Research article Special Issues

A uniform hyperbolic polynomial B-spline approach for solving the fractional diffusion-wave equations in the Caputo-Fabrizio sense

  • Received: 23 May 2025 Revised: 19 July 2025 Accepted: 21 July 2025 Published: 30 July 2025
  • MSC : 26A33, 35R11, 65D07, 65M70

  • Piecewise polynomial functions serve as powerful tools for function approximation and the numerical solution of differential equations. In this study, we presented a robust numerical method for solving the time-fractional diffusion-wave equation involving the Caputo-Fabrizio fractional derivative. The proposed scheme combines the uniform hyperbolic polynomial B-spline basis for spatial discretization with a $ \theta $-weighted finite difference approach for temporal integration. The uniform hyperbolic polynomial B-spline, an advanced generalization of B-splines, integrates hyperbolic functions to enhance smoothness and flexibility, making it especially well-suited for problems exhibiting hyperbolic behavior. Rigorous stability and convergence analyses were carried out to ensure the reliability of the method. To demonstrate its effectiveness, the scheme was applied to several benchmark problems. Numerical results reveal that the proposed approach is highly accurate and computationally efficient.

    Citation: Muhammad Umar Manzoor, Muhammad Yaseen, Muath Awadalla, Hajer Zaway. A uniform hyperbolic polynomial B-spline approach for solving the fractional diffusion-wave equations in the Caputo-Fabrizio sense[J]. AIMS Mathematics, 2025, 10(7): 17049-17081. doi: 10.3934/math.2025765

    Related Papers:

  • Piecewise polynomial functions serve as powerful tools for function approximation and the numerical solution of differential equations. In this study, we presented a robust numerical method for solving the time-fractional diffusion-wave equation involving the Caputo-Fabrizio fractional derivative. The proposed scheme combines the uniform hyperbolic polynomial B-spline basis for spatial discretization with a $ \theta $-weighted finite difference approach for temporal integration. The uniform hyperbolic polynomial B-spline, an advanced generalization of B-splines, integrates hyperbolic functions to enhance smoothness and flexibility, making it especially well-suited for problems exhibiting hyperbolic behavior. Rigorous stability and convergence analyses were carried out to ensure the reliability of the method. To demonstrate its effectiveness, the scheme was applied to several benchmark problems. Numerical results reveal that the proposed approach is highly accurate and computationally efficient.



    加载中


    [1] D. E. Koning, Fractional calculus, Bachelor's Thesis, University of Groninge, 2015.
    [2] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., 5 (2002), 367–386.
    [3] Z. Odibat, S. Momani, Numerical methods for nonlinear partial differential equations of fractional order, Appl. Math. Model., 32 (2008), 28–39. https://doi.org/10.1016/j.apm.2006.10.025 doi: 10.1016/j.apm.2006.10.025
    [4] D. Sierociuk, A. Dzieliński, G. Sarwas, I. Petras, I. Podlubny, T. Skovranek, Modelling heat transfer in heterogeneous media using fractional calculus, Phil. Trans. R. Soc. A., 371 (2013), 20120146. https://doi.org/10.1098/rsta.2012.0146 doi: 10.1098/rsta.2012.0146
    [5] M. Yaseen, M. Abbas, An efficient cubic trigonometric B-spline collocation scheme for the time-fractional telegraph equation, Appl. Math. J. Chin. Univ., 35 (2020), 359–378. https://doi.org/10.1007/s11766-020-3883-y doi: 10.1007/s11766-020-3883-y
    [6] M. Li, X. Ding, Q. Xu, Non-polynomial spline method for the time-fractional nonlinear Schrödinger equation, Adv. Differ. Equ., 2018 (2018), 318. https://doi.org/10.1186/s13662-018-1743-3 doi: 10.1186/s13662-018-1743-3
    [7] M. Yaseen, M. Abbas, B. Ahmad, Numerical simulation of the nonlinear generalized time-fractional Klein–Gordon equation using cubic trigonometric B-spline functions, Math. Methods Appl. Sci., 44 (2021), 901–916. https://doi.org/10.1002/mma.6798 doi: 10.1002/mma.6798
    [8] M. Shafiq, M. Abbas, H. Emadifar, A. S. M. Alzaidi, T. Nazir, F. A. Abdullah, Numerical investigation of the fractional diffusion wave equation with exponential kernel via cubic B-Spline approach, PLoS ONE, 18 (2023), e0295525. https://doi.org/10.1371/journal.pone.0295525 doi: 10.1371/journal.pone.0295525
    [9] M. Yaseen, M. Abbas, T. Nazir, D. Baleanu, A finite difference scheme based on cubic trigonometric B-splines for a time fractional diffusion-wave equation, Adv. Differ. Equ., 2017 (2017), 274. https://doi.org/10.1186/s13662-017-1330-z doi: 10.1186/s13662-017-1330-z
    [10] M. Dehghan, M. Abbaszadeh, A. Mohebbi, Analysis of a meshless method for the time fractional diffusion-wave equation, Numer. Algor., 73 (2016), 445–476. https://doi.org/10.1007/s11075-016-0103-1
    [11] T. H. Solomon, E. R. Weeks, H. L. Swinney, Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow, Phys. Rev. Lett., 71 (1993), 3975–3978. https://doi.org/10.1103/PhysRevLett.71.3975 doi: 10.1103/PhysRevLett.71.3975
    [12] Z. Avazzadeh, V. R. Hosseini, W. Chen, Radial basis functions and FDM for solving fractional diffusion-wave equation, Iran. J. Sci. Technol. Trans. A Sci., 38 (2014), 205–212.
    [13] R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1–77. https://doi.org/10.1016/S0370-1573(00)00070-3 doi: 10.1016/S0370-1573(00)00070-3
    [14] A. V. Chechkin, R. Gorenflo, I. M. Sokolov, Fractional diffusion in inhomogeneous media, J. Phys. A: Math. Gen., 38 (2005), L679–L684. https://doi.org/10.1088/0305-4470/38/42/L03 doi: 10.1088/0305-4470/38/42/L03
    [15] M. Shafiq, F. A. Abdullah, M. Abbas, A. S. Alzaidi, M. B. Riaz, Memory effect analysis using piecewise cubic B-spline of time fractional diffusion equation, Fractals, 30 (2022), 2240270. https://doi.org/10.1142/S0218348X22402708 doi: 10.1142/S0218348X22402708
    [16] G. Wang, Y. Tang, ($L^2$, $H^1$)-Random attractors for stochastic reaction-diffusion equation on unbounded domains, Abstr. Appl. Anal., 2013 (2013), 279509. https://doi.org/10.1155/2013/279509 doi: 10.1155/2013/279509
    [17] K. D. Dwivedi, S. Das, Rajeev, D. Baleanu, Numerical solution of highly non-linear fractional order reaction advection diffusion equation using the cubic B-spline collocation method, Int. J. Nonlinear Sci. Numer. Simul., 23 (2022), 1157–1172. https://doi.org/10.1515/ijnsns-2020-0112 doi: 10.1515/ijnsns-2020-0112
    [18] A. M. Hayat, M. Abbas, H. Emadifar, A. S. M. Alzaidi, T. Nazir, F. A. Abdullah, An efficient computational scheme for solving coupled time-fractional Schrödinger equation via cubic B-spline functions, PLoS ONE, 19 (2024), e0296909. https://doi.org/10.1371/journal.pone.0296909 doi: 10.1371/journal.pone.0296909
    [19] A. Ali, T. Akram, A. Iqbal, P. Kumam, T. Sutthibutpong, A numerical approach for 2D time-fractional diffusion damped wave model, AIMS Mathematics, 8 (2023), 8249–8273. https://doi.org/10.3934/math.2023416 doi: 10.3934/math.2023416
    [20] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85.
    [21] J. M. Cruz-Duarte, J. Rosales-Garcia, C. R. Correa-Cely, A. Garcia–Perez, J. G. Avina-Cervantes, A closed form expression for the Gaussian-based Caputo-Fabrizio fractional derivative for signal processing applications, Commun. Nonlinear Sci. Numer. Simul., 61 (2018), 138–148. https://doi.org/10.1016/j.cnsns.2018.01.020 doi: 10.1016/j.cnsns.2018.01.020
    [22] M. A. Dokuyucu, E. Celik, H. Bulut, H. M. Baskonus, Cancer treatment model with the Caputo-Fabrizio fractional derivative, Eur. Phys. J. Plus, 133 (2018), 92. https://doi.org/10.1140/epjp/i2018-11950-y doi: 10.1140/epjp/i2018-11950-y
    [23] M. Mortezaee, M. Ghovatmand, A. Nazemi, An application of generalized fuzzy hyperbolic model for solving fractional optimal control problems with Caputo-Fabrizio derivative, Neural Process. Lett., 52 (2020), 1997–2020. https://doi.org/10.1007/s11063-020-10334-4 doi: 10.1007/s11063-020-10334-4
    [24] E. G. M. Elmahdi, J. Huang, Two linearized finite difference schemes for time fractional nonlinear diffusion-wave equations with fourth order derivative, AIMS Mathematics, 6 (2021), 6356–6376. https://doi.org/10.3934/math.2021373 doi: 10.3934/math.2021373
    [25] Y. Lü, G. Wang, X. Yang, Uniform hyperbolic polynomial B-spline curves, Comput. Aided Geom. Des., 19 (2002), 379–393. https://doi.org/10.1016/S0167-8396(02)00092-4 doi: 10.1016/S0167-8396(02)00092-4
    [26] M. S. Palav, V. H. Pradhan, Redefined fourth order uniform hyperbolic polynomial B-splines based collocation method for solving advection-diffusion equation, Appl. Math. Comput., 484 (2025), 128992. https://doi.org/10.1016/j.amc.2024.128992 doi: 10.1016/j.amc.2024.128992
    [27] M. Palav, V. Pradhan, Efficient numerical solution of Burgers' equation using collocation method based on re-defined uniform hyperbolic polynomial B-splines, J. Appl. Math. Comput., 71 (2025), 4429–4474. https://doi.org/10.1007/s12190-025-02390-7 doi: 10.1007/s12190-025-02390-7
    [28] F. A. Shah, Kamran, Z. A. Khan, F. Azmi, N. Mlaiki, A hybrid collocation method for the approximation of 2D time fractional diffusion-wave equation, AIMS Mathematics, 9 (2024), 27122–27149. https://doi.org/10.3934/math.20241319 doi: 10.3934/math.20241319
    [29] A. H. Bhrawy, E. H. Doha, D. Baleanu, S. S. Ezz-Eldien, A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations, J. Comput. Phys., 293 (2014), 142–156. http://dx.doi.org/10.1016/j.jcp.2014.03.039 doi: 10.1016/j.jcp.2014.03.039
    [30] L. Wei, Y. Yang, Optimal order finite difference/local discontinuous Galerkin method for variable-order time-fractional diffusion equation, J. Comput. Appl. Math., 383 (2021), 113129. https://doi.org/10.1016/j.cam.2020.113129 doi: 10.1016/j.cam.2020.113129
    [31] X. Zhang, L. Wei, J. Liu, Application of the LDG method using generalized alternating numerical flux to the fourth-order time-fractional sub-diffusion model, Appl. Math. Lett., 168 (2025), 109580. https://doi.org/10.1016/j.aml.2025.109580 doi: 10.1016/j.aml.2025.109580
    [32] M. Zhang, Y. Liu, H. Li, High-order local discontinuous Galerkin method for a fractal mobile/immobile transport equation with the Caputo–Fabrizio fractional derivative, Numer. Methods Partial Differ. Equ., 35 (2019), 1588–1612. https://doi.org/10.1002/num.22366 doi: 10.1002/num.22366
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(675) PDF downloads(48) Cited by(0)

Article outline

Figures and Tables

Figures(13)  /  Tables(15)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog