Research article

Integral inequalities involving a new class of generalized strongly modified $ (p, h) $-convex functions

  • Received: 29 May 2025 Revised: 14 July 2025 Accepted: 21 July 2025 Published: 30 July 2025
  • MSC : 26D07, 26D15, 26E70

  • A novel class of generalized strongly modified (GSM) $ (p, h) $-convex functions (CFs) was presented in paper and its fundamental properties were established. Schur, Hermite-Hadamard (H-H), and Fejér inequalities were proved for this new notion of convexity. Several illustrations have been incorporated by selecting several GSM $ (p, h) $-CFs to substantiate the existence and feasibility of Schur, H-H, and Fejér-type inequalities. These inequalities are valuable resources for analyzing the characteristics of newly defined GSM $ (p, h) $-CFs. A comparison was given to show that the results of this study represent a significant improvement over those of earlier publications.

    Citation: Mudassir Hussain Bukhari, Ammara Nosheen, Khuram Ali Khan, Salwa El-Morsy, Tamador Alihia. Integral inequalities involving a new class of generalized strongly modified $ (p, h) $-convex functions[J]. AIMS Mathematics, 2025, 10(7): 16994-17011. doi: 10.3934/math.2025763

    Related Papers:

  • A novel class of generalized strongly modified (GSM) $ (p, h) $-convex functions (CFs) was presented in paper and its fundamental properties were established. Schur, Hermite-Hadamard (H-H), and Fejér inequalities were proved for this new notion of convexity. Several illustrations have been incorporated by selecting several GSM $ (p, h) $-CFs to substantiate the existence and feasibility of Schur, H-H, and Fejér-type inequalities. These inequalities are valuable resources for analyzing the characteristics of newly defined GSM $ (p, h) $-CFs. A comparison was given to show that the results of this study represent a significant improvement over those of earlier publications.



    加载中


    [1] D. Bertsekas, A. Nedic, A. Ozdaglar, Convex analysis and optimization, Athena Scientific, 2003.
    [2] S. I. Butt, H. Budak, M. Tariq, M. Nadeem, Integral inequalities for $n$-polynomial $s$-type preinvex functions with applications, Math. Method. Appl. Sci., 44 (2021), 11006–11021. https://doi.org/10.1002/mma.7465 doi: 10.1002/mma.7465
    [3] A. Nosheen, S. Ijaz, K. A. Khan, K. M. Awan, M. A. Albahar, M. Thanoon, Some $q$-symmetric integral inequalities involving $s$-convex functions, Symmetry, 15 (2023), 1169. https://doi.org/10.3390/sym15061169 doi: 10.3390/sym15061169
    [4] I. J. Bakelman, Convex analysis and nonlinear geometric elliptic equations, Springer Science and Business Media, 2012.
    [5] G. G. Magaril-Il'yaev, V. M. Tikhomirov, Convex analysis: Theory and applications, American Mathematical Society, 222 (2003).
    [6] K. Mehrez, P. Agarwal, New Hermite–Hadamard type integral inequalities for convex functions and their applications, J. Comput. Appl. Math., 350 (2019), 274–285. https://doi.org/10.1016/j.cam.2018.10.022 doi: 10.1016/j.cam.2018.10.022
    [7] S. K. Sahoo, H. Ahmad, M. Tariq, B. Kodamasingh, H. Aydi, M. De la Sen, Hermite–Hadamard type inequalities involving $k$-fractional operator for $(h, m)$-convex functions, Symmetry, 13 (2021), 1686. https://doi.org/10.3390/sym13091686 doi: 10.3390/sym13091686
    [8] M. Vivas-Cortez, M. A. Ali, H. Budak, H. Kalsoom, P. Agarwal, Some new Hermite–Hadamard and related inequalities for convex functions via $(p, q)$-integral, Entropy, 23 (2021), 828. https://doi.org/10.3390/e23070828 doi: 10.3390/e23070828
    [9] M. Niezgoda, Group majorization and Schur type inequalities, Linear Algebra Appl., 268 (1998), 9–30. https://doi.org/10.1016/S0024-3795(97)89322-6 doi: 10.1016/S0024-3795(97)89322-6
    [10] A. N. Koam, A. Nosheen, K. A. Khan, M. H. Bukhari, A. Ahmad, M. S. Alatawi, On Riemann–Liouville integral via strongly modified $(h, m)$-convex functions, Fractal Fract., 8 (2024), 680. https://doi.org/10.3390/fractalfract8120680 doi: 10.3390/fractalfract8120680
    [11] A. Nosheen, K. A. Khan, M. H. Bukhari, M. K. Kahungu, A. F. Aljohani, On Riemann–Liouville integrals and Caputo fractional derivatives via strongly modified $(p, h)$-convex functions, PloS One, 19 (2024), e0311386. https://doi.org/10.1371/journal.pone.0311386 doi: 10.1371/journal.pone.0311386
    [12] F. Zhang, The Schur complement and its applications, Springer Science and Business Media, 4 (2006).
    [13] H. T. Jongen, T. Möbert, J. Rückmann, K. Tammer, On inertia and Schur complement in optimization, Linear Algebra Appl., 95 (1987), 97–109. https://doi.org/10.1016/0024-3795(87)90028-0 doi: 10.1016/0024-3795(87)90028-0
    [14] M. B. Khan, H. M. Srivastava, P. O. Mohammed, K. Nonlaopon, Y. S. Hamed, Some new Jensen, Schur and Hermite–Hadamard inequalities for log convex fuzzy interval-valued functions, AIMS Math., 7 (2022), 4338–4358. https://doi.org/10.3934/math.2022226 doi: 10.3934/math.2022226
    [15] Y. C. Kwun, M. S. Saleem, M. Ghafoor, W. Nazeer, S. M. Kang, Hermite–Hadamard-type inequalities for functions whose derivatives are $\eta$-convex via fractional integrals, J. Inequal. Appl., 2019 (2019), 1–16. https://doi.org/10.1186/s13660-019-1993-y doi: 10.1186/s13660-019-1993-y
    [16] C. P. Niculescu, L. E. Persson, Old and new on the Hermite–Hadamard inequality, Real Anal. Exch., 29 (2003), 663–685. https://doi.org/10.14321/realanalexch.29.2.0663 doi: 10.14321/realanalexch.29.2.0663
    [17] A. El Farissi, Simple proof and refinement of Hermite–Hadamard inequality, J. Math. Inequal., 4 (2010), 365–369. https://doi.org/10.7153/jmi-04-33 doi: 10.7153/jmi-04-33
    [18] S. Jain, K. Mehrez, D. Baleanu, P. Agarwal, Certain Hermite–Hadamard inequalities for logarithmically convex functions with applications, Mathematics, 7 (2019), 163. https://doi.org/10.3390/math7020163 doi: 10.3390/math7020163
    [19] M. Kadakal, İ. İşcan, P. Agarwal, M. Jleli, Exponential trigonometric convex functions and Hermite–Hadamard type inequalities. Math. Slovaca, 71 (2021), 43–56. https://doi.org/10.1515/ms-2017-0410 doi: 10.1515/ms-2017-0410
    [20] M. R. Delavar, M. De La Sen, Some generalizations of Hermite–Hadamard type inequalities, SpringerPlus, 5 (2016), 1661. https://doi.org/10.1186/s40064-016-3301-3 doi: 10.1186/s40064-016-3301-3
    [21] H. M. Srivastava, M. Tariq, P. O. Mohammed, H. Alrweili, E. Al-Sarairah, M. De La Sen, On modified integral inequalities for a generalized class of convexity and applications, Axioms, 12 (2023), 162. https://doi.org/10.3390/axioms12020162 doi: 10.3390/axioms12020162
    [22] K. L. Tseng, S. R. Hwang, S. S. Dragomir, Fejér-type inequalities (Ⅰ), J. Inequal. Appl., 2010 (2010), 1–7. https://doi.org/10.1155/2010/531976 doi: 10.1155/2010/531976
    [23] U. Goginava, The weak type inequality for the maximal operator of the Marcinkiewicz–Fejér means of the two-dimensional Walsh-Fourier series, J. Approx. Theory, 154 (2008), 161–180. https://doi.org/10.1016/j.jat.2008.03.012 doi: 10.1016/j.jat.2008.03.012
    [24] M. A. Latif, S. S. Dragomir, E. Momoniat, Some Fejér type inequalities for harmonically convex functions with applications to special means, Int. J. Anal. Appl., 13 (2017), 1–14.
    [25] S. Varošanec, On $h$-convexity, J. Math. Anal. Appl., 326 (2007), 303–311. https://doi.org/10.1016/j.jmaa.2006.02.086 doi: 10.1016/j.jmaa.2006.02.086
    [26] M. A. Noor, K. I. Noor, M. U. Awan, Hermite Hadamard inequalities for modified $h$-convex functions, Transylv. J. Math. Mech., 6 (2014), 1–10.
    [27] M. A. Noor, M. U. Awan, K. I. Noor, M. Postolache, Some integral inequalities for $p$-convex functions, Filomat, 30 (2016), 2435–2444. https://doi.org/10.2298/FIL1609435N doi: 10.2298/FIL1609435N
    [28] B. Feng, M. Ghafoor, Y. M. Chu, M. I. Qureshi, X. Feng, C. Yao, et al., Hermite–Hadamard and Jensen's type inequalities for modified $(p, h)$-CFs, AIMS Math., 5 (2020), 6959–6971. https://doi.org/10.3934/math.2020446 doi: 10.3934/math.2020446
    [29] R. T. Rockafellar, Convex analysis, Princeton: Princeton University Press, 1997.
    [30] K. S. Zhang, J. P. Wan, $p$-Convex functions and their properties, Pure Appl. Math. J., 23 (2007), 130–133.
    [31] T. Zhao, M. S. Saleem, W. Nazeer, I. Bashir, I. Hussain, On generalized strongly modified $h$-convex functions, J. Inequal. Appl., 2020 (2020), 1–12. https://doi.org/10.1186/s13660-020-2281-6 doi: 10.1186/s13660-020-2281-6
    [32] C. Y. Jung, M. S. Saleem, W. Nazeer, M. S. Zahoor, A. Latif, S. M. Kang, Unification of generalized and $p$-convexity, J. Funct. Space., 2020 (2020), 4016386. https://doi.org/10.1155/2020/4016386 doi: 10.1155/2020/4016386
    [33] M. S. Saleem, Y. M. Chu, N. Jahangir, H. Akhtar, C. Y. Jung, On generalized strongly $p$-convex functions of higher order, J. Math., 2020 (2020), 1–8. https://doi.org/10.1155/2020/8381431 doi: 10.1155/2020/8381431
    [34] M. U. Awan, M. A. Noor, K. I. Noor, F. Safdar, On strongly generalized convex functions, Filomat, 31 (2017), 5783–5790. https://doi.org/10.2298/FIL1718783A doi: 10.2298/FIL1718783A
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(533) PDF downloads(37) Cited by(0)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog