Suppose that $ X $ is a finite group with prescribed $ 2 $-subgroups. Under certain conditions, it is shown that the normalizer property holds for $ X $. In particular, let $ X $ be a semidirect product of a normal $ 2 $-complement $ O_{2'}(X) $ by a Sylow $ 2 $-subgroup $ P $. If $ m^{3} $ is conjugate to $ m $ or $ m^{-1} $, for all $ m\in P $, then $ X $ has the normalizer property. Our result generalizes a result due to Mazur, which states that the normalizer property holds for finite groups that have the Sylow $ 2 $-subgroup of order $ 2 $.
Citation: Liang Zhang, Jinke Hai. The normalizer problem for finite groups with prescribed 2-subgroups[J]. AIMS Mathematics, 2025, 10(7): 16889-16897. doi: 10.3934/math.2025759
Suppose that $ X $ is a finite group with prescribed $ 2 $-subgroups. Under certain conditions, it is shown that the normalizer property holds for $ X $. In particular, let $ X $ be a semidirect product of a normal $ 2 $-complement $ O_{2'}(X) $ by a Sylow $ 2 $-subgroup $ P $. If $ m^{3} $ is conjugate to $ m $ or $ m^{-1} $, for all $ m\in P $, then $ X $ has the normalizer property. Our result generalizes a result due to Mazur, which states that the normalizer property holds for finite groups that have the Sylow $ 2 $-subgroup of order $ 2 $.
| [1] | S. K. Sehgal, Units in integral group rings, Longman Scientific & Technical, 1993. |
| [2] |
D. B. Coleman, On the modular group ring of a $p$-group, Proc. Amer. Math. Soc., 5 (1964), 511–514. https://doi.org/10.2307/2034735 doi: 10.2307/2034735
|
| [3] |
S. Jackowski, Z. S. Marciniak, Group automorphisms inducing the identity map on cohomology, J. Pure Appl. Algebra, 44 (1987), 241–250. https://doi.org/10.1016/0022-4049(87)90028-4 doi: 10.1016/0022-4049(87)90028-4
|
| [4] |
M. Hertweck, A counterexample to the isomorphism problem for integral group rings, Ann. Math., 154 (2001), 115–138. https://doi.org/10.2307/3062112 doi: 10.2307/3062112
|
| [5] |
J. K. Hai, J. D. Guo, The normalizer property for the integral group ring of the wreath product of two symmetric groups $S_{k}$ and $S_{n}$, Commun. Algebra, 45 (2017), 1278–1283. https://doi.org/10.1080/00927872.2016.1175613 doi: 10.1080/00927872.2016.1175613
|
| [6] |
A. Van Antwerpen, Coleman automorphisms of finite groups and their minimal normal subgroups, J. Pure Appl. Algebra, 222 (2018), 3379–3394. https://doi.org/10.1016/j.jpaa.2017.12.013 doi: 10.1016/j.jpaa.2017.12.013
|
| [7] |
M. Hertweck, Class-preserving Coleman automorphisms of finite groups, Monatsh. Math., 136 (2002), 1–7. https://doi.org/10.1007/s006050200029 doi: 10.1007/s006050200029
|
| [8] |
M. Hertweck, Local analysis of the normalizer problem, J. Pure Appl. Algebra, 163 (2001), 259–276. https://doi.org/10.1016/S0022-4049(00)00167-5 doi: 10.1016/S0022-4049(00)00167-5
|
| [9] |
M. Hertweck, E. Jespers, Class-preserving automorphisms and the normalizer property for Blackburn groups, J. Group Theory, 12 (2009), 157–169. https://doi.org/10.1515/JGT.2008.068 doi: 10.1515/JGT.2008.068
|
| [10] |
M. Mazur, Automorphisms of finite groups, Commun. Algebra, 22 (1994), 6259–6271. https://doi.org/10.1080/00927879408825187 doi: 10.1080/00927879408825187
|
| [11] | Z. S. Marciniak, K. W. Roggenkamp, The normalizer of a finite group in its integral group ring and $\check{C}$ech cohomology, In: Algebra-representation theory, 2001,159–188. |
| [12] | H. Kurzweil, B. Stellmacher, The theory of finite groups: An introduction, New York: Springer-Verlag, 2004. https://doi.org/10.1007/b97433 |
| [13] |
M. Hertweck, W. Kimmerle, Coleman automorphisms of finite groups, Math. Z., 242 (2002), 203–215. https://doi.org/10.1007/s002090100318 doi: 10.1007/s002090100318
|
| [14] |
T. Petit Lobão, C. Polcino Milies, The normalizer property for integral group rings of Frobenius groups, J. Algebra, 256 (2002), 1–6. https://doi.org/10.1016/S0021-8693(02)00156-4 doi: 10.1016/S0021-8693(02)00156-4
|