Research article Topical Sections

Uniform estimate for strongly elliptic equations in high-contrast composites

  • Received: 02 May 2025 Revised: 09 July 2025 Accepted: 22 July 2025 Published: 30 July 2025
  • MSC : 35J05, 35J15, 35J25, 35J75

  • This paper considers uniform estimates for strongly elliptic equations in high-contrast composites. The composites consist of an $ {\epsilon} $-periodic lattice of fibers with high conductivity, included in a connected material with normal conductivity. The diffusion coefficients of the elliptic equations, depending on the conductivities, are not bounded above. The equations have fast diffusion inside the fibers and slow diffusion elsewhere. Let $ \omega^2\in(1, \infty) $ denote the conductivity ratio of the fibers to the connected material and let $ {\epsilon}\frac \mu 2\in(0, \frac 12) $ be the diameter of the horizontal cross-section of each fiber. This work presents $ W^{1, p} $ estimates uniformly in $ {\epsilon}, \omega, \mu $ for the solutions of the elliptic equations.

    Citation: Chiuyao He, Shiahsen Wang, Liming Yeh. Uniform estimate for strongly elliptic equations in high-contrast composites[J]. AIMS Mathematics, 2025, 10(7): 17012-17048. doi: 10.3934/math.2025764

    Related Papers:

  • This paper considers uniform estimates for strongly elliptic equations in high-contrast composites. The composites consist of an $ {\epsilon} $-periodic lattice of fibers with high conductivity, included in a connected material with normal conductivity. The diffusion coefficients of the elliptic equations, depending on the conductivities, are not bounded above. The equations have fast diffusion inside the fibers and slow diffusion elsewhere. Let $ \omega^2\in(1, \infty) $ denote the conductivity ratio of the fibers to the connected material and let $ {\epsilon}\frac \mu 2\in(0, \frac 12) $ be the diameter of the horizontal cross-section of each fiber. This work presents $ W^{1, p} $ estimates uniformly in $ {\epsilon}, \omega, \mu $ for the solutions of the elliptic equations.



    加载中


    [1] A. Arkhipova, O. Erlhamahmy, Regularity of solutions to a diffraction-type problem for nondiagonal linear elliptic systems in the Campanato space, Journal of Mathematical Sciences, 112 (2002), 3944–3966. https://doi.org/10.1023/A:1020093606080 doi: 10.1023/A:1020093606080
    [2] M. Avellaneda, F. Lin, Compactness methods in the theory of homogenization, Commun. Pur. Appl. Math., 40 (1987), 803–847. https://doi.org/10.1002/cpa.3160400607 doi: 10.1002/cpa.3160400607
    [3] M. Avellaneda, F. Lin, $L^p$ bounds on singular integrals in homogenization, Commun. Pur. Appl. Math., 44 (1991), 897–910. https://doi.org/10.1002/cpa.3160440805 doi: 10.1002/cpa.3160440805
    [4] M. Bellieud, G. Bouchitté, Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effect, Ann. Scuola Norm.-Sci., 26 (1998), 407–436.
    [5] D. Bergman, Y. Strelniker, Strong-field magnetotransport in a two-constituent columnar composite medium where the constituents have comparable resistivity tensors, Phys. Rev. B, 86 (2012), 024414. https://doi.org/10.1103/PhysRevB.86.024414 doi: 10.1103/PhysRevB.86.024414
    [6] G. Bouchitte, M. Bellieud, Homogenization of a soft elastic material reinforced by fibers, Asymptotic Anal., 32 (2002), 153–183. https://doi.org/10.3233/ASY-2002-531 doi: 10.3233/ASY-2002-531
    [7] M. Briane, Nonlocal effects in two-dimensional conductivity, Arch. Rational Mech. Anal., 182 (2006), 255–267. https://doi.org/10.1007/s00205-006-0427-4 doi: 10.1007/s00205-006-0427-4
    [8] M. Briane, Y. Capdeboscq, L. Nguyen, Interior regularity estimates in high conductivity homogenization and application, Arch. Rational Mech. Anal.. 207 (2013), 75–137. https://doi.org/10.1007/s00205-012-0553-0 doi: 10.1007/s00205-012-0553-0
    [9] M. Briane, N. Tchou, Fibered microstructures for some nonlocal Dirichlet forms, Ann. Scuola Norm.-Sci., 30 (2001), 681–711.
    [10] M. Briane, J. Casado-Díaz, Asymptotic behaviour of equicoercive diffusion energies in dimension two, Calc. Var., 29 (2007), 455–479. https://doi.org/10.1007/s00526-006-0074-5 doi: 10.1007/s00526-006-0074-5
    [11] G. Chen, J. Zhou, Boundary element methods with applications to nonlinear problems, Paris: Atlantis Press, 2010. https://doi.org/10.2991/978-94-91216-27-5
    [12] D. Cioranescu, P. Donato, An introduction to homogenization, Oxford: Oxford University Press, 1999. https://doi.org/10.1093/oso/9780198565543.001.0001
    [13] L. Escauriaza, M. Mitrea, Transmission problems and spectral theory for singular integral operator on Lipschitz domains, J. Funct. Anal., 216 (2004), 141–171. https://doi.org/10.1016/j.jfa.2003.12.005 doi: 10.1016/j.jfa.2003.12.005
    [14] L. Evans, Weak convergence methods for nonlinear partial differential equations, Providence: American Mathematical Society, 1990.
    [15] J. Geng, Hardy spaces and the Neumann problem in $L^p$ for elliptic equation with periodic high-contrast coefficients in Lipschitz domains, Math. Ann., 386 (2023), 1641–1693. https://doi.org/10.1007/s00208-022-02446-0 doi: 10.1007/s00208-022-02446-0
    [16] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princeton: Princeton University Press, 1983.
    [17] D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, Berlin: Springer-Verlag, 1983. https://doi.org/10.1007/978-3-642-61798-0
    [18] V. Jikov, S. Kozlov, O. Oleinik, Homogenization of differential operators and integral functions, Berlin: Springer-Verlag, 1994. https://doi.org/10.1007/978-3-642-84659-5
    [19] O. Ladyzenskaja, N. Ural'ceva, Linear and quasi-linear elliptic equations, New York: Academic Press, 1968.
    [20] J. Park, D. Kang, B. Paulson, T. Nazari, K. Oh, Liquid core photonic crystal fiber with lowrefractive-index liquids for optofluidic applications, Opt. Express, 22 (2014), 17320. https://doi.org/10.1364/OE.22.017320 doi: 10.1364/OE.22.017320
    [21] B. Schweizer, Uniform estimates in two periodic homogenization problems, Commun. Pur. Appl. Math., 53 (2000), 1153–1176. https://doi.org/10.1002/1097-0312(200009)53:9<1153::AID-CPA4>3.0.CO;2-R doi: 10.1002/1097-0312(200009)53:9<1153::AID-CPA4>3.0.CO;2-R
    [22] Z. Shen, $W^{1, p}$ estimates for elliptic homogenization problems in nonsmooth domains, Indiana Univ. Math. J., 57 (2008), 2283–2298. https://doi.org/10.1512/iumj.2008.57.3344 doi: 10.1512/iumj.2008.57.3344
    [23] Z. Shen, Large-scale Lipschitz estimates for elliptic systems with periodic high-contrast coefficients, Commun. Part. Diff. Eq., 46 (2021), 1027–1057. https://doi.org/10.1080/03605302.2020.1858098 doi: 10.1080/03605302.2020.1858098
    [24] Z. Shen, Homogenization of boundary value problems in perforated Lipschitz domains, J. Differ. Equations, 376 (2023), 283–339. https://doi.org/10.1016/j.jde.2023.09.005 doi: 10.1016/j.jde.2023.09.005
    [25] A. Sili, Homogenization of a nonlinear monotone problem in an anisotropic medium, Math. Mod. Meth. Appl. S., 14 (2004), 329–353. https://doi.org/10.1142/S0218202504003258 doi: 10.1142/S0218202504003258
    [26] Q. Xu, Uniform regularity estimates in homogenization theory of elliptic sysyems with lower order terms on the Neumann boundary problem, J. Differ. Equations, 261 (2016), 4368–4423. https://doi.org/10.1016/j.jde.2016.06.027 doi: 10.1016/j.jde.2016.06.027
    [27] L. Yeh, Elliptic equations in highly heterogeneous porous media, Math. Method. Appl. Sci., 33 (2010), 198–223. https://doi.org/10.1002/mma.1163 doi: 10.1002/mma.1163
    [28] L. Yeh, Non-uniform elliptic equations in convex Lipschitz domains, Nonlinear Anal.-Theor., 118 (2015), 63–81. https://doi.org/10.1016/j.na.2015.01.019 doi: 10.1016/j.na.2015.01.019
    [29] L. Yeh, Strongly elliptic equations with periodic coefficients in two-dimensional space, Z. Anal. Anwend., in press. https://doi.org/10.4171/ZAA/1785
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(415) PDF downloads(24) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog