)<Bi(REBL2)<Bi(REBL1).

    (ii) From (4.9) we get

    limP(Bi(REBL2)Bi(REBL3))=limP(Bi(REBL1)Bi(REBL2))=10c0limPBi(RBL(t))(π1(α,θ)π2(α,θ))dθdα=10c0limPBi(RBL(t))(π3(α,θ)π1(α,θ))dθdα=1c2B(u,v)limP10c0(2θc)ln[i=0(δ)iΓ(i)(θ+Pθ+P+iP)m+α]αu1(1α)v1dθdα=1c2B(u,v)10c0(2θc)(limPln(i=0(δ)iΓ(i)(θ+Pθ+P+iP)m+α))αu1(1α)v1dθdα=0. (4.11)

    That is, limPBi(REBL1)=limPBi(REBL2)=limPBi(REBL3).

    In this section, we derive the E-posterior risk of the E-Bayesian estimations of the parameter b using the three different prior distributions in (3.2) under SE and LINEX loss functions.

    Let (ˆμ,μ) be any loss function where ˆμ is the Bayes estimator of μ, and q(μ|x_) is the posterior distribution of μ, then the posterior risk (PR) for the Bayesian estimation is

    PR=(ˆμ,μ)q(μ|x_)dμ. (5.1)

    Under SE loss function the PR of the Bayes estimation is the posterior variance. From the posterior distribution in (2.4) we can obtain the PR of Bayesian estimation of b as follows

    PRBS=A0bm+α+1e(θ+P)bdb(m+αθ+P)2=m+α(θ+P)2. (5.2)

    According to Han [23] the E-posterior risk of the E-Bayesian estimation can be obtained as

    PREBS=DPRBSπ(α,θ)dθdα, (5.3)

    where PRBS is the posterior risk defined in (5.2) and π(α,θ) is the prior distribution. Now, from (3.2), (5.2) and (5.3) we can obtain the E-posterior risk of the E-Bayesian estimation under SE loss function as follow

    (i) The E-posterior risk of the E-Bayesian estimation of ˆbEBS1 is

    PREBS1=1cB(u,v)10c0m+α(θ+P)2αu1(1α)v1dθdα=1c2(m+uu+v)(cPcP+c).

    (ii) The E-posterior risk of the E-Bayesian estimation of ˆbEBS2 is

    PREBS2=2c2B(u,v)10c0m+α(θ+P)2(cθ)αu1(1α)v1dθdα=2c2(m+uu+v)(1+ln(P)+cPcP+cPP+cln(T+c)).

    (iii) The E-posterior risk of the E-Bayesian estimation of ˆbEBS3 is

    PREBS3=2c2B(u,v)10c0m+α(θ+P)2θαu1(1α)v1dθdα=2c2(m+uu+v)(ln(P+c)+PP+cln(P)1).

    Using the same approach in the previous subsection we can obtain the posterior risk of the Bayes estimate of b under LINEX loss function as follows

    PRBL=0(ez(ˆbBLb)z(ˆbBLb)1)bm+α1e(θ+T)bdb=(ezˆbBLE(ezb)zˆbBL+zE(b)1)=(ezˆbBLezˆbBLzˆbBL+zˆbBS1)=z{m+αθ+Pm+αzln(1+zθ+P)} (5.4)

    From (3.2), (5.3) and (5.4), the E-posterior risk of the E-Bayesian estimation of b under LINEX loss function can be obtained as follow

    (i) The E-posterior risk of the E-Bayesian estimation of ˆbEBL1 is

    PREBL1=zcB(u,v)10c0{m+αθ+Tm+αzln(1+zθ+T)}αu1(1α)v1dθdα=(m+uu+v)[P+zc(ln(1+cP)ln(1+cP+z))ln(1+zc+P)].

    (ii) The E-posterior risk of the E-Bayesian estimation of ˆbEBL2 is

    PREBL2=2zc2B(u,v)10c0{m+αθ+Tm+αzln(1+zθ+T)}(cθ)αu1(1α)v1dθdα=(m+uu+v)[(c+P)2+2z(c+P)c2ln(1+cP)ln(1+zP)(c+z+P)2c2ln(1+cz+P)zc].

    (iii) The E-posterior risk of the E-Bayesian estimation of ˆbEBL3 is

    PREBL3=2zc2B(u,v)10c0{m+αθ+Tm+αzln(1+zθ+T)}θαu1(1α)v1dθdα=1c2(m+uu+v)[(P+z)2ln(1+cz+P)c2ln(1+zc+P)(P2+2zP)ln(1+cP)+zs].

    In this section we compare the different estimators of the parameter a and the reliability function by conducting a simulation study. We compare the performance of the different estimators in terms of their biases and mean square errors (MSE). We consider different values of n, m, T and the following three censoring schemes (Sch)

    ● Sch 1: R1==Rm1=0andRm=nm.

    ● Sch 2: R1==Rm1=1andRm=n2m+1.

    ● Sch 3: R1==Rm=nmm.

    In all the setting we choose the parameter a to be one and consider b=(0.5,1.5). The simulation is conducted according to the following steps:

    (i) Determine n,m,Ris,T and the value of the parameter b.

    (ii) Generate the conventional progressive Type-Ⅱ censored sample from Burr type-XII model acording to the method proposed by Balakrishnan and Sandhu [32], by using X=[(1U)1/b1]1/a, where U is uniform (0,1).

    (iii) Determine the value of J, and withdraw all the observations greater than the Jth observation.

    (iv) Generate (mJ1) Type-Ⅱ censored sample from f(x)/[1F(xJ+1)] and stop the experiment at xm. Therefore, X={[1U(1+xaJ+1)b]1/b1}1/a.

    (v) Obtain the the different estimates of the parameter b and the reliability function at time x=0.75.

    (vi) Repeat steps 2–5, 1000 times.

    (vii) Obtain the average values of biases and MSEs (for the reliability function we obtain the MSE only).

    To obtain the Bayesian and E-Bayesian estimates of the parameter b, we choose the hyperparameters values to be α=0.5 and θ=1 for b=0.5 and α=0.75 and θ=0.5 for b=1.5. These values are selected to make the prior means are same as the original means. The Bayesian and and E-Bayesian estimates using the LINEX loss function are obtained by setting z=3 in all the cases. The values of average biases and average MSEs for the parameter b=0.5 are shown in Table 1 and in Table 3 for b=1.5. The average values of MSEs for the different estimates of the reliability function are displayed in Table 2 for b=0.5 and in Table 4 for b=1.5.

    Table 1.  Average values of bias (first row) and MSE (second row) of the different estimates for b = 0.5 under different censoring schemes.
    (n,m) Sch ˆbML ˆbBS ˆbEBS1 ˆbEBS2 ˆbEBS3 ˆbBL ˆbEBL1 ˆbEBL2 ˆbEBL3
    T=0.3
    (30, 5) 1 0.2367 0.2254 0.2142 0.2130 0.2155 0.2014 0.1880 0.1865 0.1896
    0.0590 0.0538 0.0494 0.0489 0.0499 0.0447 0.0402 0.0397 0.0407
    2 0.2286 0.2173 0.2055 0.2042 0.2069 0.1920 0.1778 0.1762 0.1795
    0.0550 0.0499 0.0454 0.0449 0.0459 0.0406 0.0361 0.0356 0.0366
    3 0.1930 0.1821 0.1674 0.1657 0.1691 0.1503 0.1324 0.1303 0.1345
    0.0387 0.0346 0.0297 0.0292 0.0303 0.0246 0.0200 0.0195 0.0205
    (30, 10) 1 0.1375 0.1332 0.1229 0.1218 0.1241 0.1116 0.0999 0.0986 0.1012
    0.0247 0.0233 0.0213 0.0211 0.0215 0.0194 0.0179 0.0177 0.0180
    2 0.1090 0.1054 0.0943 0.0927 0.0959 0.0803 0.0678 0.0659 0.0696
    0.0172 0.0161 0.0145 0.0143 0.0148 0.0130 0.0119 0.0118 0.0121
    3 0.0777 0.0750 0.0622 0.0603 0.0641 0.0460 0.0314 0.0292 0.0335
    0.0108 0.0100 0.0089 0.0087 0.0090 0.0079 0.0076 0.0076 0.0076
    (60, 5) 1 0.3224 0.3115 0.3068 0.3061 0.3075 0.3009 0.2956 0.2948 0.2964
    0.1046 0.0977 0.0948 0.0944 0.0952 0.0913 0.0882 0.0878 0.0887
    2 0.3187 0.3077 0.3027 0.3020 0.3035 0.2966 0.2911 0.2903 0.2919
    0.1021 0.0952 0.0923 0.0919 0.0927 0.0887 0.0855 0.0851 0.0860
    3 0.2801 0.2684 0.2613 0.2603 0.2624 0.2523 0.2441 0.2429 0.2453
    0.0788 0.0724 0.0687 0.0682 0.0692 0.0641 0.0602 0.0596 0.0607
    (60, 20) 1 0.1346 0.1323 0.1272 0.1266 0.1277 0.1218 0.1164 0.1157 0.1170
    0.0210 0.0203 0.0192 0.0190 0.0193 0.0180 0.0169 0.0168 0.0170
    2 0.1004 0.0985 0.0924 0.0917 0.0931 0.0860 0.0795 0.0788 0.0803
    0.0129 0.0124 0.0114 0.0113 0.0116 0.0105 0.0096 0.0095 0.0097
    3 0.0628 0.0616 0.0544 0.0536 0.0552 0.0467 0.0390 0.0381 0.0398
    0.0065 0.0062 0.0056 0.0055 0.0056 0.0050 0.0045 0.0045 0.0046
    T=0.6
    (30, 5) 1 0.3043 0.2930 0.2868 0.2861 0.2875 0.2800 0.2730 0.2722 0.2738
    0.0935 0.0868 0.0834 0.0830 0.0838 0.0797 0.0760 0.0755 0.0764
    2 0.2927 0.2812 0.2743 0.2735 0.2751 0.2667 0.2588 0.2579 0.2597
    0.0866 0.0800 0.0763 0.0759 0.0767 0.0723 0.0684 0.0679 0.0688
    3 0.2416 0.2298 0.2194 0.2182 0.2206 0.2075 0.1952 0.1938 0.1967
    0.0588 0.0532 0.0486 0.0481 0.0491 0.0436 0.0388 0.0382 0.0393
    (30, 10) 1 0.1993 0.1937 0.1867 0.1859 0.1875 0.1791 0.1713 0.1705 0.1722
    0.0419 0.0396 0.0372 0.0369 0.0374 0.0346 0.0322 0.0319 0.0324
    2 0.1592 0.1542 0.1453 0.1443 0.1463 0.1356 0.1256 0.1245 0.1268
    0.0272 0.0255 0.0230 0.0228 0.0233 0.0205 0.0182 0.0179 0.0184
    3 0.1140 0.1099 0.0986 0.0973 0.0999 0.0861 0.0734 0.0719 0.0748
    0.0143 0.0133 0.0111 0.0109 0.0113 0.0090 0.0072 0.0070 0.0074
    (60, 5) 1 0.3693 0.3600 0.3572 0.3569 0.3575 0.3541 0.3510 0.3507 0.3514
    0.1371 0.1304 0.1285 0.1282 0.1287 0.1264 0.1243 0.1241 0.1245
    2 0.3675 0.3581 0.3552 0.3549 0.3556 0.3521 0.3490 0.3486 0.3493
    0.1357 0.1289 0.1269 0.1267 0.1271 0.1248 0.1227 0.1224 0.1229
    3 0.3203 0.3092 0.3041 0.3035 0.3047 0.2985 0.2927 0.2921 0.2934
    0.1028 0.0958 0.0927 0.0923 0.0930 0.0893 0.0860 0.0856 0.0864
    (60, 20) 1 0.1935 0.1907 0.1871 0.1867 0.1875 0.1833 0.1796 0.1792 0.1800
    0.0387 0.0376 0.0363 0.0362 0.0365 0.0350 0.0337 0.0336 0.0339
    2 0.1484 0.1459 0.1412 0.1406 0.1417 0.1363 0.1313 0.1307 0.1319
    0.0231 0.0224 0.0211 0.0209 0.0212 0.0198 0.0185 0.0184 0.0187
    3 0.0962 0.0943 0.0882 0.0875 0.0889 0.0817 0.0752 0.0745 0.0759
    0.0101 0.0097 0.0086 0.0085 0.0088 0.0076 0.0066 0.0065 0.0067

     | Show Table
    DownLoad: CSV
    Table 2.  Average values of MSE of the different estimates of the reliability function for b=0.5 under different censoring schemes.
    (n,m) Sch ˆRML ˆRBS ˆREBS1 ˆREBS2 ˆREBS3 ˆRBL ˆREBL1 ˆREBL2 ˆREBL3
    T=0.3
    (30, 5) 1 0.0123 0.0115 0.0105 0.0104 0.0106 0.0123 0.0114 0.0113 0.0101
    2 0.0114 0.0106 0.0097 0.0095 0.0098 0.0115 0.0105 0.0104 0.0091
    3 0.0078 0.0073 0.0063 0.0062 0.0064 0.0082 0.0072 0.0071 0.0060
    (30, 10) 1 0.0049 0.0048 0.0044 0.0043 0.0044 0.0052 0.0048 0.0047 0.0043
    2 0.0034 0.0033 0.0030 0.0029 0.0030 0.0037 0.0033 0.0032 0.0028
    3 0.0021 0.0020 0.0018 0.0017 0.0018 0.0023 0.0020 0.0020 0.0015
    (60, 5) 1 0.0225 0.0212 0.0205 0.0204 0.0206 0.0218 0.0212 0.0211 0.0200
    2 0.0220 0.0206 0.0199 0.0198 0.0200 0.0213 0.0206 0.0205 0.0195
    3 0.0166 0.0154 0.0146 0.0145 0.0147 0.0163 0.0155 0.0153 0.0143
    (60, 20) 1 0.0041 0.0041 0.0038 0.0038 0.0039 0.0043 0.0041 0.0040 0.0034
    2 0.0025 0.0025 0.0023 0.0023 0.0023 0.0027 0.0025 0.0024 0.0022
    3 0.0012 0.0012 0.0011 0.0011 0.0011 0.0014 0.0012 0.0012 0.0010
    T=0.6
    (30, 5) 1 0.0200 0.0187 0.0179 0.0179 0.0180 0.0194 0.0187 0.0186 0.0160
    2 0.0184 0.0172 0.0163 0.0163 0.0164 0.0179 0.0171 0.0170 0.0155
    3 0.0121 0.0112 0.0102 0.0101 0.0104 0.0121 0.0112 0.0111 0.0100
    (30, 10) 1 0.0085 0.0082 0.0077 0.0076 0.0077 0.0087 0.0082 0.0081 0.0074
    2 0.0054 0.0052 0.0047 0.0047 0.0048 0.0057 0.0052 0.0051 0.0044
    3 0.0028 0.0027 0.0023 0.0022 0.0023 0.0031 0.0027 0.0026 0.0020
    (60, 5) 1 0.0303 0.0289 0.0284 0.0284 0.0285 0.0293 0.0289 0.0288 0.0282
    2 0.0300 0.0285 0.0280 0.0280 0.0281 0.0290 0.0285 0.0285 0.0278
    3 0.0221 0.0207 0.0200 0.0199 0.0201 0.0214 0.0207 0.0206 0.0198
    (60, 20) 1 0.0078 0.0077 0.0074 0.0074 0.0074 0.0079 0.0076 0.0076 0.0070
    2 0.0045 0.0045 0.0042 0.0042 0.0042 0.0047 0.0044 0.0044 0.0040
    3 0.0019 0.0019 0.0017 0.0017 0.0017 0.0021 0.0019 0.0019 0.0015

     | Show Table
    DownLoad: CSV
    Table 3.  Average values of bias (first row) and MSE (second row) of the different estimates for b = 1.5 under different censoring schemes.
    (n,m) Sch ˆbML ˆbBS ˆbEBS1 ˆbEBS2 ˆbEBS3 ˆbBL ˆbEBL1 ˆbEBL2 ˆbEBL3
    T=0.2
    (30, 5) 1 0.9555 0.9071 0.8972 0.8896 0.9048 0.7845 0.7694 0.7578 0.7809
    0.9227 0.8329 0.8159 0.8029 0.8289 0.6405 0.6199 0.6045 0.6356
    2 0.9253 0.8758 0.8649 0.8565 0.8732 0.7401 0.7233 0.7104 0.7361
    0.8635 0.7745 0.7561 0.7422 0.7702 0.5660 0.5435 0.5267 0.5607
    3 0.7540 0.7020 0.6843 0.6707 0.6979 0.4654 0.4339 0.4100 0.4578
    0.5721 0.4963 0.4720 0.4539 0.4905 0.2267 0.1997 0.1806 0.2200
    (30, 10) 1 0.6448 0.6192 0.6077 0.5989 0.6166 0.4849 0.4693 0.4573 0.4813
    0.4334 0.4006 0.3874 0.3775 0.3975 0.2659 0.2530 0.2434 0.2628
    2 0.5182 0.4946 0.4797 0.4682 0.4911 0.3163 0.2951 0.2789 0.3113
    0.2827 0.2581 0.2445 0.2342 0.2549 0.1266 0.1156 0.1079 0.1239
    3 0.3710 0.3517 0.3323 0.3174 0.3472 0.1128 0.0837 0.0614 0.1060
    0.1474 0.1327 0.1201 0.1109 0.1297 0.0326 0.0287 0.0269 0.0315
    (60, 5) 1 1.0874 1.0453 1.0394 1.0349 1.0440 0.9757 0.9676 0.9613 0.9738
    1.1927 1.1041 1.0924 1.0835 1.1014 0.9728 0.9583 0.9473 0.9694
    2 1.0924 1.0506 1.0449 1.0404 1.0493 0.9831 0.9752 0.9691 0.9812
    1.2028 1.1141 1.1026 1.0939 1.1115 0.9855 0.9714 0.9606 0.9822
    3 0.9780 0.9297 0.9208 0.9139 0.9276 0.8220 0.8091 0.7992 0.8190
    0.9583 0.8662 0.8499 0.8374 0.8624 0.6796 0.6589 0.6433 0.6748
    (60, 20) 1 0.6286 0.6154 0.6096 0.6051 0.6141 0.5526 0.5459 0.5407 0.5511
    0.4045 0.3880 0.3811 0.3758 0.3864 0.3176 0.3106 0.3052 0.3160
    2 0.4871 0.4752 0.4674 0.4614 0.4735 0.3901 0.3809 0.3738 0.3880
    0.2449 0.2333 0.2262 0.2208 0.2317 0.1625 0.1558 0.1507 0.1610
    3 0.3199 0.3109 0.3003 0.2922 0.3085 0.1946 0.1819 0.1720 0.1917
    0.1077 0.1017 0.0955 0.0908 0.1003 0.0453 0.0408 0.0376 0.0443
    T=0.5
    (30, 5) 1 0.9296 0.8812 0.8702 0.8617 0.8786 0.7414 0.7237 0.7102 0.7372
    0.8824 0.7957 0.7778 0.7643 0.7915 0.5944 0.5731 0.5574 0.5893
    2 0.9392 0.8913 0.8806 0.8723 0.8888 0.7549 0.7377 0.7245 0.7509
    0.9028 0.8163 0.7988 0.7855 0.8122 0.6198 0.5991 0.5839 0.6149
    3 0.9376 0.8882 0.8778 0.8698 0.8858 0.7599 0.7441 0.7321 0.7562
    0.8842 0.7942 0.7763 0.7626 0.7900 0.5900 0.5677 0.5509 0.5847
    (30, 10) 1 0.8807 0.8550 0.8488 0.8440 0.8536 0.7853 0.7775 0.7715 0.7835
    0.7915 0.7467 0.7369 0.7294 0.7444 0.6436 0.6331 0.6250 0.6412
    2 0.7535 0.7265 0.7179 0.7112 0.7245 0.6282 0.6171 0.6085 0.6256
    0.5701 0.5301 0.5178 0.5083 0.5273 0.3983 0.3847 0.3744 0.3952
    3 0.5564 0.5315 0.5179 0.5074 0.5284 0.3701 0.3511 0.3366 0.3657
    0.3133 0.2860 0.2719 0.2613 0.2827 0.1435 0.1303 0.1207 0.1404
    (60, 5) 1 1.0495 1.0048 0.9980 0.9927 1.0032 0.9240 0.9145 0.9072 0.9218
    1.1072 1.0161 1.0028 0.9926 1.0130 0.8660 0.8494 0.8368 0.8621
    2 1.0495 1.0048 0.9980 0.9927 1.0032 0.9240 0.9145 0.9072 0.9218
    1.1072 1.0161 1.0028 0.9926 1.0130 0.8660 0.8494 0.8368 0.8621
    3 1.0683 1.0247 1.0184 1.0135 1.0232 0.9505 0.9418 0.9352 0.9485
    1.1473 1.0566 1.0441 1.0346 1.0538 0.9161 0.9006 0.8888 0.9125
    (60, 20) 1 0.8853 0.8720 0.8691 0.8669 0.8714 0.8414 0.8381 0.8357 0.8406
    0.7872 0.7638 0.7588 0.7549 0.7627 0.7121 0.7068 0.7027 0.7109
    2 0.7200 0.7062 0.7016 0.6980 0.7052 0.6568 0.6515 0.6475 0.6556
    0.5195 0.4999 0.4934 0.4884 0.4984 0.4327 0.4259 0.4207 0.4312
    3 0.5006 0.4884 0.4808 0.4750 0.4867 0.4062 0.3973 0.3904 0.4042
    0.2522 0.2401 0.2328 0.2273 0.2384 0.1671 0.1601 0.1547 0.1655

     | Show Table
    DownLoad: CSV
    Table 4.  Average values of MSE of the different estimates of the reliability function for b=1.5 under different censoring schemes.
    (n,m) Sch ˆRML ˆRBS ˆREBS1 ˆREBS2 ˆREBS3 ˆRBL ˆREBL1 ˆREBL2 ˆREBL3
    T=0.2
    (30, 5) 1 0.0955 0.0875 0.0855 0.0839 0.0871 0.0951 0.0931 0.0916 0.0825
    2 0.0875 0.0802 0.0780 0.0764 0.0797 0.0880 0.0859 0.0843 0.0773
    3 0.0521 0.0483 0.0458 0.0439 0.0477 0.0567 0.0542 0.0523 0.0437
    (30, 10) 1 0.0380 0.0369 0.0356 0.0347 0.0366 0.0413 0.0400 0.0390 0.0336
    2 0.0230 0.0229 0.0217 0.0207 0.0226 0.0269 0.0256 0.0246 0.0206
    3 0.0110 0.0116 0.0106 0.0098 0.0114 0.0149 0.0137 0.0129 0.0104
    (60, 5) 1 0.1338 0.1238 0.1222 0.1210 0.1234 0.1300 0.1285 0.1273 0.1204
    2 0.1352 0.1250 0.1235 0.1223 0.1247 0.1312 0.1297 0.1286 0.1200
    3 0.0995 0.0911 0.0891 0.0875 0.0906 0.0987 0.0967 0.0952 0.0866
    (60, 20) 1 0.0346 0.0342 0.0335 0.0330 0.0340 0.0365 0.0358 0.0352 0.0320
    2 0.0193 0.0194 0.0188 0.0183 0.0192 0.0214 0.0207 0.0202 0.0182
    3 0.0077 0.0081 0.0076 0.0073 0.0080 0.0096 0.0091 0.0087 0.0071
    T=0.5
    (30, 5) 1 0.0911 0.0838 0.0817 0.0801 0.0833 0.0914 0.0893 0.0878 0.0813
    2 0.0940 0.0865 0.0845 0.0829 0.0861 0.0940 0.0920 0.0905 0.0831
    3 0.0900 0.0824 0.0803 0.0786 0.0819 0.0902 0.0882 0.0866 0.0779
    (30, 10) 1 0.0786 0.0752 0.0740 0.0731 0.0749 0.0795 0.0784 0.0775 0.0729
    2 0.0518 0.0498 0.0485 0.0475 0.0495 0.0544 0.0531 0.0521 0.0475
    3 0.0254 0.0252 0.0239 0.0229 0.0249 0.0294 0.0281 0.0271 0.0219
    (60, 5) 1 0.1207 0.1111 0.1094 0.1080 0.1107 0.1179 0.1162 0.1149 0.1007
    2 0.1207 0.1111 0.1094 0.1080 0.1107 0.1179 0.1162 0.1149 0.1005
    3 0.1265 0.1166 0.1150 0.1137 0.1163 0.1232 0.1216 0.1204 0.1000
    (60, 20) 1 0.0774 0.0756 0.0750 0.0745 0.0755 0.0779 0.0773 0.0769 0.0734
    2 0.0461 0.0453 0.0446 0.0441 0.0451 0.0477 0.0470 0.0465 0.0430
    3 0.0197 0.0198 0.0192 0.0187 0.0197 0.0219 0.0212 0.0207 0.0183

     | Show Table
    DownLoad: CSV

    From Tables 14 we have the following observations:

    (i) The average biases decrease as m increases in all the cases, which indicates that the different estimators used to estimate the parameter b are asymptotically unbiased.

    (ii) The average MSEs decrease and tend to zero as m increases in all the cases. Thus the different estimators used to estimate the parameter b and the reliability function are consistent.

    (iii) The Bayesian and E-Bayesian estimates of the parameter b perform better than MLE in all the cases in terms of minimum average biases and MSEs.

    (iv) Under SE loss function, the E-Bayesian estimates of the parameter b have less average biases and MSEs than the Bayes estimate.

    (v) Under LINEX loss function, the E-Bayesian estimates of the parameter b have less average biases and MSEs than the Bayes estimate.

    (vi) The performance order of E-Bayesian estimates under SE and LINEX loss functions in terms of minimum average biases and MSEs are the estimates using prior distribution 2, then the estimates using prior distribution 1 and then the estimates using prior distribution 3.

    (vii) The E-Bayesian estimate of the parameter b under LINEX loss function using prior distribution 2 has the smallest average biases and MSEs among all other different estimates in all the cases.

    (viii) The E-Bayesian estimate of reliability function under LINEX loss function using prior distribution 3 perform better than the other estimates in terms of minimum average biases and MSEs.

    (ix) Comparing the three censoring schemes, we observed that Sch 3 has the smallest average biases and MSEs in all the cases followed by Sch 2 and then 1.

    (x) The E-Bayesian estimate of the parameter b under LINEX loss function using prior distribution 2 has the minimum average biases and MSEs among all the other estimates.

    It is observed that the E-Bayesian estimates under the two loss functions using prior distribution 2 perform better than other estimates. It is known that the density of the prior distribution 2 is a decreasing function in the hyper-parameter θ and the density of the prior 3 is an increasing function. From this comparison, we can conclude that when the prior distribution of the hyper-parameter θ is decreasing the E-Bayesian estimates perform better than other estimates based on the other priors. Moreover, we obtain E-posterior risk of the parameter b under SE and LINEX loss functions. Here, we only display the case of b=0.5, n=60, m=(10,20) and T=0.3 using the three censoring schemes in Figure 1. From Figure 1, it is observed that the E-Bayesian risk decreases as the number of failure m increases in all the cases. Also, it is to be noted that under SE loss function the E-Bayesian risk using prior distribution 3 perform better than other prior distributions. Similarly, under LINEX loss function the E-Bayesian risk using prior distribution 3 have the smallest E-posterior risk among all other prior distributions. Finally, the ordering of performance of E-Bayesian risks under SE and LINEX loss functions are the E-Bayesian risk using prior distribution 3, then prior distribution 1, then prior distribution 2.

    Figure 1.  Posterior and E-posterior risk under SE and LINEX loss functions for b=0.5 and n=60.

    In this section we anlayze a real data set given by Lawless [33]. These data represent the time to breakdown of an insulating fluid between electrodes at a voltage of 34 k.v. Zimmer et al.[34], showed that the Burr type-XII distribution is suitable to fit these data. The original data set consists of 19 observations. We used the maximum likelihood method to obtain the estimates of the parameters a and b from the complete data set. The MLEs of a and b are 1.7379 and 0.2936, respectively. Mahmoud et al.[8], used these data to generate two adaptive progressively censored samples by considering m=10, T=6,9 and R={3,0,0,0,3,0,0,0,0}. The generated samples are

    Sample 1 (T=6)0.190.780.961.312.874.154.856.536.7172.89
    Sample 2 (T=9)0.190.780.961.312.873.164.858.2712.0672.89

     | Show Table
    DownLoad: CSV

    These data are also analyzed by Nassar et al. [12]. Here, we assume that the parameter a is known and equal to 1.7379 and use the two adaptive progressively hybrid censored samples to estimate the unknown parameter b. To compute the Bayesian and E-Bayesian estimates, we consider the case of noninformative priors by choosing the hyperparamters to be bgamma(0.01,0.01).

    The MLE, Bayesian and E-Bayesian estimates of the parameter b are obtained and displayed in Table 5. The Bayesian and E-Bayeian risk are also obtained and presented in Table 5. From the observation matrix we obtain the variance of the MLE of b. From Table 5, it is observed that the ˆbEBS2 under SE and ˆbEBL2 under LINEX loss function are closer to the true value of b more than the other estimates. Also, the E-Bayesian risk using the prior distribution 3 under SE and LINEX loss functions has the minimum risk among all the other priors. These results coincide with the results discussed before in the simulation section. Table 6 shows the different estimates of the reliability function by considering different values of x. Comparing the different estimates of the reliability function given in Table 6, we can conclude that the estimates based on prior distribution 2 under SE and LINEX loss function are closer to the true value of the reliability function that is based on the parameter values obtained from the complete sample.

    Table 5.  MLE, Bayesian and E-Bayesian estimates of b (first row) and variance, posterior risk and E-posterior risk (second row) for the real data.
    Sample ˆbML ˆbBS ˆbEBS1 ˆbEBS2 ˆbEBS3 ˆbBL ˆbEBL1 ˆbEBL2 ˆbEBL3
    Sample 1 (T=6) 0.18258 0.18273 0.18667 0.19066 0.18268 0.18357 0.18748 0.19150 0.18345
    0.00333 0.00334 0.00320 0.00334 0.00306 0.00042 0.00040 0.00042 0.00038
    Sample 2 (T=9) 0.18931 0.18946 0.19070 0.19569 0.18570 0.19036 0.19154 0.19658 0.18649
    0.00333 0.00359 0.00334 0.00352 0.00317 0.00045 0.00042 0.00044 0.00040

     | Show Table
    DownLoad: CSV
    Table 6.  MLE, Bayesian and E-Bayesian estimates of reliability function for the real data.
    Sample x ˆRML ˆRBS ˆREBS1 ˆREBS2 ˆREBS3 ˆRBL ˆREBL1 ˆREBL2 ˆREBL3
    Sample 1 (T=6) 1 0.8811 0.8817 0.8793 0.8769 0.8817 0.8820 0.8796 0.8772 0.8820
    10 0.4800 0.4922 0.4842 0.4769 0.4914 0.4951 0.4869 0.4797 0.4941
    50 0.2889 0.3100 0.3013 0.2940 0.3086 0.3131 0.3042 0.2968 0.3115
    Sample 2 (T=9) 1 0.8770 0.8777 0.8769 0.8739 0.8799 0.8780 0.8770 0.8739 0.8802
    10 0.4672 0.4800 0.4770 0.4681 0.4859 0.4830 0.4797 0.4708 0.4886
    50 0.2760 0.2976 0.2941 0.2852 0.3031 0.3008 0.2970 0.2881 0.3059

     | Show Table
    DownLoad: CSV

    In this paper we have investigated the E-Bayesian estimation of the parameter and the reliability function of the Burr type-XII distribution based on A-II PHCS. The E-Bayesian estimation is considered by using three different prior distributions under two loss functions, namely the SE and LINEX loss functions. The properties of the E-Bayesian estimation as well as the E-posterior risk are also derived. We compared the performance of the E-Bayesian estimation with the maximum likelihood and Bayesian estimators via an extensive simulation study. The simulation results revealed that the E-Bayesian estimation perform better than the maximum likelihood and Bayesian estimators in terms of minimum biases and MSEs. Moreover, we analyzed one real data set for illustration purpose and the results are coincide with those in the simulation section. As a future work, the E-Bayesian estimation for the Burr type-XII distribution under A-II PHCS is still an open problem when the two parameters are unknown. Another future work is to obtain the E-Bayesian estimates for the parameters of the Burr type-XII distribution under A-II PHCS using different prior distributions for the hyper-parameters.

    The authors would like to express their thanks to the editor and anonymous referees for useful suggestions and comments. This project was funded by the Deanship Scientific Research (DSR), King Abdulaziz University, Jeddah under grant no. (G: 537-130-1441). The authors, therefore, acknowledge with thanks DSR for technical and Financial support.

    The authors declare there is no conflicts of interest in this paper.



    [1] Domínguez-Escribá L, Porcar M (2010) Rice straw management: The big waste. Biofuels Bioprod Bioref 4: 154–159. https://doi.org/https://doi.org/10.1002/bbb.196 doi: 10.1002/bbb.196
    [2] Gummert M, Hung NV, Chivenge P, et al. (2020) Sustainable rice straw management, Cham: Springer Nature.
    [3] Goodman BA (2020) Utilization of waste straw and husks from rice production: A review. J Bioresour Bioprod 5: 143–162. https://doi.org/10.1016/j.jobab.2020.07.001 doi: 10.1016/j.jobab.2020.07.001
    [4] Nguyen DV, Dang LH (2020) Fresh rice straw silage affected by ensiling additives and durations and its utilisation in beef cattle diets. Asian J Anim Sci 14: 16–24. https://doi.org/10.3923/ajas.2020.16.24 doi: 10.3923/ajas.2020.16.24
    [5] Cheng YF, Wang Y, Li YF, et al. (2017) Progressive colonization of bacteria and degradation of rice straw in the rumen by Illumina sequencing. Front Microbiol 8: 1–10. https://doi.org/10.3389/fmicb.2017.02165 doi: 10.3389/fmicb.2017.02165
    [6] Kingston-Smith AH, Davies TE, Rees Stevens P, et al. (2013) Comparative metabolite fingerprinting of the rumen system during colonisation of three forage grass (Lolium perenne L.) varieties. PLoS One 8: e82801. https://doi.org/10.1371/journal.pone.0082801 doi: 10.1371/journal.pone.0082801
    [7] Belanche A, Weisbjerg MR, Allison GG, et al. (2014) Measurement of rumen dry matter and neutral detergent fiber degradability of feeds by Fourier-transform infrared spectroscopy. J Dairy Sci 97: 2361–2375. https://doi.org/10.3168/jds.2013-7491 doi: 10.3168/jds.2013-7491
    [8] Kim JG, Ham JS, Li YW, et al. (2017) Development of a new lactic acid bacterial inoculant for fresh rice straw silage. AJAS 30: 950–956. https://doi.org/10.5713/ajas.17.0287 doi: 10.5713/ajas.17.0287
    [9] Oladosu Y, Rafii MY, Abdullah N, et al. (2016) Fermentation quality and additives: A case of rice straw silage. Biomed Res Int 2016: 7985167. https://doi.org/10.1155/2016/7985167 doi: 10.1155/2016/7985167
    [10] Marbun TD, Lee K, Song J, et al. (2020) Effect of lactic acid bacteria on the nutritive value and in vitro ruminal digestibility of maize and rice straw silage. Appl Sci 10: 7801. https://doi.org/10.3390/app10217801 doi: 10.3390/app10217801
    [11] Zhang YG, Xin HS, Hua JL (2010) Effects of treating whole-plant or chopped rice straw silage with different levels of lactic acid bacteria on silage fermentation and nutritive value for lactating holsteins. Asian-Australas J Anim Sci 23: 1601–1607. https://doi.org/10.5713/ajas.2010.10082 doi: 10.5713/ajas.2010.10082
    [12] Irawan A, Sofyan A, Ridwan R, et al. (2021) Effects of different lactic acid bacteria groups and fibrolytic enzymes as additives on silage quality: A meta-analysis. Bioresour Technol Rep 14: 100654. https://doi.org/10.1016/j.biteb.2021.100654 doi: 10.1016/j.biteb.2021.100654
    [13] Kung L, Shaver R (2001) Interpretation and use of silage fermentation analysis reports. Focus Forage 3: 1–5.
    [14] Selim MSM, Abdelhamid SA, Mohamed SS (2021) Secondary metabolites and biodiversity of actinomycetes. J Genet Eng Biotechnol 19: 72. https://doi.org/10.1186/s43141-021-00156-9 doi: 10.1186/s43141-021-00156-9
    [15] Eun JS, Beauchemin KA, Schulze H (2007) Use of exogenous fibrolytic enzymes to enhance in vitro fermentation of alfalfa hay and corn silage. J Dairy Sci 90: 1440–1451. https://doi.org/10.3168/jds.S0022-0302(07)71629-6 doi: 10.3168/jds.S0022-0302(07)71629-6
    [16] Ridwan R, Rusmana I, Widyastuti Y, et al. (2015) Fermentation characteristics and microbial diversity of tropical grass-legumes silages. Asian-Australas J Anim Sci 28: 511–518. https://doi.org/10.5713/ajas.14.0622 doi: 10.5713/ajas.14.0622
    [17] Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426–428. https://doi.org/10.1021/ac60147a030 doi: 10.1021/ac60147a030
    [18] Daquioag JEL, Penuliar GM (2021) Isolation of actinomycetes with cellulolytic and antimicrobial activities from aoils collected from an urban green space in the Philippines. Int J Microbiol 2021: 6699430. https://doi.org/10.1155/2021/6699430 doi: 10.1155/2021/6699430
    [19] Helrich K, (1990) Official methods of analysis of the Association of Official Analytical Chemists. Arlington: The Association.
    [20] Garvey CJ, Parker IH, Simon GP (2005) On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol Chem Phys 206: 1568–1575. https://doi.org/10.1002/macp.200500008 doi: 10.1002/macp.200500008
    [21] Cao Y, Tan HM (2005) Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme Microb Technol 36: 314–317. https://doi.org/https://doi.org/10.1016/j.enzmictec.2004.09.002 doi: 10.1016/j.enzmictec.2004.09.00
    [22] Gaur R, Agrawal R, Kumar R, et al. (2015) Evaluation of recalcitrant features impacting enzymatic saccharification of diverse agricultural residues treated by steam explosion and dilute acid. RSC Adv 5: 60754–60762. https://doi.org/10.1039/c5ra12475a doi: 10.1039/c5ra12475a
    [23] Souza NKP, Detmann E, Valadares Filho SC, et al. (2013) Accuracy of the estimates of ammonia concentration in rumen fluid using different analytical methods. Arq Bras Med Vet Zootec 65: 1752–1758. https://doi.org/10.1590/S0102-09352013000600024 doi: 10.1590/S0102-09352013000600024
    [24] Borshchevskaya LN, Gordeeva TL, Kalinina AN, et al. (2016) Spectrophotometric determination of lactic acid. J Anal Chem 71: 755–758. https://doi.org/10.1134/S1061934816080037 doi: 10.1134/S1061934816080037
    [25] Theodorou MK, Williams BA, Dhanoa MS, et al. (1994) A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol 48: 185–197. https://doi.org/https://doi.org/10.1016/0377-8401(94)90171-6 doi: 10.1016/0377-8401(94)90171-6
    [26] McDougall EI (1948) Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem J 43: 99–109. https://doi.org/10.1042/bj0430099 doi: 10.1042/bj0430099
    [27] Tilley JMA, Terry RA (1963) A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci 18: 104–111. https://doi.org/https://doi.org/10.1111/j.1365-2494.1963.tb00335.x doi: 10.1111/j.1365-2494.1963.tb00335.x
    [28] Bidlack JE, Buxton DR (1992) Content and deposition rates of cellulose, hemicellulose, and lignin during regrowth of forage grasses and legumes. Can J Plant Sci 72: 809–818. https://doi.org/10.4141/cjps92-097 doi: 10.4141/cjps92-097
    [29] Adel AM, Abd El-Wahab ZH, Ibrahim AA, et al. (2011) Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part Ⅱ: Physicochemical properties. Carbohydr Polym 83: 676–687. https://doi.org/10.1016/j.carbpol.2010.08.039 doi: 10.1016/j.carbpol.2010.08.039
    [30] Senthamaraikannan P, Kathiresan M (2018) Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis. L. Carbohyd Polym 186: 332–343. https://doi.org/10.1016/j.carbpol.2018.01.072 doi: 10.1016/j.carbpol.2018.01.072
    [31] Hsu TC, Guo GL, Chen WH, et al. (2010) Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour Technol 101: 4907–4913. https://doi.org/10.1016/j.biortech.2009.10.009 doi: 10.1016/j.biortech.2009.10.009
    [32] Liu RG, Yu H, Huang Y (2005) Structure and morphology of cellulose in wheat straw. Cellulose 12: 25–34. https://doi.org/10.1007/s10570-004-0955-8 doi: 10.1007/s10570-004-0955-8
    [33] Kshirsagar SD, Waghmare PR, Chandrakant Loni P, et al. (2015) Dilute acid pretreatment of rice straw, structural characterization and optimization of enzymatic hydrolysis conditions by response surface methodology. RSC Adv 5: 46525–46533. https://doi.org/10.1039/C5RA04430H doi: 10.1039/C5RA04430H
    [34] Binod P, Satyanagalakshmi K, Sindhu R, et al. (2012) Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renew Energy 37: 109–116. https://doi.org/10.1016/j.renene.2011.06.007 doi: 10.1016/j.renene.2011.06.007
    [35] Remli NAM, Md Shah UK, Mohamad R, et al. (2014) Effects of chemical and thermal pretreatments on the enzymatic saccharification of rice straw for sugars production. BioResources 9: 510–522. https://doi.org/10.15376/biores.9.1.510-522 doi: 10.15376/biores.9.1.510-522
    [36] Jangong OS, Heryanto H, Rahmat R, et al. (2021) Effect of sugar palm fiber (SPF) to the structural and optical properties of bioplastics (SPF/starch/chitosan/polypropylene) in supporting mechanical properties and degradation performance. J Polym Environ 29: 1694–1705. https://doi.org/10.1007/s10924-020-02019-9 doi: 10.1007/s10924-020-02019-9
    [37] Zhuang JS, Li M, Pu YQ, et al. (2020) Observation of potential contaminants in processed biomass using fourier transform infrared spectroscopy. Appl Sci 10: 4345. https://doi.org/10.3390/app10124345 doi: 10.3390/app10124345
    [38] Liang YG, Cheng BJ, Si YB, et al. (2014) Physicochemical changes of rice straw after lime pretreatment and mesophilic dry digestion. Biomass Bioenerg 71: 106–112. https://doi.org/10.1016/j.biombioe.2014.10.020 doi: 10.1016/j.biombioe.2014.10.020
    [39] Lavrenčič A, Stefanon B, Susmel P (1997) An evaluation of the Gompertz model in degradability studies of forage chemical components. Anim Sci 64: 423–431. https://doi.org/10.1017/S1357729800016027 doi: 10.1017/S1357729800016027
    [40] Mu L, Xie Z, Hu LX, et al. (2020) Cellulase interacts with Lactobacillus plantarum to affect chemical composition, bacterial communities, and aerobic stability in mixed silage of high-moisture amaranth and rice straw. Bioresour Technol 315: 123772. https://doi.org/10.1016/j.biortech.2020.123772 doi: 10.1016/j.biortech.2020.123772
    [41] Cherdthong A, Suntara C, Khota W (2020) Lactobacillus casei TH14 and additives could modulate the quality, gas kinetics and the in vitro digestibility of ensilaged rice straw. J Anim Physiol Anim Nutr 104: 1690–1703. https://doi.org/10.1111/jpn.13426 doi: 10.1111/jpn.13426
    [42] Ogunade IM, Martinez-Tuppia C, Queiroz OCM, et al. (2018) Silage review: Mycotoxins in silage: Occurrence, effects, prevention, and mitigation. J Dairy Sci 101: 4034–4059. https://doi.org/10.3168/jds.2017-13788 doi: 10.3168/jds.2017-13788
    [43] Wang TW, Teng KL, Cao YH, et al. (2020) Effects of Lactobacillus hilgardii 60TS-2, with or without homofermentative Lactobacillus plantarum B90, on the aerobic stability, fermentation quality and microbial community dynamics in sugarcane top silage. Bioresour Technol 312: 123600. https://doi.org/10.1016/j.biortech.2020.123600 doi: 10.1016/j.biortech.2020.123600
    [44] Borreani G, Tabacco E, Schmidt RJ, et al. (2018) Silage review: Factors affecting dry matter and quality losses in silages. J Dairy Sci 101: 3952–3979. https://doi.org/10.3168/jds.2017-13837 doi: 10.3168/jds.2017-13837
    [45] Dehghani MR, Weisbjerg MR, Hvelplund T, et al. (2012) Effect of enzyme addition to forage at ensiling on silage chemical composition and NDF degradation characteristics. Livest Sci 150: 51–58. https://doi.org/https://doi.org/10.1016/j.livsci.2012.07.031 doi: 10.1016/j.livsci.2012.07.031
    [46] Ebrahimi M, Rajion MA, Goh YM, et al. (2014) The effects of adding lactic acid bacteria and cellulase in oil palm (Elais guineensis Jacq.) frond silages on fermentation quality, chemical composition and in vitro digestibility. Ital J Anim Sci 13: 557–562. https://doi.org/10.4081/ijas.2014.3358 doi: 10.4081/ijas.2014.3358
    [47] Zhao J, Dong ZH, Li JF, et al. (2018) Ensiling as pretreatment of rice straw: The effect of hemicellulase and Lactobacillus plantarum on hemicellulose degradation and cellulose conversion. Bioresour Technol 266: 158–165. https://doi.org/10.1016/j.biortech.2018.06.058 doi: 10.1016/j.biortech.2018.06.058
    [48] Dewar WA, McDonald P, Whittenbury R (1963) The hydrolysis of grass hemicelluloses during ensilage. J Sci Food Agric 14: 411–417. https://doi.org/https://doi.org/10.1002/jsfa.2740140610 doi: 10.1002/jsfa.2740140610
    [49] Li J, Shen YX, Cai YM (2010) Improvement of fermentation quality of rice straw silage by application of a bacterial inoculant and glucose. Asian-Australas J Anim Sci 23: 901–906. https://doi.org/10.5713/ajas.2010.90403 doi: 10.5713/ajas.2010.90403
    [50] Muck RE, Nadeau EMG, McAllister TA, et al. (2018) Silage review: Recent advances and future uses of silage additives. J Dairy Sci 101: 3980–4000. https://doi.org/10.3168/jds.2017-13839 doi: 10.3168/jds.2017-13839
    [51] Moon NJ (1983) Inhibition of the growth of acid tolerant yeasts by acetate, lactate and propionate and their synergistic mixtures. J Appl Bacteriol 55: 453–460. https://doi.org/10.1111/j.1365-2672.1983.tb01685.x doi: 10.1111/j.1365-2672.1983.tb01685.x
    [52] Oliveira AS, Weinberg ZG, Ogunade IM, et al. (2017) Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. J Dairy Sci 100: 4587–4603. https://doi.org/10.3168/jds.2016-11815 doi: 10.3168/jds.2016-11815
    [53] Ratnakomala S, Ridwan R, Kartina G, et al. (2006) The effect of Lactobacillus plantarum 1A-2 and 1BL-2 inoculant on the quality of napier grass silage. Biodiversitas J Biol Divers 7: 131–134. https://doi.org/10.13057/biodiv/d070208 doi: 10.13057/biodiv/d070208
    [54] Ju XH, Bowden M, Brown EE, et al. (2015) An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr Polym 123: 476–481. https://doi.org/10.1016/j.carbpol.2014.12.071 doi: 10.1016/j.carbpol.2014.12.071
    [55] Agger J, Viksø-Nielsen A, Meyer AS (2010) Enzymatic xylose release from pretreated corn bran arabinoxylan: Differential effects of deacetylation and deferuloylation on insoluble and soluble substrate fractions. J Agric Food Chem 58: 6141–6148. https://doi.org/10.1021/jf100633f doi: 10.1021/jf100633f
    [56] Spiridon I, Anghel N, Dinu MV, et al. (2020) Development and performance of bioactive compounds-loaded cellulose/collagen/polyurethane materials. Polymers 12: 1191. https://doi.org/10.3390/POLYM12051191 doi: 10.3390/POLYM12051191
    [57] Ren H, Richard TL, Chen ZL, et al. (2006) Ensiling corn stover: Effect of feedstock preservation on particleboard performance. Biotechnol Prog 22: 78–85. https://doi.org/10.1021/bp050174q doi: 10.1021/bp050174q
    [58] Bayatkouhsar J, Tahmasbi AM, Naserian AA (2012) Effects of microbial inoculant on composition, aerobic stability, in situ ruminal degradability and in vitro gas production of corn silage. Int J AgriSci 2: 774–786.
    [59] Zhao J, Dong ZH, Li JF, et al. (2019) Effects of sugar sources and doses on fermentation dynamics, carbohydrates changes, in vitro digestibility and gas production of rice straw silage. Ital J Anim Sci 18: 1345–1355. https://doi.org/10.1080/1828051X.2019.1659106 doi: 10.1080/1828051X.2019.1659106
    [60] Oskoueian E, Jahromi MF, Jafari S, et al. (2021) Manipulation of rice straw silage fermentation with different types of lactic acid bacteria inoculant affects rumen microbial fermentation characteristics and methane production. Vet Sci 8: 100. https://doi.org/10.3390/vetsci8060100 doi: 10.3390/vetsci8060100
    [61] Hu YQ, He YY, Gao S, et al. (2020) The effect of a diet based on rice straw co-fermented with probiotics and enzymes versus a fresh corn Stover-based diet on the rumen bacterial community and metabolites of beef cattle. Sci Rep 10: 10721. https://doi.org/10.1038/s41598-020-67716-w doi: 10.1038/s41598-020-67716-w
    [62] Wang MS, Zhang FJ, Zhang XX, et al. (2021) Nutritional quality and in vitro rumen fermentation characteristics of silage prepared with lucerne, sweet maize stalk, and their mixtures. Agric 11: 1205. https://doi.org/10.3390/agriculture11121205 doi: 10.3390/agriculture11121205
    [63] Ungerfeld EM (2020) Metabolic hydrogen flows in rumen fermentation: Principles and possibilities of interventions. Front Microbiol 11: 589. https://doi.org/10.3389/fmicb.2020.00589 doi: 10.3389/fmicb.2020.00589
    [64] Bergman EN (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70: 567–590. https://doi.org/10.1152/physrev.1990.70.2.567 doi: 10.1152/physrev.1990.70.2.567
    [65] Guo G, Shen C, Liu Q, et al. (2020) The effect of lactic acid bacteria inoculums on in vitro rumen fermentation, methane production, ruminal cellulolytic bacteria populations and cellulase activities of corn stover silage. J Integr Agric 19: 838–847. https://doi.org/10.1016/S2095-3119(19)62707-3 doi: 10.1016/S2095-3119(19)62707-3
    [66] Dönmez N, Karsli MA, Çinar A, et al. (2003) The effects of different silage additives on rumen protozoan number and volatile fatty acid concentration in sheep fed corn silage. Small Rumin Res 48: 227–231. https://doi.org/10.1016/S0921-4488(03)00017-8 doi: 10.1016/S0921-4488(03)00017-8
    [67] Weinberg ZG, Ashbell G, Hen Y, et al. (1995) The effect of cellulase and hemicellulase plus pectinase on the aerobic stability and fibre analysis of peas and wheat silages. Anim Feed Sci Technol 55: 287–293. https://doi.org/https://doi.org/10.1016/0377-8401(95)00785-L doi: 10.1016/0377-8401(95)00785-L
    [68] Colombatto D, Morgavi DP, Furtado AF, et al. (2003) Screening of exogenous enzymes for ruminant diets: Relationship between biochemical characteristics and in vitro ruminal degradation1. J Anim Sci 81: 2628–2638. https://doi.org/10.2527/2003.81102628x doi: 10.2527/2003.81102628x
    [69] Sun ZH, Liu SM, Tayo GO, et al. (2009) Effects of cellulase or lactic acid bacteria on silage fermentation and in vitro gas production of several morphological fractions of maize stover. Anim Feed Sci Technol 152: 219–231. https://doi.org/10.1016/j.anifeedsci.2009.04.013 doi: 10.1016/j.anifeedsci.2009.04.013
    [70] Khota W, Pholsen S, Higgs D, et al. (2017) Fermentation quality and in vitro methane production of sorghum silage prepared with cellulase and lactic acid bacteria. Asian-Australas J Anim Sci 30: 1568–1574. https://doi.org/10.5713/ajas.16.0502 doi: 10.5713/ajas.16.0502
    [71] Colombatto D, Mould FL, Bhat MK, et al. (2004) In vitro evaluation of fibrolytic enzymes as additives for maize (Zea mays L.) silage: I. Effects of ensiling temperature, enzyme source and addition level. Anim Feed Sci Technol 111: 111–128. https://doi.org/10.1016/j.anifeedsci.2003.08.010 doi: 10.1016/j.anifeedsci.2003.08.010
  • This article has been cited by:

    1. Zhifang Li, Huihong Zhao, Yunlong Shang, State estimation for censored system with colored noises: system reconstruction approach, 2022, 2183, 1742-6588, 012015, 10.1088/1742-6596/2183/1/012015
    2. Hassan Okasha, Yuhlong Lio, Mohammed Albassam, On Reliability Estimation of Lomax Distribution under Adaptive Type-I Progressive Hybrid Censoring Scheme, 2021, 9, 2227-7390, 2903, 10.3390/math9222903
    3. Mazen Nassar, Refah Alotaibi, Ahmed Elshahhat, Complexity Analysis of E-Bayesian Estimation under Type-II Censoring with Application to Organ Transplant Blood Data, 2022, 14, 2073-8994, 1308, 10.3390/sym14071308
    4. Refah Alotaibi, Mazen Nassar, Ahmed Elshahhat, Computational Analysis of XLindley Parameters Using Adaptive Type-II Progressive Hybrid Censoring with Applications in Chemical Engineering, 2022, 10, 2227-7390, 3355, 10.3390/math10183355
    5. Majd Alslman, Amal Helu, Lili Yu, Estimation of the stress-strength reliability for the inverse Weibull distribution under adaptive type-II progressive hybrid censoring, 2022, 17, 1932-6203, e0277514, 10.1371/journal.pone.0277514
    6. Zhifang Li, Huihong Zhao, Hailong Meng, Yong Chen, Variable step size predictor design for a class of linear discrete-time censored system, 2021, 6, 2473-6988, 10581, 10.3934/math.2021614
    7. Heba S. Mohammed, Empirical E-Bayesian estimation for the parameter of Poisson distribution, 2021, 6, 2473-6988, 8205, 10.3934/math.2021475
    8. Ahmed Elshahhat, Mazen Nassar, Inference of improved adaptive progressively censored competing risks data for Weibull lifetime models, 2023, 0932-5026, 10.1007/s00362-023-01417-0
    9. Monthira Duangsaphon, Sukit Sokampang, Kannat Na Bangchang, Bayesian estimation for median discrete Weibull regression model, 2024, 9, 2473-6988, 270, 10.3934/math.2024016
    10. 莉 张, Bayesian Analysis of Chen Distributionunder Improved Adaptive ProgressiveType-II Censoring, 2024, 14, 2160-7583, 400, 10.12677/PM.2024.141040
    11. Yarong Yu, Liang Wang, Sanku Dey, Jia Liu, Estimation of stress-strength reliability from unit-Burr Ⅲ distribution under records data, 2023, 20, 1551-0018, 12360, 10.3934/mbe.2023550
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3988) PDF downloads(389) Cited by(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog