Stress-strength reliability, defined as $ \mathcal{R} = P(Y < X) $, plays a vital role in evaluating a system's ability to withstand stress, especially in complex engineering scenarios. This study investigated $ \mathcal{R} $ when both the stress $ Y $ and strength $ X $ followed independent Weibull distributions with a common shape parameter and distinct scale parameters. The analysis was conducted under an improved adaptive progressive Type-Ⅱ censoring scheme. We employed both classical and Bayesian estimation techniques. Classical inference was performed using maximum likelihood estimation and the maximum product of spacings methods, providing point and interval estimates based on their statistical properties. For Bayesian analysis, we proposed two approaches, one based on the likelihood function and the other on the spacings function, using independent gamma priors. Posterior estimates were obtained via Markov Chain Monte Carlo under a squared error loss, along with corresponding credible intervals. A comprehensive simulation study evaluated and compared the performance of the four estimators, two classical and two Bayesian, across varying censoring scenarios. The proposed methods were further validated using real-world data from organic white light-emitting diode devices, illustrating their practical utility.
Citation: Refah Alotaibi, Ahmed Elshahhat, Mazen Nassar. Analysis of Weibull stress-strength reliability using spacing function method under improved adaptive progressive censoring plan[J]. AIMS Mathematics, 2025, 10(7): 17082-17116. doi: 10.3934/math.2025766
Stress-strength reliability, defined as $ \mathcal{R} = P(Y < X) $, plays a vital role in evaluating a system's ability to withstand stress, especially in complex engineering scenarios. This study investigated $ \mathcal{R} $ when both the stress $ Y $ and strength $ X $ followed independent Weibull distributions with a common shape parameter and distinct scale parameters. The analysis was conducted under an improved adaptive progressive Type-Ⅱ censoring scheme. We employed both classical and Bayesian estimation techniques. Classical inference was performed using maximum likelihood estimation and the maximum product of spacings methods, providing point and interval estimates based on their statistical properties. For Bayesian analysis, we proposed two approaches, one based on the likelihood function and the other on the spacings function, using independent gamma priors. Posterior estimates were obtained via Markov Chain Monte Carlo under a squared error loss, along with corresponding credible intervals. A comprehensive simulation study evaluated and compared the performance of the four estimators, two classical and two Bayesian, across varying censoring scenarios. The proposed methods were further validated using real-world data from organic white light-emitting diode devices, illustrating their practical utility.
| [1] | Z. W. Birnbaum, On a use of the Mann–Whitney statistic, Proc. 3rd Berkeley Symp. Math. Stat. Probab., Univ. California Press, Berkeley, 1 (1956), 13–17. |
| [2] | S. Kotz, Y. Lumelskii, M. Pensky, The stress–strength model and its generalizations: Theory and applications, World Scientific, New York, 2003. |
| [3] |
V. K. Sharma, S. K. Singh, U. Singh, V. Agiwal, The inverse Lindley distribution: A stress-strength reliability model with application to head and neck cancer data, J. Ind. Prod. Eng., 32 (2015), 162–173. https://doi.org/10.1080/21681015.2015.1025901 doi: 10.1080/21681015.2015.1025901
|
| [4] |
V. K. Sharma, Bayesian analysis of head and neck cancer data using generalized inverse Lindley stress-strength reliability model, Commun. Stat. Theor.- M., 47 (2018), 1155–1180. https://doi.org/10.1080/03610926.2017.1316858 doi: 10.1080/03610926.2017.1316858
|
| [5] |
F. S. Quintino, M. Oliveira, P. N. Rathie, L. C. Ozelim, T. A. da Fonseca, Asset selection based on estimating stress-strength probabilities: The case of returns following three-parameter generalized extreme value distributions, AIMS Math., 9 (2024), 2345–2368. https://doi.org/10.3934/math.2024116 doi: 10.3934/math.2024116
|
| [6] |
M. S. Kotb, M. A. Al Omari, Estimation of the stress-strength reliability for the exponential-Rayleigh distribution, Math. Comput. Simulat., 228 (2025), 263–273. https://doi.org/10.1016/j.matcom.2024.09.005 doi: 10.1016/j.matcom.2024.09.005
|
| [7] |
L. Wang, Y. Yu, Y. Lio, Y. M. Tripathi, Analysis of stress-strength reliability from a generalized exponential distribution under maximum ranked set sampling with unequal samples, J. Stat. Comput. Simul., 95 (2025), 1944–1975. https://doi.org/10.1080/00949655.2025.2476019 doi: 10.1080/00949655.2025.2476019
|
| [8] | H. Rinne, The Weibull distribution: A handbook, Chapman Hall/CRC, 2008. |
| [9] |
E. Chiodo, G. Mazzanti, Bayesian reliability estimation based on a Weibull stress-strength model for aged power system components subjected to voltage surges, IEEE Trans. Dielectr. Electr. Insul., 13 (2006), 146–159. https://doi.org/10.1109/TDEI.2006.1593413 doi: 10.1109/TDEI.2006.1593413
|
| [10] | A. Asgharzadeh, R. Valiollahi, M. Z. Raqab, Stress-strength reliability of Weibull distribution based on progressively censored samples, SORT-Stat. Oper. Res. T., 35 (2011), 103–124. https://hdl.handle.net/2099/13276 |
| [11] |
B. X. Wang, Z. S. Ye, Inference on the Weibull distribution based on record values, Comput. Stat. Data Anal., 83 (2015), 26–36. https://doi.org/10.1016/j.csda.2014.09.005 doi: 10.1016/j.csda.2014.09.005
|
| [12] |
A. M. Almarashi, A. Algarni, M. Nassar, On estimation procedures of stress-strength reliability for Weibull distribution with application, PLoS One, 15 (2020), e0237997. https://doi.org/10.1371/journal.pone.0237997 doi: 10.1371/journal.pone.0237997
|
| [13] | N. Balakrishnan, R. Aggarwala, Progressive censoring: Theory, methods, and applications, Springer Science & Business Media, 2000. |
| [14] |
N. Balakrishnan, Progressive censoring methodology: An appraisal, Test, 16 (2007), 211–259. https://doi.org/10.1007/s11749-007-0061-y doi: 10.1007/s11749-007-0061-y
|
| [15] |
D. Kundu, A. Joarder, Analysis of Type-Ⅱ progressively hybrid censored data, Comput. Stat. Data Anal., 50 (2006), 2509–2528. https://doi.org/10.1016/j.csda.2005.05.002 doi: 10.1016/j.csda.2005.05.002
|
| [16] |
H. K. T. Ng, D. Kundu, P. S. Chan, Statistical analysis of exponential lifetimes under an adaptive Type-Ⅱ progressive censoring scheme, Naval Res. Logist., 56 (2009), 687–698. https://doi.org/10.1002/nav.20371 doi: 10.1002/nav.20371
|
| [17] |
M. Nassar, O. E. Abo-Kasem, Estimation of the inverse Weibull parameters under adaptive type-Ⅱ progressive hybrid censoring scheme, J. Comput. Appl. Math., 315 (2017), 228–239. https://doi.org/10.1016/j.cam.2016.11.012 doi: 10.1016/j.cam.2016.11.012
|
| [18] |
S. Dutta, S. Dey, S. Kayal, Bayesian survival analysis of logistic exponential distribution for adaptive progressive Type-Ⅱ censored data, Comput. Stat., 39 (2024), 2109–2155. https://doi.org/10.1007/s00180-023-01376-y doi: 10.1007/s00180-023-01376-y
|
| [19] |
C. Zhang, J. Zhang, W. Gui, Bayesian inference for Marshall-Olkin bivariate Lomax-Geometric distribution under adaptive type-Ⅱ progressive hybrid censored dependent competing risks data, Commun. Stat. Simul. Comput., 2025, 1–22. https://doi.org/10.1080/03610918.2025.2474597 doi: 10.1080/03610918.2025.2474597
|
| [20] |
W. Yan, P. Li, Y. Yu, Statistical inference for the reliability of Burr-XⅡ distribution under improved adaptive Type-Ⅱ progressive censoring, Appl. Math. Model., 95 (2021), 38–52. https://doi.org/10.1016/j.apm.2021.01.050 doi: 10.1016/j.apm.2021.01.050
|
| [21] |
M. Nassar, A. Elshahhat, Estimation procedures and optimal censoring schemes for an improved adaptive progressively type-Ⅱ censored Weibull distribution, J. Appl. Stat., 51 (2024), 1664–1688. https://doi.org/10.1080/02664763.2023.2230536 doi: 10.1080/02664763.2023.2230536
|
| [22] |
L. Zhang, R. Yan, Parameter estimation of Chen distribution under improved adaptive Type-Ⅱ progressive censoring, J. Stat. Comput. Simul., 94 (2024), 2830–2861. https://doi.org/10.1080/00949655.2024.2358828 doi: 10.1080/00949655.2024.2358828
|
| [23] |
C. Swaroop, S. Dutta, S. Saini, N. Tiwari, Estimation of stress-strength reliability for the generalized inverted exponential distribution based on improved adaptive Type-Ⅱ progressive censoring, Comput. Stat., 2025, 1–37. https://doi.org/10.1007/s00180-025-01612-7 doi: 10.1007/s00180-025-01612-7
|
| [24] |
M. Irfan, S. Dutta, A. K. Sharma, Statistical inference and optimal plans for improved adaptive Type-Ⅱ progressive censored data following Kumaraswamy-G family of distributions, Phys. Scr., 100 (2025), 025213. https://doi.org/10.1088/1402-4896/ada216 doi: 10.1088/1402-4896/ada216
|
| [25] |
R. C. H. Cheng, N. A. K. Amin, Estimating parameters in continuous univariate distributions with a shifted origin, J. Roy. Stat. Soc. Ser. B (Methodol.), 45 (1983), 394–403. https://doi.org/10.1111/j.2517-6161.1983.tb01268.x doi: 10.1111/j.2517-6161.1983.tb01268.x
|
| [26] | B. Ranneby, The maximum spacing method: An estimation method related to the maximum likelihood method, Scand. J. Stat., 11 (1984), 93–112. Available from: https://www.jstor.org/stable/4615946. |
| [27] |
S. Anatolyev, G. Kosenok, An alternative to maximum likelihood based on spacings, Economet. Theor., 21 (2005), 472–476. https://doi.org/10.1017/S0266466605050255 doi: 10.1017/S0266466605050255
|
| [28] |
T. Kurdi, M. Nassar, F. M. A. Alam, Bayesian estimation using product of spacing for modified Kies exponential progressively censored data, Axioms, 12 (2023), 917. https://doi.org/10.3390/axioms12100917 doi: 10.3390/axioms12100917
|
| [29] |
A. Henningsen, O. Toomet, MaxLik: A package for maximum likelihood estimation in R, Comput. Stat., 26 (2011), 443–458. https://doi.org/10.1007/s00180-010-0217-1 doi: 10.1007/s00180-010-0217-1
|
| [30] | M. Plummer, N. Best, K. Cowles, K. Vines, CODA: convergence diagnosis and output analysis for MCMC, R News, 6 (2006), 7–11. |
| [31] | J. Zhang, G. Cheng, X. Chen, Y. Han, T. Zhou, Y. Qiu, Accelerated life test of white OLED based on lognormal distribution, Indian J. Pure Appl. Phys., 52 (2015), 671–677. |
| [32] |
M. Nassar, S. Dey, L. Wang, A. Elshahhat, Estimation of Lindley constant-stress model via product of spacing with Type-Ⅱ censored accelerated life data, Commun. Stat. Simul. Comput., 53 (2024), 288–314. https://doi.org/10.1080/03610918.2021.2018460 doi: 10.1080/03610918.2021.2018460
|
| [33] |
M. Nassar, R. Alotaibi, A. Elshahhat, Reliability analysis at usual operating settings for Weibull constant-stress model with improved adaptive type-Ⅱ progressively censored samples, AIMS Math., 9 (2024), 16931–16965. https://doi.org/10.3934/math.2024823 doi: 10.3934/math.2024823
|
| [34] |
R. Alotaibi, M. Nassar, Z. A. Khan, A. Elshahhat, Statistical analysis of stress–strength in a newly inverted Chen model from adaptive progressive type-Ⅱ censoring and modelling on light-emitting diodes and pump motors, AIMS Math., 9 (2024), 34311–34355. https://doi.org/10.3934/math.20241635 doi: 10.3934/math.20241635
|