The censored measurements are unavoidably encountered in practical scenarios due to sudden changes of circumstances and physical constraints, and the traditional parameter and state estimation methods may result in obvious estimation bias and serious performance degradation when the collected measurements contain censored observations. This paper concerns the synchronous parameter and state estimation for the bilinear state-space systems with censored measurements. By compensating the estimation bias from the censored measurements and constructing a novel criterion function, a censored regression-based gradient method is presented for synchronously estimating the system parameters and states. Moreover, a censored regression-based multi-innovation gradient method is derived to enhance the estimation performance. Theoretical analysis reveals that the convergence of the parameter estimates can be guaranteed under the persistent excitation condition. The simulation examples exhibit that the proposed method performs significantly better than the conventional auxiliary model-based least mean square method.
Citation: Xuehai Wang, Fang Zhu. Synchronous parameter and state estimation for bilinear state-space systems with censored measurements[J]. AIMS Mathematics, 2025, 10(7): 16898-16926. doi: 10.3934/math.2025760
The censored measurements are unavoidably encountered in practical scenarios due to sudden changes of circumstances and physical constraints, and the traditional parameter and state estimation methods may result in obvious estimation bias and serious performance degradation when the collected measurements contain censored observations. This paper concerns the synchronous parameter and state estimation for the bilinear state-space systems with censored measurements. By compensating the estimation bias from the censored measurements and constructing a novel criterion function, a censored regression-based gradient method is presented for synchronously estimating the system parameters and states. Moreover, a censored regression-based multi-innovation gradient method is derived to enhance the estimation performance. Theoretical analysis reveals that the convergence of the parameter estimates can be guaranteed under the persistent excitation condition. The simulation examples exhibit that the proposed method performs significantly better than the conventional auxiliary model-based least mean square method.
| [1] |
N. T. Jamba, G. Jacinto, P. A. Filipe, C. A. Braumann, Estimation for stochastic differential equation mixed models using approximation methods, AIMS Math., 9 (2024), 7866–7894. https://dx.doi.org/10.3934/math.2024383 doi: 10.3934/math.2024383
|
| [2] |
F. Ding, L. Xu, X. Zhang, H. Xu, Y. H. Zhou, X. L. Luan, Hierarchical generalized extended parameter identification for multivariable equation-error ARMA-like systems by using the filtering identification idea, Annu. Rev. Control, 60 (2025), 100993. https://doi.org/10.1016/j.arcontrol.2025.100993 doi: 10.1016/j.arcontrol.2025.100993
|
| [3] |
P. Zhong, X. L. Wu, L. Zhu, A. H. Yang, A new APSO-SPC method for parameter identification problem with uncertainty caused by random measurement errors, AIMS Math., 10 (2025), 3848–3865. https://doi.org/10.3934/math.2025179 doi: 10.3934/math.2025179
|
| [4] |
G. Q. Miao, F. Ding, Q. Y. Liu, E. F. Yang, Iterative parameter identification algorithms for transformed dynamic rational fraction input-output systems, J. Comput. Appl. Math., 434 (2023), 115297. https://doi.org/10.1016/j.cam.2023.115297 doi: 10.1016/j.cam.2023.115297
|
| [5] |
T. C. Zong, J. H. Li, G. P. Lu, Parameter identification of dual-rate Hammerstein-Volterra nonlinear systems by the hybrid particle swarm-gradient algorithm based on the auxiliary model, Eng. Appl. Artif. Intel., 117 (2023), 105526. https://doi.org/10.1016/j.engappai.2022.105526 doi: 10.1016/j.engappai.2022.105526
|
| [6] |
A. Carini, R. Forti, S. Orcioni, A polynomial multiple variance method for Volterra filter identification, IEEE T. Instrum. Meas., 74 (2025), 1–12. https://doi.org/10.1109/TIM.2025.3546397 doi: 10.1109/TIM.2025.3546397
|
| [7] | X. H. Wang, Y. J. Duan, Heterogeneous mixed kernel correntropy-based robust iterative estimation methods and convergence analysis for the nonlinear system with outliers, Circuits Syst. Signal Process., 2025. https://doi.org/10.1007/s00034-025-03156-z |
| [8] | Y. Gu, J. J. Chen, Y. H. Tan, A scheme of gradient-based iterative identification with separable synchronous variable-innovation for Exp-ARX systems with arbitrary data loss, IEEE T. Ind. Inform., 2025. https://doi.org/10.1109/TII.2025.3574425 |
| [9] |
T. Gonzàlez, A. Blais, N. Couëllan, C. Ruiz, Distributional loss for convolutional neural network regression and application to parameter estimation in satellite navigation signals, Expert Syst. Appl., 255 (2024), 124682. https://doi.org/10.1016/j.eswa.2024.124682 doi: 10.1016/j.eswa.2024.124682
|
| [10] |
X. H. Wang, Y. G. Liu, S. R. Zhao, Robust fixed-point Kalman smoother for bilinear state-space systems with non-Gaussian noise and parametric uncertainties, Int. J. Adapt. Control Signal Process., 38 (2024), 3636–3655. https://doi.org/10.1002/acs.3891 doi: 10.1002/acs.3891
|
| [11] |
R. Larhrissi, M. Benoudi, Regional stabilization of a fractional output for a class of time-delayed distributed bilinear systems, Int. J. Dynam. Control, 12 (2024), 992–1002. https://doi.org/10.1007/s40435-023-01232-3 doi: 10.1007/s40435-023-01232-3
|
| [12] |
I. El Haskouki, A. Tsouli, M. Ouarit, Uniform exponential stabilization for distributed discrete bilinear systems with time delay, J. Differ. Equ. Appl., 31 (2025), 549–569. https://doi.org/10.1080/10236198.2024.2446457 doi: 10.1080/10236198.2024.2446457
|
| [13] |
G. Y. Cheng, Z. Miao, Y. L. Jiang, High-order Krylov subspace model order reduction methods for bilinear time-delay systems, Syst. Control Lett., 186 (2024), 105764. https://doi.org/10.1016/j.sysconle.2024.105764 doi: 10.1016/j.sysconle.2024.105764
|
| [14] |
A. Ghezal, O. Alzeley, Probabilistic properties and estimation methods for periodic threshold autoregressive stochastic volatility, AIMS Math., 9 (2024), 11805–11832. https://doi.org/10.3934/math.2024578 doi: 10.3934/math.2024578
|
| [15] | F. Ding, X. L. Luan, L. Xu, X. Zhang, Hierarchical recursive gradient parameter identification for multi-input ARX systems with partially-coupled information vectors, Int. J. Adapt. Control Signal Process., 39 (2025). https://doi.org/10.1002/acs.4036 |
| [16] |
L. Xu, X. Zhang, F. Ding, Q. M. Zhu, A delta operator state estimation algorithm for discrete-time systems with state time-delay, IEEE Signal Process. Lett., 32 (2025), 391–395. https://doi.org/10.1109/LSP.2024.3519897 doi: 10.1109/LSP.2024.3519897
|
| [17] |
S. An, L. J. Wang, Y. He, Filtering-based maximum likelihood hierarchical recursive identification algorithms for bilinear stochastic systems, Nonlinear Dyn., 111 (2023), 12405–12420. https://doi.org/10.1007/s11071-023-08458-y doi: 10.1007/s11071-023-08458-y
|
| [18] |
M. H. Li, X. M. Liu, Y. M. Fan, F. Ding, Highly efficient maximum-likelihood identification methods for bilinear systems with colored noises, J. Syst. Control Eng., 238 (2024), 1763–1784. https://doi.org/10.1177/09596518241256145 doi: 10.1177/09596518241256145
|
| [19] |
Y. Gu, W. Dai, Q. M. Zhu, H. Nouri, Hierarchical multi-innovation stochastic gradient identification algorithm for estimating a bilinear state-space model with moving average noise, J. Comput. Appl. Math., 420 (2023), 114794. https://doi.org/10.1016/j.cam.2022.114794 doi: 10.1016/j.cam.2022.114794
|
| [20] |
W. J. Wang, S. Y. Liu, Y. H. Jiang, J. F. Sun, W. X. Xu, X. H. Chen, et al., A robust filter and smoother-based expectation-maximization algorithm for bilinear systems with heavy-tailed noise, Mech. Syst. Signal Process., 236 (2025), 112912. https://doi.org/10.1016/j.ymssp.2025.112912 doi: 10.1016/j.ymssp.2025.112912
|
| [21] |
S. Y. Liu, Y. J. Wang, F. Ding, A. Alsaedi, T. Hayat, Joint iterative state and parameter estimation for bilinear systems with autoregressive noises via the data filtering, ISA Trans., 147 (2024), 337–349. https://doi.org/10.1016/j.isatra.2024.01.035 doi: 10.1016/j.isatra.2024.01.035
|
| [22] |
W. H. Song, Z. D. Wang, Z. K. Li, H. L. Dong, Q. L. Han, Protocol-based particle filtering for nonlinear complex networks: Handling non-Gaussian noises and measurement censoring, IEEE T. Netw. Sci. Eng., 10 (2023), 128–139. https://doi.org/10.1109/TNSE.2022.3205553 doi: 10.1109/TNSE.2022.3205553
|
| [23] |
L. Zhao, G. Y. Chen, X. Y. Cao, L. Li, Distributed fusion for multisensor systems with censored measurements under Round-Robin protocol, IEEE Sens. J., 25 (2025), 19888–19895. https://doi.org/10.1109/JSEN.2025.3560117 doi: 10.1109/JSEN.2025.3560117
|
| [24] |
H. P. Ren, Z. W. Zhang, Q. Gong, Estimation of Shannon entropy of the inverse exponential Rayleigh model under progressively Type-Ⅱ censored test, AIMS Math., 10 (2025), 9378–9414. https://doi.org/10.3934/math.2025434 doi: 10.3934/math.2025434
|
| [25] |
J. X. Li, J. Hu, H. J. Liu, H. Yu, Z. H. Wu, Nonlinear distributed filtering subject to censoring measurements under dynamic event-triggered communication mechanism: The state-saturated case, Commun. Nonlinear Sci. Numer. Simulat., 114 (2022), 106618. https://doi.org/10.1016/j.cnsns.2022.106618 doi: 10.1016/j.cnsns.2022.106618
|
| [26] |
J. Cheng, Q. W. Zhang, D. Zhang, H. C. Yan, W. H. Qi, Asynchronous filtering for fuzzy sampled-data systems subject to censored measurements and non-uniform sampling, IEEE T. Fuzzy Syst., 32 (2024), 5296–5306. https://doi.org/10.1109/TFUZZ.2024.3420793 doi: 10.1109/TFUZZ.2024.3420793
|
| [27] | T. I. Lin, W. L. Wang, Finite mixtures of multivariate contaminated normal censored regression models, J. Comput. Graph. Stat., 2025, 1–14. https://doi.org/10.1080/10618600.2025.2495257 |
| [28] |
H. Q. Zhao, G. Wang, F. Zhao, D. X. Liu, P. C. Song, Recursive general mixed norm algorithm for censored regression: Performance analysis and channel equalization application, IEEE T. Syst. Man Cybern.: Syst., 54 (2024), 752–763. https://doi.org/10.1109/TSMC.2023.3321115 doi: 10.1109/TSMC.2023.3321115
|
| [29] |
G. B. Qian, L. P. Shen, Y. H. Guan, J. H. Qian, S. Y. Wang, Robust recursive widely linear adaptive filtering algorithm for censored regression, Signal Process., 230 (2025), 109854. https://doi.org/10.1016/j.sigpro.2024.109854 doi: 10.1016/j.sigpro.2024.109854
|
| [30] |
F. Ding, L. Xu, X. Zhang, Y. H. Zhou, X. L. Luan, Recursive identification methods for general stochastic systems with colored noises by using the hierarchical identification principle and the filtering identification idea, Annu. Rev. Control, 57 (2024), 100942. https://doi.org/10.1016/j.arcontrol.2024.100942 doi: 10.1016/j.arcontrol.2024.100942
|
| [31] |
H. H. Wang, X. M. Liu, Highly efficient three-stage maximum likelihood recursive least squares identification method for multiple-input multiple-output systems, Syst. Control Lett., 200 (2025), 106094. https://doi.org/10.1016/j.sysconle.2025.106094 doi: 10.1016/j.sysconle.2025.106094
|
| [32] |
F. Ding, L. Xu, P. Liu, X. F. Wang, Two-stage parameter estimation methods for linear time-invariant continuous-time systems, Syst. Control Lett., 204 (2025), 106166. https://doi.org/10.1016/j.sysconle.2025.106166 doi: 10.1016/j.sysconle.2025.106166
|
| [33] |
G. Mzyk, A censored sample mean approach to nonparametric identification of nonlinearities in Wiener systems, IEEE T. Circuits Syst. II Express Briefs, 54 (2007), 897–901. https://doi.org/10.1109/TCSII.2007.901634 doi: 10.1109/TCSII.2007.901634
|
| [34] |
E. M. Almetwally, H. M. Almongy, A. E. sayed Mubarak, Bayesian and maximum likelihood estimation for the Weibull generalized exponential distribution parameters using progressive censoring schemes, Pak. J. Stat. Oper. Res., 14 (2018), 853–868. https://doi.org/10.18187/pjsor.v14i4.2600 doi: 10.18187/pjsor.v14i4.2600
|
| [35] |
Z. Y. Wang, Z. L. Liu, Y. T. Dai, K. J. Cai, Recursive estimation for system with random transmission loss and censored measurement, IEEE T. Circuits Syst. II Express Briefs, 70 (2022), 2281–2285. https://doi.org/10.1109/TCSII.2022.3226485 doi: 10.1109/TCSII.2022.3226485
|
| [36] |
S. Kim, H. Kim, S. Lee, Adaptive censoring-probability-based Tobit Kalman filter for tracking maneuvering targets, Aerosp. Sci. Technol., 163 (2025), 110263. https://doi.org/10.1016/j.ast.2025.110263 doi: 10.1016/j.ast.2025.110263
|
| [37] |
G. B. Qian, L. P. Shen, Y. H. Guan, J. H. Qian, S. Y. Wang, Robust recursive widely linear adaptive filtering algorithm for censored regression, Signal Process., 230 (2025), 109854. https://doi.org/10.1016/j.sigpro.2024.109854 doi: 10.1016/j.sigpro.2024.109854
|
| [38] |
G. Wang, H. Q. Zhao, Robust adaptive least mean M-estimate algorithm for censored regression, IEEE T. Syst. Man Cybern.: Syst., 52 (2022), 5165–5174. https://doi.org/10.1109/TSMC.2021.3120272 doi: 10.1109/TSMC.2021.3120272
|
| [39] |
F. Ding, Y. Gu, Performance analysis of the auxiliary model-based stochastic gradient parameter estimation algorithm for state-space systems with one-step state delay, Circuits Syst. Signal Process., 32 (2013), 585–599. https://doi.org/10.1007/s00034-012-9463-5 doi: 10.1007/s00034-012-9463-5
|