Research article

The normalizer problem for finite groups with prescribed 2-subgroups

  • Received: 06 April 2025 Revised: 11 July 2025 Accepted: 18 July 2025 Published: 28 July 2025
  • MSC : 16S34, 20C10, 20E36

  • Suppose that $ X $ is a finite group with prescribed $ 2 $-subgroups. Under certain conditions, it is shown that the normalizer property holds for $ X $. In particular, let $ X $ be a semidirect product of a normal $ 2 $-complement $ O_{2'}(X) $ by a Sylow $ 2 $-subgroup $ P $. If $ m^{3} $ is conjugate to $ m $ or $ m^{-1} $, for all $ m\in P $, then $ X $ has the normalizer property. Our result generalizes a result due to Mazur, which states that the normalizer property holds for finite groups that have the Sylow $ 2 $-subgroup of order $ 2 $.

    Citation: Liang Zhang, Jinke Hai. The normalizer problem for finite groups with prescribed 2-subgroups[J]. AIMS Mathematics, 2025, 10(7): 16889-16897. doi: 10.3934/math.2025759

    Related Papers:

  • Suppose that $ X $ is a finite group with prescribed $ 2 $-subgroups. Under certain conditions, it is shown that the normalizer property holds for $ X $. In particular, let $ X $ be a semidirect product of a normal $ 2 $-complement $ O_{2'}(X) $ by a Sylow $ 2 $-subgroup $ P $. If $ m^{3} $ is conjugate to $ m $ or $ m^{-1} $, for all $ m\in P $, then $ X $ has the normalizer property. Our result generalizes a result due to Mazur, which states that the normalizer property holds for finite groups that have the Sylow $ 2 $-subgroup of order $ 2 $.



    加载中


    [1] S. K. Sehgal, Units in integral group rings, Longman Scientific & Technical, 1993.
    [2] D. B. Coleman, On the modular group ring of a $p$-group, Proc. Amer. Math. Soc., 5 (1964), 511–514. https://doi.org/10.2307/2034735 doi: 10.2307/2034735
    [3] S. Jackowski, Z. S. Marciniak, Group automorphisms inducing the identity map on cohomology, J. Pure Appl. Algebra, 44 (1987), 241–250. https://doi.org/10.1016/0022-4049(87)90028-4 doi: 10.1016/0022-4049(87)90028-4
    [4] M. Hertweck, A counterexample to the isomorphism problem for integral group rings, Ann. Math., 154 (2001), 115–138. https://doi.org/10.2307/3062112 doi: 10.2307/3062112
    [5] J. K. Hai, J. D. Guo, The normalizer property for the integral group ring of the wreath product of two symmetric groups $S_{k}$ and $S_{n}$, Commun. Algebra, 45 (2017), 1278–1283. https://doi.org/10.1080/00927872.2016.1175613 doi: 10.1080/00927872.2016.1175613
    [6] A. Van Antwerpen, Coleman automorphisms of finite groups and their minimal normal subgroups, J. Pure Appl. Algebra, 222 (2018), 3379–3394. https://doi.org/10.1016/j.jpaa.2017.12.013 doi: 10.1016/j.jpaa.2017.12.013
    [7] M. Hertweck, Class-preserving Coleman automorphisms of finite groups, Monatsh. Math., 136 (2002), 1–7. https://doi.org/10.1007/s006050200029 doi: 10.1007/s006050200029
    [8] M. Hertweck, Local analysis of the normalizer problem, J. Pure Appl. Algebra, 163 (2001), 259–276. https://doi.org/10.1016/S0022-4049(00)00167-5 doi: 10.1016/S0022-4049(00)00167-5
    [9] M. Hertweck, E. Jespers, Class-preserving automorphisms and the normalizer property for Blackburn groups, J. Group Theory, 12 (2009), 157–169. https://doi.org/10.1515/JGT.2008.068 doi: 10.1515/JGT.2008.068
    [10] M. Mazur, Automorphisms of finite groups, Commun. Algebra, 22 (1994), 6259–6271. https://doi.org/10.1080/00927879408825187 doi: 10.1080/00927879408825187
    [11] Z. S. Marciniak, K. W. Roggenkamp, The normalizer of a finite group in its integral group ring and $\check{C}$ech cohomology, In: Algebra-representation theory, 2001,159–188.
    [12] H. Kurzweil, B. Stellmacher, The theory of finite groups: An introduction, New York: Springer-Verlag, 2004. https://doi.org/10.1007/b97433
    [13] M. Hertweck, W. Kimmerle, Coleman automorphisms of finite groups, Math. Z., 242 (2002), 203–215. https://doi.org/10.1007/s002090100318 doi: 10.1007/s002090100318
    [14] T. Petit Lobão, C. Polcino Milies, The normalizer property for integral group rings of Frobenius groups, J. Algebra, 256 (2002), 1–6. https://doi.org/10.1016/S0021-8693(02)00156-4 doi: 10.1016/S0021-8693(02)00156-4
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(423) PDF downloads(34) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog