Research article Special Issues

Integrating deep learning and policy frameworks for green GDP accounting: A path to sustainable economic growth

  • Received: 12 May 2025 Revised: 19 June 2025 Accepted: 25 June 2025 Published: 29 July 2025
  • MSC : 68T05, 91B64

  • This study introduces a novel method for integrating green technology innovation into green GDP accounting. It does this by adjusting for environmental pollution and incorporating policy frameworks that consider the effects of global geopolitical risks. Using data from the Anhui Province in 2019, a deep learning-based green GDP accounting model is proposed, which combines environmental costs and economic outputs. The methodology unfolds in two stages: the first stage develops a framework for pollution adjustment across solid, air, and water pollutants to highlight the environmental costs impacting various industries. The second stage applies the long short-term memory (LSTM) algorithm to predict green GDP, demonstrating superior accuracy over conventional methods. Additionally, the study explores the influence of geopolitical uncertainties and policy frameworks on green technology investments, emphasizing strategies for sustainable growth in emerging economies. The findings reveal that pollution-adjusted green GDP closely aligns with traditional green GDP metrics, with the pollution adjustment accounting for 1.96% of green GDP. These results underscore the critical role of green technology and policy in promoting sustainable economic growth amidst global uncertainties.

    Citation: Enyang Zhu. Integrating deep learning and policy frameworks for green GDP accounting: A path to sustainable economic growth[J]. AIMS Mathematics, 2025, 10(7): 16927-16956. doi: 10.3934/math.2025761

    Related Papers:

  • This study introduces a novel method for integrating green technology innovation into green GDP accounting. It does this by adjusting for environmental pollution and incorporating policy frameworks that consider the effects of global geopolitical risks. Using data from the Anhui Province in 2019, a deep learning-based green GDP accounting model is proposed, which combines environmental costs and economic outputs. The methodology unfolds in two stages: the first stage develops a framework for pollution adjustment across solid, air, and water pollutants to highlight the environmental costs impacting various industries. The second stage applies the long short-term memory (LSTM) algorithm to predict green GDP, demonstrating superior accuracy over conventional methods. Additionally, the study explores the influence of geopolitical uncertainties and policy frameworks on green technology investments, emphasizing strategies for sustainable growth in emerging economies. The findings reveal that pollution-adjusted green GDP closely aligns with traditional green GDP metrics, with the pollution adjustment accounting for 1.96% of green GDP. These results underscore the critical role of green technology and policy in promoting sustainable economic growth amidst global uncertainties.



    加载中


    [1] J. Li, G. Zhang, J. P. Ned, L. Sui, How does digital finance affect green technology innovation in the polluting industry? Based on the serial two-mediator model of financing constraints and research and development (R&D) investments, Environ. Sci. Pollut. Res. Int. , 30 (2023), 74141–74152. https://doi.org/10.1007/s11356-023-27593-y doi: 10.1007/s11356-023-27593-y
    [2] Y. Shang, Y. Lian, H. Chen, F. Qian, The impacts of energy resource and tourism on green growth: Evidence from Asian economies, Resour. Policy, 81 (2023), 103359. https://doi.org/10.1016/j.resourpol.2023.103359 doi: 10.1016/j.resourpol.2023.103359
    [3] F. Shen, B. Liu, F. Luo, C. Wu, H. Chen, W. Wei, The effect of economic growth target constraints on green technology innovation, J. Environ. Manag. , 292 (2021), 112765. https://doi.org/10.1016/j.jenvman.2021.112765 doi: 10.1016/j.jenvman.2021.112765
    [4] J. V. Hoff, M. M. B. Rasmussen, P. B. Sørensen, Barriers and opportunities in developing and implementing a Green GDP, Ecol. Econ. , 181 (2021), 106905. https://doi.org/10.1016/j.ecolecon.2020.106905 doi: 10.1016/j.ecolecon.2020.106905
    [5] P. Haputta, T. Bowonthumrongchai, N. Puttanapong, S. H. Gheewala, Effects of biofuel crop expansion on green gross domestic product, Sustainability, 14 (2022), 3369. https://doi.org/10.3390/su14063369 doi: 10.3390/su14063369
    [6] Z. Hussain, B. Mehmood, M. K. Khan, R. S. M. Tsimisaraka, Green growth, green technology, and environmental health: evidence from high-GDP countries, Front. Public Health, 9 (2022), 816697. https://doi.org/10.3389/fpubh.2021.816697 doi: 10.3389/fpubh.2021.816697
    [7] C. I. Fernandes, P. M. Veiga, J. J. M. Ferreira, M. Hughes, Green growth versus economic growth: Do sustainable technology transfer and innovations lead to an imperfect choice?, Bus. Strateg. Environ. , 30 (2021), 2021–2037. https://doi.org/10.1002/bse.2730 doi: 10.1002/bse.2730
    [8] L. Yin, L. Wang, T. Li, S. Lu, Z. Yin, X. Liu, et al., U-Net-STN: A novel end-to-end lake boundary prediction model, Land, 12 (2023), 1602. https://doi.org/10.3390/land12081602 doi: 10.3390/land12081602
    [9] L. Yin, L. Wang, T. Li, S. Lu, J. Tian, Z. Yin, et al., U-Net-LSTM: time series-enhanced lake boundary prediction model, Land, 12 (2023), 1859. https://doi.org/10.3390/land12101859 doi: 10.3390/land12101859
    [10] L. Yin, L. Wang, J. Li, S. Lu, J. Tian, Z. Yin, et al., YOLOV4_CSPBi: Enhanced land target detection model, Land, 12 (2023), 1813. https://doi.org/10.3390/land12091813 doi: 10.3390/land12091813
    [11] M. E. Porter, C. van der Linde, Toward a new conception of the environment-competitiveness relationship, J. Econ. Perspect. , 9 (1995), 97–118. https://doi.org/10.1257/jep.9.4.97 doi: 10.1257/jep.9.4.97
    [12] A. J. Picazo-Tadeo, L. Gianmoena, J. Peiró-Palomino, V. Rios, Building a social progress-adjusted indicator of GDP per capita for the European Union's regions, Soc. Indic. Res. , 175 (2024), 317–345. https://doi.org/10.1007/s11205-023-03267-7 doi: 10.1007/s11205-023-03267-7
    [13] United Nations, System of environmental-economic accounting 2012: Central framework, 2014. Available from: https://unstats.un.org/unsd/envaccounting/seeaRev/SEEA_CF_Final_en.pdf
    [14] Q. Wu, X. Li, K. Wang, H. Bilal, Regional feature fusion for on-road detection of objects using camera and 3D-LiDAR in high-speed autonomous vehicles, Soft Comput. , 27 (2023), 18195–18213. https://doi.org/10.1007/s00500-023-09278-3 doi: 10.1007/s00500-023-09278-3
    [15] H. Dou, Y. Liu, S. Chen, H. Zhao, H. Bilal, A hybrid CEEMD-GMM scheme for enhancing the detection of traffic flow on highways, Soft Comput. , 27 (2023), 16373–16388. https://doi.org/10.1007/s00500-023-09164-y doi: 10.1007/s00500-023-09164-y
    [16] B. P. Resosudarmo, Abdurohman, Green fiscal policy strategies in response to climate change in Indonesia, In: The green fiscal mechanism and reform for low carbon development, 2013,240–257.
    [17] Z. R. Anderson, K. Kusters, J. McCarthy, Green growth rhetoric versus reality: Insights from Indonesia, Global Environ. Change, 38 (2016), 30–40. https://doi.org/10.1016/j.gloenvcha.2016.02.008 doi: 10.1016/j.gloenvcha.2016.02.008
    [18] S. MacFeely, P. van de Ven, A. Peltola, To GDP and beyond: the past and future history of the world's most powerful statistical indicator, Stat. J. IAOS, 2024, 1–27. https://doi.org/10.3233/sji-240003 doi: 10.3233/sji-240003
    [19] C. Jury, B. Rugani, P. Hild, M. May, E. Benetto, Analysis of complementary methodologies to assess the environmental impact of Luxembourg's net consumption, Environ. Sci. Policy, 27 (2013), 68–80. https://doi.org/10.1016/j.envsci.2012.11.014 doi: 10.1016/j.envsci.2012.11.014
    [20] A. La Notte, S. Vallecillo, C. Polce, G. Zulian, J. Maes, Implementing an EU system of accounting for ecosystems and their services: Initial proposals for the implementation of ecosystem services accounts, Luxembourg: Publications Office of the European Union, 2017. https://doi.org/10.2760/214137
    [21] S. Lange, C. S. Campagne, A. Comte, E. Bank, F. Santos-Martín, J. Maes, et al., Progress on ecosystem accounting in Europe, Ecosyst. Serv. , 57 (2022), 101473. https://doi.org/10.1016/j.ecoser.2022.101473 doi: 10.1016/j.ecoser.2022.101473
    [22] V. Li, G. Lang, China's "green GDP" experiment and the struggle for ecological modernization, J. Contemp. Asia, 40 (2010), 44–62. https://doi.org/10.1080/00472330903270346 doi: 10.1080/00472330903270346
    [23] H. Li, J. Wang, X. Yang, A holistic overview of the progress of China's low-carbon city pilots, Sustain. Cities Soc. , 42 (2018), 289–300. https://doi.org/10.1016/j.scs.2018.07.019 doi: 10.1016/j.scs.2018.07.019
    [24] G. Feigl, S. Hergovich, M. Rehm, Beyond GDP: Can we re-focus the debate, social developments in the European Union, 2012, 63–91.
    [25] K. Decancq, E. Schokkaert, Beyond GDP: Using equivalent incomes to measure well-being in Europe, Soc. Indic. Res. , 126 (2016), 21–55. https://doi.org/10.1007/s11205-015-0885-x doi: 10.1007/s11205-015-0885-x
    [26] T. Hák, S. Janoušková, "Beyond GDP" indicators in the Czech Republic, Statistika, 93 (2013), 86–99.
    [27] A. B. Atkinson, E. Marlier, P. Wolff, Beyond GDP, measuring well-being and EU-SILC, In: Income and living conditions in Europe, Publications Office of the European Union, 2010,387–397.
    [28] P. Svejvig, T. B. Jensen, Making sense of enterprise systems in institutions: A case study of the re-implementation of an accounting system, Scand. J. Inf. Syst. , 25 (2013), 1.
    [29] N. Feng, J. Ge, How does fiscal policy affect the green low-carbon transition from the perspective of the evolutionary game?, Energy Econ. , 134 (2024), 107578. https://doi.org/10.1016/j.eneco.2024.107578 doi: 10.1016/j.eneco.2024.107578
    [30] W. Xia, N. Apergis, M. F. Bashir, S. Ghosh, B. Doğan, U. Shahzad, Investigating the role of globalization, and energy consumption for environmental externalities: empirical evidence from developed and developing economies, Renew. Energ. , 183 (2022), 219–228. https://doi.org/10.1016/j.renene.2021.10.084 doi: 10.1016/j.renene.2021.10.084
    [31] A. Rehman, R. Ulucak, M. Murshed, H. Ma, C. Işık, Carbonization and atmospheric pollution in China: The asymmetric impacts of forests, livestock production, and economic progress on CO2 emissions, J. Environ. Manag. , 294 (2021), 113059. https://doi.org/10.1016/j.jenvman.2021.113059 doi: 10.1016/j.jenvman.2021.113059
    [32] H. M. Arslan, I. Khan, M. I. Latif, B. Komal, S. Chen, Understanding the dynamics of natural resources rents, environmental sustainability, and sustainable economic growth: New insights from China, Environ. Sci. Pollut. Res. , 29 (2022), 58746–58761. https://doi.org/10.1007/s11356-022-19952-y doi: 10.1007/s11356-022-19952-y
    [33] L. Gong, P. Qin, Z. Lin, Study on the effectiveness of green GDP accounting system in mitigating climate change—Based on ARIMA-LSTM Model, Highlights Bus. Econ. Manag. , 18 (2023), 391–398. https://doi.org/10.54097/hbem.v18i.12741 doi: 10.54097/hbem.v18i.12741
    [34] Z. Li, M. Jin, J. Cheng, Economic growth of green agriculture and its influencing factors in China: Based on emergy theory and spatial econometric model, Environ. Dev. Sustain. , 23 (2021), 15494–15512. https://doi.org/10.1007/s10668-021-01307-1 doi: 10.1007/s10668-021-01307-1
    [35] S. Mullainathan, J. Spiess, Machine learning: An applied econometric approach, J. Econ. Perspect. , 31 (2017), 87–106. https://doi.org/10.1257/jep.31.2.87 doi: 10.1257/jep.31.2.87
    [36] H. R. Varian, Big data: New tricks for econometrics, J. Econ. Perspect. , 28 (2014), 3–28. http://dx. doi.org/10.1257/jep.28.2.3 doi: 10.1257/jep.28.2.3
    [37] T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning: Data mining, inference, and prediction, 2 Eds., New York: Springer, 2009. https://doi.org/10.1007/978-0-387-84858-7
    [38] G. James, D. Witten, T. Hastie, R. Tibshirani, J. Taylor, An introduction to statistical learning: with applications in Python, Cham: Springer International Publishing, 2023. https://doi.org/10.1007/978-3-031-38747-0
    [39] S. Hochreiter, J. Schmidhuber, Long short-term memory neural computation, Neural Comput. , 9 (1997), 1735–1780.
    [40] Z. Yi, X. C. Liu, R. Wei, X. Chen, J. Dai, Electric vehicle charging demand forecasting using deep learning model, J. Intell. Transp. Syst. , 26 (2022), 690–703. https://doi.org/10.1080/15472450.2021.1966627 doi: 10.1080/15472450.2021.1966627
    [41] M. Ali, B. Yin, H. Bilal, A. Kumar, A. M. Shaikh, A. Rohra, Advanced efficient strategy for detection of dark objects based on spiking network with multi-box detection, Multimed. Tools Appl. , 83 (2023), 36307–36327. https://doi.org/10.1007/s11042-023-16852-2 doi: 10.1007/s11042-023-16852-2
    [42] M. S. Aslam, Co-design method for H control of quantized TS fuzzy system over the networked system, J. Intell. Fuzzy Syst. , 39 (2020), 771–788. https://doi.org/10.3233/JIFS-191708 doi: 10.3233/JIFS-191708
    [43] Y. Zhao, X. Wang, Y. Luo, M. S. Aslam, Research on human activity recognition algorithm based on LSTM-1DCNN, Comput. Mater. Continua, 77 (2023), 3325–3347.
    [44] A. Graves, Long short-term memory, In: Supervised sequence labelling with recurrent neural networks, 2012, 37–45. https://doi.org/10.1007/978-3-642-24797-2_4
    [45] G. V. Houdt, C. Mosquera, G. Nápoles, A review on the long short-term memory model, Artif. Intell. Rev. , 53 (2020), 5929–5955. https://doi.org/10.1007/s10462-020-09838-1 doi: 10.1007/s10462-020-09838-1
    [46] X. Zhu, P. Sobihani, H. Guo, Long short-term memory over recursive structures, In: Proceedings of the 32nd international conference on international conference on machine learning, 37 (2015), 1604–1612.
    [47] I. Danihelka, G. Wayne, B. Uria, N. Kalchbrenner, A. Graves, Associative long short-term memory, In: Proceedings of the 33rd international conference on machine learning, 2016, 1986–1994.
    [48] X. Wu, L. Chen, J. Zhao, M. He, X. Han, CNN-GRU-Attention neural networks for carbon emission prediction of transportation in Jiangsu Province, Sustainability, 16 (2024), 8553. https://doi.org/10.3390/su16198553 doi: 10.3390/su16198553
    [49] C. Sun, The correlation between green finance and carbon emissions based on improved neural network, Neural Comput. Appl. , 34 (2022), 12399–12413. https://doi.org/10.1007/s00521-021-06514-5 doi: 10.1007/s00521-021-06514-5
    [50] A. Iqbal, W. Zhang, S. Jahangir, Building a sustainable future: The nexus between artificial intelligence, renewable energy, green human capital, geopolitical risk, and carbon emissions through the moderating role of institutional quality, Sustainability, 17 (2025), 990. https://doi.org/10.3390/su17030990 doi: 10.3390/su17030990
    [51] A. Alonso-Robisco, J. Bas, J. M. Carbo, A. de Juan, J. M. Marques, Where and how machine learning plays a role in climate finance research, J. Sustain. Financ. Invest. , 15 (2025), 456–497. https://doi.org/10.1080/20430795.2024.2370325 doi: 10.1080/20430795.2024.2370325
    [52] W. Fang, Z. Liu, A. R. S. Putra, Role of research and development in green economic growth through renewable energy development: Empirical evidence from South Asia, Renew. Energ. , 194 (2022), 1142–1152. https://doi.org/10.1016/j.renene.2022.04.125 doi: 10.1016/j.renene.2022.04.125
    [53] Y. Han, J. C. K. Lam, V. O. K. Li, D. Reiner, A Bayesian LSTM model to evaluate the effects of air pollution control regulations in Beijing, China, Environ. Sci. Policy, 115 (2021), 26–34. https://doi.org/10.1016/j.envsci.2020.10.004 doi: 10.1016/j.envsci.2020.10.004
    [54] Y. Han, V. O. K. Li, J. C. K. Lam, M. Pollitt, How BLUE is the sky? Estimating air qualities in Beijing during the Blue Sky Day period (2008–2012) by Bayesian multi-task LSTM, Environ. Sci. Policy, 116 (2021), 69–77. https://doi.org/10.1016/j.envsci.2020.10.015 doi: 10.1016/j.envsci.2020.10.015
    [55] Y. C. Lin, Y. T. Lin, C. R. Chen, C. Y. Lai, Meteorological and traffic effects on air pollutants using Bayesian networks and deep learning, J. Environ. Sci. , 152 (2025), 54–70. https://doi.org/10.1016/j.jes.2024.01.057 doi: 10.1016/j.jes.2024.01.057
    [56] D. C. Korten, Agenda for a new economy: From phantom wealth to real wealth, Berrett-Koehler Publishers, 2010.
    [57] J. Hills, H. Glennerster, Public policy, wealth, and assets: A complex and inconsistent story, In: Wealth in the UK: Distribution, accumulation, and policy, Oxford Academic, 2013,165–193. https://doi.org/10.1093/acprof: oso/9780199678303.003.0008
    [58] W. Liang, Y. Li, X. Liu, Q. Dai, Y. Feng, AI-based Bayesian structural time series modeling for assessing PM2.5 air quality improvements during the Beijing 2022 Winter Olympics, Atmos. Environ. , 358 (2025), 121328. https://doi.org/10.1016/j.atmosenv.2025.121328 doi: 10.1016/j.atmosenv.2025.121328
    [59] V. Kushwah, P. Agrawal, Hybrid model for air quality prediction based on LSTM with random search and Bayesian optimization techniques, Earth Sci. Inform. , 18 (2025), 32. https://doi.org/10.1007/s12145-024-01514-0 doi: 10.1007/s12145-024-01514-0
    [60] R. Zhu, Y. Lv, Z. Wang, X. Chen, Prediction of the hypertension risk of the elderly in built environments based on the LSTM deep learning and Bayesian fitting method, Sustainability, 13 (2021), 5724. https://doi.org/10.3390/su13105724 doi: 10.3390/su13105724
    [61] Q. Guo, Z. He, Z. Wang, Assessing the effectiveness of long short-term memory and artificial neural network in predicting daily ozone concentrations in Liaocheng City, Sci. Rep. , 15 (2025), 6798. https://doi.org/10.1038/s41598-025-91329-w doi: 10.1038/s41598-025-91329-w
    [62] Z. Yao, Z. Wang, J. Huang, N. Xu, X. Cui, T. Wu, Interpretable prediction, classification and regulation of water quality: A case study of Poyang Lake, China, Sci. Total Environ. , 951 (2024), 175407. https://doi.org/10.1016/j.scitotenv.2024.175407 doi: 10.1016/j.scitotenv.2024.175407
    [63] B. Wang, Z. Wang, Z. Yao, Enhancing carbon price point-interval multi-step-ahead prediction using a hybrid framework of autoformer and extreme learning machine with multi-factors, Expert Syst. Appl. , 270 (2025), 126467. https://doi.org/10.1016/j.eswa.2025.126467 doi: 10.1016/j.eswa.2025.126467
    [64] H. A. D. Nguyen, Q. P. Ha, H. Duc, M. Azzi, N. Jiang, X. Barthelemy, Long short-term memory Bayesian neural network for air pollution forecast, IEEE Access, 11 (2023), 35710–35725. https://doi.org/10.1109/ACCESS.2023.3265725 doi: 10.1109/ACCESS.2023.3265725
    [65] H. Li, H. Qu, X. Tan, L. You, R. Zhu, W. Fan, UrbanEV: An open benchmark dataset for urban electric vehicle charging demand prediction, Sci. Data, 12 (2025), 523. https://doi.org/10.1038/s41597-025-04874-4 doi: 10.1038/s41597-025-04874-4
    [66] A. Orzechowski, L. Lugosch, H. Shu, R. Yang, W. Li, B. H. Meyer, A data-driven framework for medium-term electric vehicle charging demand forecasting, Energy AI, 14 (2023), 100267. https://doi.org/10.1016/j.egyai.2023.100267 doi: 10.1016/j.egyai.2023.100267
    [67] M. Rashid, T. Elfouly, N. Chen, A comprehensive survey of electric vehicle charging demand forecasting techniques, IEEE Open J. Veh. Technol. , 5 (2024), 1348–1373. https://doi.org/10.1109/OJVT.2024.3457499 doi: 10.1109/OJVT.2024.3457499
    [68] J. Zhu, Z. Yang, M. Mourshed, Y. Guo, Y. Zhou, Y. Chang, Electric vehicle charging load forecasting: A comparative study of deep learning approaches, Energies, 12 (2019), 2692. https://doi.org/10.3390/en12142692 doi: 10.3390/en12142692
    [69] Y. Han, J. C. K. Lam, V. O. K. Li, A Bayesian LSTM model to evaluate the effects of air pollution control regulations in China, In: 2018 IEEE International conference on big data (big data), 2018, 4465–4468. https://doi.org/10.1109/BigData.2018.8622417
    [70] M. E. Porter, C. van der Linde, Toward a new conception of the environment-competitiveness relationship, Int. Bus. Crit. Perspect. Bus. Manag. , 4 (2002), 261.
    [71] X. Lu, X. Tao, Local government environmental attention and urban land green use efficiency in China: The intermediary role of industrial restructuring, Land, 13 (2024), 21. https://doi.org/10.3390/land13010021 doi: 10.3390/land13010021
    [72] P. Zhao, Y. Gao, X. Sun, How does artificial intelligence affect green economic growth?—Evidence from China, Sci. Total Environ. , 834 (2022), 155306. https://doi.org/10.1016/j.scitotenv.2022.155306 doi: 10.1016/j.scitotenv.2022.155306
    [73] H. Zhang, X. Dai, M. S. Aslam, S. Wang, ILC for a class of linear parabolic DPSs with moving boundaries, In: 2020 IEEE 9th data driven control and learning systems conference (DDCLS), Liuzhou: IEEE, 2020, 1347–1352. https://doi.org/10.1109/DDCLS49620.2020.9275234
    [74] N. V. K. Jasti, A. Sharma, S. Karinka, Development of a framework for green product development, Benchmarking, 22 (2015), 426–445. https://doi.org/10.1108/BIJ-06-2014-0060 doi: 10.1108/BIJ-06-2014-0060
    [75] Z. Tong, Z. Cheng, S. Tong, A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization, Renew. Sust. Energ. Rev. , 135 (2021), 110178. https://doi.org/10.1016/j.rser.2020.110178 doi: 10.1016/j.rser.2020.110178
    [76] E. R. Ziegel, The elements of statistical learning, Technometrics, 45 (2003), 267–268. https://doi.org/10.1198/tech.2003.s770 doi: 10.1198/tech.2003.s770
    [77] H. Jin, Prediction of direct carbon emissions of Chinese provinces using artificial neural networks, PLoS ONE, 16 (2021), e0236685. https://doi.org/10.1371/journal.pone.0236685 doi: 10.1371/journal.pone.0236685
    [78] C. F. Lam, S. G. Lazzarini, J. P. Stephens, Editors' Comments: Voices from the periphery: Barriers to publication in AMR and opportunities for inclusion, Acad. Manag. Rev. , 50 (2025), 1–6. https://doi.org/10.5465/amr.2024.0570 doi: 10.5465/amr.2024.0570
    [79] P. Gogas, T. Papadimitriou, Machine learning in economics and finance, Comput. Econ. , 57 (2021), 1–4. https://doi.org/10.1007/s10614-021-10094-w doi: 10.1007/s10614-021-10094-w
    [80] D. Rodrik, Industrial policy for the twenty-first century, 2004.
    [81] I. Uluocak, Hybrid deep learning models for predicting atmospheric methane concentrations: A comparative analysis through 2050, Sci. China Earth Sci. , 68 (2025), 2226–2236. https://doi.org/10.1007/s11430-024-1569-9 doi: 10.1007/s11430-024-1569-9
    [82] S. Wang, C. Zhuge, C. Shao, P. Wang, X. Yang, S. Wang, Short-term electric vehicle charging demand prediction: A deep learning approach, Appl. Energy, 340 (2023), 121032. https://doi.org/10.1016/j.apenergy.2023.121032 doi: 10.1016/j.apenergy.2023.121032
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(623) PDF downloads(32) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog