In this paper, we investigated the local stability, chaotic dynamics, and bifurcations of a discrete tuberculosis (TB) epidemic model, which provides crucial insights into the complex behavior of infectious disease spread in discrete-time settings. Specifically, we established the existence of a disease-free fixed point for all parametric values and demonstrated that an endemic fixed point emerges under specific parametric condition. The local stability at these fixed points was examined using the linear stability theory, revealing important thresholds for disease persistence or eradication. A comprehensive bifurcation analysis was conducted, showing that while no flip bifurcation occurred at the disease-free fixed point, both Neimark-Sacker and flip bifurcations took place at the endemic fixed point, and we studied said bifurcations by the explicit criterions. To further understand the model's nonlinear dynamics, we explored chaotic behavior by a feedback control strategy to mitigate chaotic oscillations. Numerical simulations are presented to validate our theoretical findings, demonstrating the model's capacity to capture real-world epidemiological patterns. Finally, theoretical results are also interpreted biologically/medically.
Citation: Abdul Qadeer Khan, Raja Ramiz Ahmed Khan, Saud Fahad Aldosary. Stability, chaos and bifurcations by explicit criterions of a discrete tuberculosis epidemic model[J]. AIMS Mathematics, 2025, 10(7): 16957-16993. doi: 10.3934/math.2025762
In this paper, we investigated the local stability, chaotic dynamics, and bifurcations of a discrete tuberculosis (TB) epidemic model, which provides crucial insights into the complex behavior of infectious disease spread in discrete-time settings. Specifically, we established the existence of a disease-free fixed point for all parametric values and demonstrated that an endemic fixed point emerges under specific parametric condition. The local stability at these fixed points was examined using the linear stability theory, revealing important thresholds for disease persistence or eradication. A comprehensive bifurcation analysis was conducted, showing that while no flip bifurcation occurred at the disease-free fixed point, both Neimark-Sacker and flip bifurcations took place at the endemic fixed point, and we studied said bifurcations by the explicit criterions. To further understand the model's nonlinear dynamics, we explored chaotic behavior by a feedback control strategy to mitigate chaotic oscillations. Numerical simulations are presented to validate our theoretical findings, demonstrating the model's capacity to capture real-world epidemiological patterns. Finally, theoretical results are also interpreted biologically/medically.
| [1] | Y. Adebisi, I. Agumage, T. Sylvanus, I. Nawaila, W. Alison Ekwere, M. Nasiru, et al., Burden of tuberculosis and challenges facing its eradication in West Africa, International Journal of Infection, 6 (2019), e92250. |
| [2] |
D. Tollefson, F. Ngari, M. Mwakala, D. Gethi, H. Kipruto, K. Cain, et al., Under-reporting of sputum smear-positive tuberculosis cases in Kenya. International Journal of Tuberculosis and Lung Disease, 20 (2016), 1334–1341. https://doi.org/10.5588/ijtld.16.0156 doi: 10.5588/ijtld.16.0156
|
| [3] |
N. Becker, The uses of epidemic models, Biometrics, 35 (1979), 295–305. https://doi.org/10.2307/2529951 doi: 10.2307/2529951
|
| [4] |
A. Zumla, A. George, V. Sharma, R. Herbert, A. Oxley, M. Oliver, The WHO 2014 global tuberculosis report—further to go, Lancet Glob. Health, 3 (2015), e10–e12. https://doi.org/10.1016/S2214-109X(14)70361-4 doi: 10.1016/S2214-109X(14)70361-4
|
| [5] |
L. Allen, A primer on stochastic epidemic models: formulation, numerical simulation, and analysis, Infectious Disease Modelling, 2 (2017), 128–142. https://doi.org/10.1016/j.idm.2017.03.001 doi: 10.1016/j.idm.2017.03.001
|
| [6] | S. Kyere, F. Boateng, G. Hoggar, P. Jonathan, The stochastic model, Advances in Computer Sciences, 1 (2018), 105. |
| [7] |
T, Kurtz, Limit theorems for sequences of jump Markov processes approximating ordinary differential processes, J. Appl. Probab., 8 (1971), 344–356. https://doi.org/10.2307/3211904 doi: 10.2307/3211904
|
| [8] |
M. Roberts, V. Andreasen, A. Lloyd, L. Pellis, Nine challenges for deterministic epidemic models, Epidemics, 10 (2015), 49–53. https://doi.org/10.1016/j.epidem.2014.09.006 doi: 10.1016/j.epidem.2014.09.006
|
| [9] |
Z. Feng, C. Castillo-Chavez, A. Capurro, A model for tuberculosis with exogenous reinfection, Theor. Popul. Biol., 57 (2000), 235–247. https://doi.org/10.1006/tpbi.2000.1451 doi: 10.1006/tpbi.2000.1451
|
| [10] |
I. Wangari, L. Stone, Backward bifurcation and hysteresis in models of recurrent tuberculosis, PloS ONE, 13 (2018), 0194256. https://doi.org/10.1371/journal.pone.0194256 doi: 10.1371/journal.pone.0194256
|
| [11] |
T. Porco, S. Blower, Quantifying the intrinsic transmission dynamics of tuberculosis, Theor. Popul. Biol., 54 (1998), 117–132. https://doi.org/10.1006/tpbi.1998.1366 doi: 10.1006/tpbi.1998.1366
|
| [12] |
S. Ullah, M. Khan, M. Farooq, Z. Hammouch, D. Baleanu, A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative, Discrete Cont. Dyn.-S, 13 (2020), 975–993. https://doi.org/10.3934/dcdss.2020057 doi: 10.3934/dcdss.2020057
|
| [13] |
S. Bowong, Optimal control of the transmission dynamics of tuberculosis, Nonlinear Dyn., 61 (2010), 729–748. https://doi.org/10.1007/s11071-010-9683-9 doi: 10.1007/s11071-010-9683-9
|
| [14] |
Z. Hu, Z. Teng, L. Zhang, Stability and bifurcation analysis in a discrete SIR epidemic model, Math. Comput. Simulat., 97 (2014), 80–93. https://doi.org/10.1016/j.matcom.2013.08.008 doi: 10.1016/j.matcom.2013.08.008
|
| [15] |
T. Parvin, A. Islam, P. Mondal, M. Biswas, Discrete type SIR epidemic model with nonlinear incidence rate in presence of immunity, WSEAS Transactions on Biology and Biomedicine, 17 (2020), 104–118. https://doi.org/10.37394/23208.2020.17.13 doi: 10.37394/23208.2020.17.13
|
| [16] |
S. Elaydi, R. Lozi, Global dynamics of discrete mathematical models of tuberculosis, J. Biol. Dynam., 18 (2024), 2323724. https://doi.org/10.1080/17513758.2024.2323724 doi: 10.1080/17513758.2024.2323724
|
| [17] |
P. Monisha, S. Devi, Analyzing dynamical behavior of tuberculosis transmission, Contemp. Math., 4 (2023), 1331–1346. https://doi.org/10.37256/cm.4420232621 doi: 10.37256/cm.4420232621
|
| [18] |
E. Ginting, D. Aldila, I. Febiriana, A deterministic compartment model for analyzing tuberculosis dynamics considering vaccination and reinfection, Healthcare Analytics, 5 (2024), 100341. https://doi.org/10.1016/j.health.2024.100341 doi: 10.1016/j.health.2024.100341
|
| [19] |
A. Gemeda, L. Obsu, E. Gurmu, S. Degefa, Mathematical modeling of tuberculosis transmission dynamics with vaccination and two lines of treatments: a caputo fractional approach, J. Appl. Math. Comput., 71 (2025), 2017–2049. https://doi.org/10.1007/s12190-024-02308-9 doi: 10.1007/s12190-024-02308-9
|
| [20] |
M. Yao, Y. Zhang, W. Wang, Bifurcation analysis for an in-host Mycobacterium tuberculosis model, Discrete Cont. Dyn.-B, 26 (2021), 2299–2322. https://doi.org/10.3934/dcdsb.2020324 doi: 10.3934/dcdsb.2020324
|
| [21] |
B. Kotola, S. Teklu, Y. Abebaw, Bifurcation and optimal control analysis of HIV/AIDS and COVID-19 co-infection model with numerical simulation, PLoS ONE, 18 (2023), e0284759. https://doi.org/10.1371/journal.pone.0284759 doi: 10.1371/journal.pone.0284759
|
| [22] |
H. Panigoro, E. Rahmi, S. Nasib, N. Gawa, O. Peter, Bifurcations on a discrete-time SIS-epidemic model with saturated infection rate, Bulletin of Biomathematics, 2 (2024), 182–197. https://doi.org/10.59292/bulletinbiomath.2024008 doi: 10.59292/bulletinbiomath.2024008
|
| [23] |
H. Toufga, L. Benahmadi, A. Sakkoum, M. Lhous, Optimal control of a spatiotemporal discrete tuberculosis model, Int. J. Biomath., 18 (2025), 2350110. https://doi.org/10.1142/S1793524523501103 doi: 10.1142/S1793524523501103
|
| [24] |
A. Jajarmi, B. Ghanbari, D. Baleanu, A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence, Chaos, 29 (2019), 093111. https://doi.org/10.1063/1.5112177 doi: 10.1063/1.5112177
|
| [25] |
M. Choinski, M. Bodzioch, U. Forys, A non-standard discretized SIS model of epidemics, Math. Biosci. Eng., 19 (2022), 115–133. https://doi.org/10.3934/mbe.2022006 doi: 10.3934/mbe.2022006
|
| [26] |
F. Mettle, P. Osei Affi, C. Twumasi, Modelling the transmission dynamics of tuberculosis in the ashanti region of ghana, Interdisciplinary Perspectives on Infectious Diseases, 2020 (2020), 4513854. https://doi.org/10.1155/2020/4513854 doi: 10.1155/2020/4513854
|
| [27] |
S. Xiong, S. Cai, F. Wei, G. Chen, K. Zheng, J. Xie, Estimation methods of reproduction numbers for epidemics of varying strains of COVID-19, Journal of Biosafety and Biosecurity, 6 (2024), 265–270. https://doi.org/10.1016/j.jobb.2024.10.003 doi: 10.1016/j.jobb.2024.10.003
|
| [28] |
B. Abudunaibi, W. Liu, Z. Guo, Z. Zhao, J. Rui, W. Song, A comparative study on the three calculation methods for reproduction numbers of COVID-19, Front. Med., 9 (2023), 1079842. https://doi.org/10.3389/fmed.2022.1079842 doi: 10.3389/fmed.2022.1079842
|
| [29] |
O. Onuorah Martins, M. Nasir, S. Ojo Moses, A. Ademu, A deterministic mathematical model for Ebola virus incorporating the vector population, IJMTT, 30 (2016), 8–15. https://doi.org/10.14445/22315373/IJMTT-V30P502 doi: 10.14445/22315373/IJMTT-V30P502
|
| [30] |
P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
|
| [31] | E. Camouzis, G. Ladas, Dynamics of third-order rational difference equations with open problems and conjectures, New York: Chapman and Hall/CRC, 2007. https://doi.org/10.1201/9781584887669 |
| [32] | E. Grove, G. Ladas, Periodicities in nonlinear difference equations, New York: Chapman and Hall/CRC, 2004. https://doi.org/10.1201/9781420037722 |
| [33] | V. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Dordrecht: Springer, 1993. https://doi.org/10.1007/978-94-017-1703-8 |
| [34] | H. Sedaghat, Nonlinear difference equations: theory with applications to social science models, Dordrecht: Springer, 2003. https://doi.org/10.1007/978-94-017-0417-5 |
| [35] |
G. Wen, Criterion to identify Hopf bifurcations in maps of arbitrary dimension, Phys. Rev. E, 72 (2005), 026201. https://doi.org/10.1103/PhysRevE.72.026201 doi: 10.1103/PhysRevE.72.026201
|
| [36] |
S. Yao, New bifurcation critical criterion of Flip-Neimark-Sacker bifurcations for two-parameterized family of n-dimensional discrete systems, Discrete Dyn. Nat. Soc., 2012 (2012), 264526. https://doi.org/10.1155/2012/264526 doi: 10.1155/2012/264526
|
| [37] |
B. Xin, T. Chen, J. Ma, Neimark-Sacker bifurcation in a discrete-time financial system, Discrete Dyn. Nat. Soc., 2010 (2010), 405639. https://doi.org/10.1155/2010/405639 doi: 10.1155/2010/405639
|
| [38] |
G. Wen, S. Chen, Q. Jin, A new criterion of period-doubling bifurcation in maps and its application to an inertial impact shaker, J. Sound Vib., 311 (2008), 212–223. https://doi.org/10.1016/j.jsv.2007.09.003 doi: 10.1016/j.jsv.2007.09.003
|
| [39] | S. Elaydi, An introduction to difference equations, New York: Springer, 2005. https://doi.org/10.1007/0-387-27602-5 |
| [40] | S. Lynch, Dynamical systems with applications using Mathematica, Cham: Birkhäuser, 2017. https://doi.org/10.1007/978-3-319-61485-4 |
| [41] |
Y. Ucakan, S. Gulen, K. Koklu, Analysing of tuberculosis in Turkey through SIR, SEIR and BSEIR mathematical models, Math. Comp. Model. Dyn., 27 (2021), 179–202. https://doi.org/10.1080/13873954.2021.1881560 doi: 10.1080/13873954.2021.1881560
|
| [42] | Global Health Data Exchange, Health Statistics Yearbook 2010, The Ministry of Health of Turkey, 2011. Available from: https://ghdx.healthdata.org/record/turkey-health-statistics-yearbook-2010. |
| [43] | J. Jones, Notes on $R_{0}$, Department of Anthropological Sciences, Stanford University, 2007. Available from: https://web.stanford.edu/jhj1/teachingdocs/Jones-on-R0.pdf. |
| [44] |
D. Rock, Tuberculosis: a global emergency, Work, 8 (1997), 93–105. https://doi.org/10.3233/WOR-1997-8111 doi: 10.3233/WOR-1997-8111
|
| [45] | E. Sarkodie, Modeling the spread of tuberculosis in central region using the susceptible-exposed-infected-susceptible (SEIS) mathematical model, MSc. Thesis, Kwame Nkrumah University of Scienceand Technology, 2014. |