Research article Special Issues

Reliability analysis for independent Nadarajah–Haghighi competing risks model employing improved adaptive progressively censored data

  • Published: 01 July 2025
  • MSC : 62F10, 62F15, 62N01, 62N05

  • The use of competing risk frameworks for the analysis of reliability/survival data has gained popularity in recent years, primarily because traditional techniques are inadequate for effectively analyzing such data. In this study, we examined the independent competing risks model with lifetimes of units distributed according to the Nadarajah–Haghighi distribution. Our focus was on estimating the unknown parameters, as well as the reliability and failure rate functions, using both frequentist and Bayesian estimation methods under an improved adaptive progressive Type-Ⅱ censoring mechanism. The frequentist estimation involved deriving point estimators and approximate confidence intervals using the asymptotic properties of classical estimators. Bayes estimators were obtained through symmetric squared loss and the Metropolis-Hastings algorithm, which generated samples from the joint posterior distribution. Additionally, the highest posterior density credible intervals were calculated. Given the complex nature of the acquired estimators, we conducted a comprehensive simulation study to numerically compare the performance of the proposed estimates across various experimental scenarios. To empirically validate the proposed inferential framework, we analyzed two real-world competing risk datasets, highlighting the effectiveness of the applied techniques in reliability data analysis.

    Citation: Refah Alotaibi, Mazen Nassar, Ahmed Elshahhat. Reliability analysis for independent Nadarajah–Haghighi competing risks model employing improved adaptive progressively censored data[J]. AIMS Mathematics, 2025, 10(7): 15131-15164. doi: 10.3934/math.2025679

    Related Papers:

  • The use of competing risk frameworks for the analysis of reliability/survival data has gained popularity in recent years, primarily because traditional techniques are inadequate for effectively analyzing such data. In this study, we examined the independent competing risks model with lifetimes of units distributed according to the Nadarajah–Haghighi distribution. Our focus was on estimating the unknown parameters, as well as the reliability and failure rate functions, using both frequentist and Bayesian estimation methods under an improved adaptive progressive Type-Ⅱ censoring mechanism. The frequentist estimation involved deriving point estimators and approximate confidence intervals using the asymptotic properties of classical estimators. Bayes estimators were obtained through symmetric squared loss and the Metropolis-Hastings algorithm, which generated samples from the joint posterior distribution. Additionally, the highest posterior density credible intervals were calculated. Given the complex nature of the acquired estimators, we conducted a comprehensive simulation study to numerically compare the performance of the proposed estimates across various experimental scenarios. To empirically validate the proposed inferential framework, we analyzed two real-world competing risk datasets, highlighting the effectiveness of the applied techniques in reliability data analysis.



    加载中


    [1] D. R. Cox, The analysis of exponentially distributed life-times with two types of failure, J. Roy. Stat. Soc. Ser. B: Stat. Methodol., 21 (1959), 411–421. http://doi.org/10.1111/j.2517-6161.1959.tb00349.x doi: 10.1111/j.2517-6161.1959.tb00349.x
    [2] E. Cramer, A. B. Schmiedt, Progressively Type-Ⅱ censored competing risks data from Lomax distributions, Comput. Stat. Data Anal., 55 (2011), 1285–1303. http://doi.org/10.1016/j.csda.2010.09.017 doi: 10.1016/j.csda.2010.09.017
    [3] E. A. Ahmed, Z. Ali Alhussain, M. M. Salah, H. Haj Ahmed, M. S. Eliwa, Inference of progressively type-Ⅱ censored competing risks data from Chen distribution with an application, J. Appl. Stat., 47 (2020), 2492–2524. http://doi.org/10.1080/02664763.2020.1815670 doi: 10.1080/02664763.2020.1815670
    [4] T. A. Abushal, J. Kumar, A. H. Muse, A. H. Tolba, Estimation for Akshaya failure model with competing risks under progressive censoring scheme with analyzing of thymic lymphoma of mice application, Complexity, 2022 (2022), 5151274. http://doi.org/10.1155/2022/5151274 doi: 10.1155/2022/5151274
    [5] M. A. Almuqrin, M. M. Salah, E. A. Ahmed, Statistical inference for competing risks model with adaptive progressively type-Ⅱ censored Gompertz life data using industrial and medical applications, Mathematics, 10 (2022), 4274. http://doi.org/10.3390/math10224274 doi: 10.3390/math10224274
    [6] Y. Tian, Y. Liang, W. Gui, Inference and optimal censoring scheme for a competing-risks model with type-Ⅱ progressive censoring, Math. Popul. Stud., 31 (2024), 1–39. http://doi.org/10.1080/08898480.2023.2225349 doi: 10.1080/08898480.2023.2225349
    [7] R. Alotaibi, M. Nassar, Z. A. Khan, W. A. Alajlan, A. Elshahhat, Analysis and data modelling of electrical appliances and radiation dose from an adaptive progressive censored XGamma competing risk model, J. Radiat. Res. Appl. Sci., 18 (2025), 101188. http://doi.org/10.1016/j.jrras.2024.101188 doi: 10.1016/j.jrras.2024.101188
    [8] S. Han, D. Wang, Y. A. Tashkandy, M. E. Bakr, M. M. M. El-Din, A. Elshenawya, A new sine-inspired probability model: Theoretical features with statistical modeling of the music engineering and reliability scenarios, Alexandria Eng. J., 106 (2024), 288–297. http://doi.org/10.1016/j.aej.2024.06.099 doi: 10.1016/j.aej.2024.06.099
    [9] A. Haddari, H. Zeghdoudi, R. Pakyari, A new two-parameter family of discrete distributions, Heliyon, 11 (2025), e41459. http://doi.org/10.1016/j.heliyon.2024.e41459 doi: 10.1016/j.heliyon.2024.e41459
    [10] M. Kouadria, H. Zeghdoudi, The truncated new-XLindley distribution with applications, J. Comput. Anal. Appl., 34 (2025), 53–64.
    [11] C. S. Kumar, G. Jithu, V. Deneshkumar, S. N. Chandra, On alpha generalized Kies model and its applications in cancer data sets, Jpn. J. Stat. Data Sci., 8 (2025), 539–557. http://doi.org/10.1007/s42081-024-00284-9 doi: 10.1007/s42081-024-00284-9
    [12] S. Nadarajah, F. Haghighi, An extension of the exponential distribution, Statistics, 45 (2011), 543–558. http://doi.org/10.1080/02331881003678678 doi: 10.1080/02331881003678678
    [13] M. Wu, W. Gui, Estimation and prediction for Nadarajah-Haghighi distribution under progressive type-Ⅱ censoring, Symmetry, 13 (2021), 999. http://doi.org/10.3390/sym13060999 doi: 10.3390/sym13060999
    [14] S. Dey, L. Wang, M. Nassar, Inference on Nadarajah-Haghighi distribution with constant stress partially accelerated life tests under progressive type-Ⅱ censoring, J. Appl. Stat., 49 (2022), 2891–2912. http://doi.org/10.1080/02664763.2021.1928014 doi: 10.1080/02664763.2021.1928014
    [15] I. Elbatal, N. Alotaibi, S. A. Alyami, M. Elgarhy, A. R. El-Saeed, Bayesian and non-Bayesian estimation of the Nadaraj ah-Haghighi distribution: Using progressive Type-1 censoring scheme, Mathematics, 10 (2022), 760. http://doi.org/10.3390/math10050760 doi: 10.3390/math10050760
    [16] A. M. Almarashi, A. Algarni, H. Okasha, M. Nassar, On reliability estimation of Nadarajah-Haghighi distribution under adaptive type‐Ⅰ progressive hybrid censoring scheme, Qual. Reliab. Eng. Int., 38 (2022), 817–833. http://doi.org/10.1002/qre.3016 doi: 10.1002/qre.3016
    [17] T. A. Abushal, Statistical inference for Nadarajah-Haghighi distribution under unified hybrid censored competing risks data, Heliyon, 10 (2024), e26794. http://doi.org/10.1016/j.heliyon.2024.e26794 doi: 10.1016/j.heliyon.2024.e26794
    [18] M. E. Abd Elwahab, A. Elshahhat, O. A. Alqasem, M. Nassar, Reliability analysis of new jointly type-Ⅱ hybrid NH censored data and its modeling for three engineering cases, Alexandria Eng. J., 113 (2025), 347–365. http://doi.org/10.1016/j.aej.2024.11.032 doi: 10.1016/j.aej.2024.11.032
    [19] N. Balakrishnan, D. Kundu, Hybrid censoring: Models, inferential results and applications, Comput. Stat. Data Anal., 57 (2013), 166–209. http://doi.org/10.1016/j.csda.2012.03.025 doi: 10.1016/j.csda.2012.03.025
    [20] N. Balakrishnan, N. Kannan, C. T. Lin, S. J. S. Wu, Inference for the extreme value distribution under progressive Type-Ⅱ censoring, J. Stat. Comput. Simul., 74 (2004), 25–45. http://doi.org/10.1080/0094965031000105881 doi: 10.1080/0094965031000105881
    [21] M. K. Rastogi, Y. M. Tripathi, Estimating the parameters of a Burr distribution under progressive type Ⅱ censoring, Stat. Method., 9 (2012), 381–391. http://doi.org/10.1016/j.stamet.2011.10.002 doi: 10.1016/j.stamet.2011.10.002
    [22] O. E. Abo-Kasem, A. R. El Saeed, A. I. El Sayed, Optimal sampling and statistical inferences for Kumaraswamy distribution under progressive Type-Ⅱ censoring schemes, Sci. Rep., 13 (2023), 12063. http://doi.org/10.1038/s41598-023-38594-9 doi: 10.1038/s41598-023-38594-9
    [23] M. M. Hasaballah, Y. A. Tashkandy, M. E. Bakr, O. S. Balogun, D. A. Ramadan, Classical and Bayesian inference of inverted modified Lindley distribution based on progressive type-Ⅱ censoring for modeling engineering data, AIP Adv., 14 (2024). http://doi.org/10.1063/5.0190542
    [24] H. K. T. Ng, D. Kundu, P. S. Chan, Statistical analysis of exponential lifetimes under an adaptive Type-Ⅱ progressive censoring scheme, Nav. Res. Log., 56 (2009), 687–698. http://doi.org/10.1002/nav.20371 doi: 10.1002/nav.20371
    [25] M. M. A. Sobhi, A. A. Soliman, Estimation for the exponentiated Weibull model with adaptive Type-Ⅱ progressive censored schemes, Appl. Math. Modell., 40 (2016), 1180–1192. http://doi.org/10.1016/j.apm.2015.06.022 doi: 10.1016/j.apm.2015.06.022
    [26] H. Panahi, N. Moradi, Estimation of the inverted exponentiated Rayleigh distribution based on adaptive Type Ⅱ progressive hybrid censored sample, J. Comput. Appl. Math., 364 (2020), 112345. http://doi.org/10.1016/j.cam.2019.112345 doi: 10.1016/j.cam.2019.112345
    [27] S. Dutta, S. Dey, S. Kayal, Bayesian survival analysis of logistic exponential distribution for adaptive progressive Type-Ⅱ censored data, Comput. Stat., 39 (2024), 2109–2155. http://doi.org/10.1007/s00180-023-01376-y doi: 10.1007/s00180-023-01376-y
    [28] W. Yan, P. Li, Y. Yu, Statistical inference for the reliability of Burr-XII distribution under improved adaptive Type-Ⅱ progressive censoring, Appl. Math. Modell., 95 (2021), 38–52. http://doi.org/10.1016/j.apm.2021.01.050 doi: 10.1016/j.apm.2021.01.050
    [29] A. Henningsen, O. Toomet, maxLik: A package for maximum likelihood estimation in R, Comput. Stat., 26 (2011), 443–458. http://doi.org/10.1007/s00180-010-0217-1
    [30] M. Plummer, N. Best, K. Cowles, K. Vines, CODA: Convergence diagnosis and output analysis for MCMC, R News, 6 (2006), 7–11.
    [31] J. F. Lawless, Statistical Models and Methods For Lifetime Data, 2 Eds., New Jersey: John Wiley and Sons, 2011.
    [32] T. A. Abushal, Statistical inference for Nadarajah-Haghighi distribution under unified hybrid censored competing risks data, Heliyon, 10 (2024), e26794. http://doi.org/10.1016/j.heliyon.2024.e26794 doi: 10.1016/j.heliyon.2024.e26794
    [33] M. W. Donoghoe, V. Gebski, The importance of censoring in competing risks analysis of the subdistribution hazard, BMC Med. Res. Method., 17 (2017), 52. http://doi.org/10.1186/s12874-017-0327-3 doi: 10.1186/s12874-017-0327-3
    [34] M. Nassar, R. Alotaibi, C. Zhang, Estimation of reliability indices for alpha power exponential distribution based on progressively censored competing risks data, Mathematics, 10 (2022), 2258. http://doi.org/10.3390/math10132258 doi: 10.3390/math10132258
    [35] M. L. Moeschberger, J. P. Klein, Statistical methods for dependent competing risks, Lifetime Data Anal., 1 (1995), 195–204. http://doi.org/10.1007/BF00985770 doi: 10.1007/BF00985770
    [36] Y. Du, W. Gui, Statistical inference of adaptive type Ⅱ progressive hybrid censored data with dependent competing risks under bivariate exponential distribution, J. Appl. Stat., 49 (2022), 3120–3140. http://doi.org/10.1080/02664763.2021.1937961 doi: 10.1080/02664763.2021.1937961
    [37] H. Michimae, T. Emura, A. Miyamoto, K. Kishi, Bayesian parametric estimation based on left-truncated competing risks data under bivariate Clayton copula models, J. Appl. Stat., 51 (2024), 2690–2708. http://doi.org/10.1080/02664763.2024.2315458 doi: 10.1080/02664763.2024.2315458
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(651) PDF downloads(54) Cited by(1)

Article outline

Figures and Tables

Figures(7)  /  Tables(21)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog