

https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(7): 16889–16897.

DOI: 10.3934/math.2025759 Received: 06 April 2025 Revised: 11 July 2025

Accepted: 18 July 2025 Published: 28 July 2025

Research article

The normalizer problem for finite groups with prescribed 2-subgroups

Liang Zhang and Jinke Hai*

College of Mathematics and Statistics, Yili Normal University, Yining 835000, China

* Correspondence: Email: haijinke@aliyun.com.

Abstract: Suppose that X is a finite group with prescribed 2-subgroups. Under certain conditions, it is shown that the normalizer property holds for X. In particular, let X be a semidirect product of a normal 2-complement $O_{2'}(X)$ by a Sylow 2-subgroup P. If m^3 is conjugate to m or m^{-1} , for all $m \in P$, then X has the normalizer property. Our result generalizes a result due to Mazur, which states that the normalizer property holds for finite groups that have the Sylow 2-subgroup of order 2.

Keywords: central units; normalizer property; the integral group ring; class-preserving Coleman automorphisms

Mathematics Subject Classification: 16S34, 20C10, 20E36

1. Introduction

Let X be a finite group and $U(\mathbb{Z}X)$ be the group of units of the integral group ring $\mathbb{Z}X$. We use $Z(U(\mathbb{Z}X))$ to denote the center of $U(\mathbb{Z}X)$. The normalizer problem (Problem 43 in Sehgal [1]) of integral group rings asks whether $N_{U(\mathbb{Z}X)}(X) = X Z(U(\mathbb{Z}X))$ for any finite group X, where $N_{U(\mathbb{Z}X)}(X)$ is the normalizer of X in $U(\mathbb{Z}X)$. If this equality is satisfied, we say that the normalizer property holds for X. Historically, the first positive result regarding this question was established by Coleman [2], who demonstrated that the normalizer property holds for finite nilpotent groups. Jackowski and Marciniak [3] proved that the finite group having a normal Sylow 2-subgroup has the normalizer property. In particular, the normalizer property holds for groups of odd order. Although Hertweck [4] constructed the first counterexample to the normalizer problem, it still remains of interest to investigate for which groups have the normalizer property. Recently, a number of related works on the normalizer problem have been published; see [5–9].

Let Aut(X) be the automorphism group of X. By conj(x) we denote the inner conjugation $g \mapsto x^{-1}gx$ on X. In order to investigate the normalizer problem, as in [7], several special automorphisms of finite group X are defined as follows:

Let $\beta \in \operatorname{Aut}(X)$. If for any $y \in X$, there exists an $x \in X$ such that $y^{\beta} = x^{-1}yx$, then β is called a

class-preserving automorphism. Denote by $Aut_c(X)$ the class-preserving automorphism group of X.

Let $\beta \in \operatorname{Aut}(X)$. If for any prime p||X| and any Sylow p-subgroup R of X, there exists an $x \in X$ such that $\beta|_R = \operatorname{conj}(x)|_R$, then β is said to be a Coleman automorphism. Denote by $\operatorname{Aut}_{\operatorname{Col}}(X)$ the Coleman automorphism group of X.

Let $u \in N_{U(\mathbb{Z}X)}(X)$, $g^{\theta_u} = u^{-1}gu$ for all $g \in X$. Then $\theta_u \in \operatorname{Aut}(X)$. Write $\operatorname{Aut}_{\mathbb{Z}}(X) = \{\theta_u \in \operatorname{Aut}(X) \mid x^{\theta_u} = u^{-1}xu, u \in N_{U(\mathbb{Z}X)}(X), x \in X\}$. Obviously, $\operatorname{Aut}_{\mathbb{Z}}(X) \leq \operatorname{Aut}(X)$.

We set

$$\operatorname{Out}_c(X) = \operatorname{Aut}_c(X)/\operatorname{Inn}(X),$$

$$Out_{Col}(X) = Aut_{Col}(X)/Inn(X)$$

and

$$\operatorname{Out}_{\mathbb{Z}}(X) = \operatorname{Aut}_{\mathbb{Z}}(X)/\operatorname{Inn}(X).$$

Jackowski and Marciniak [3] proved that $N_{U(\mathbb{Z}X)}(X) = X Z(U(\mathbb{Z}X))$ if and only if $Out_{\mathbb{Z}}(X) = 1$. In addition, $Out_{\mathbb{Z}}(X) \leq Out_c(X) \cap Out_{Col}(X)$ and $Out_{\mathbb{Z}}(X)$ is an elementary abelian 2-group(see [1]). Hence, if it can be shown that $|Out_c(X) \cap Out_{Col}(X)|$ is an odd number, then $Out_{\mathbb{Z}}(X) = 1$. In particular, the normalizer property holds for X.

In this paper, the normalizer problem of finite groups with prescribed 2-subgroups is investigated. Mazur [10] conjectured that finite groups with abelian Sylow 2-subgroups have the normalizer property. He proved that the conjecture holds if the Sylow 2-subgroups of finite groups are of order 2. This result was generalized by Hertweck [8]; he proved that X has the normalizer property, provided that X has a normal 2-complement and X has a cyclic Sylow 2-subgroup or an abelian of exponent at most 4. Marciniak and Roggenkamp [11] constructed a group $X = (C_2^4 \times C_3) \rtimes C_2^3$ such that $|\operatorname{Out}_c(X) \cap \operatorname{Out}_{\operatorname{Col}}(X)|$ is an even number. This example shows that if the Sylow 2-subgroup of X is non-abelian, then, in general, $|\operatorname{Out}_c(X) \cap \operatorname{Out}_{\operatorname{Col}}(X)|$ is not necessarily odd. In [6], Van Antwerpen proved that if a finite group X possesses a self-centralizing normal 2-subgroup, then X does not have any non-inner Coleman automorphisms. In particular, the normalizer property holds for X. Inspired by these findings, we are able to establish the following results.

Theorem 1.1. Let $P \in \operatorname{Syl}_2(X)$ and F(X) be the Fitting subgroup of X. Assume that any chief factor of X/F(X) is not isomorphic to C_2 , and K is a maximal subgroup of P satisfying $K \subseteq X$. Then $|\operatorname{Out}_c(X) \cap \operatorname{Out}_{\operatorname{Col}}(X)|$ is an odd number; that is, X has the normalizer property.

Theorem 1.2. Let $X = O_{2'}(X) \rtimes P$ be a semidirect product of a normal 2-complement $O_{2'}(X)$ by a Sylow 2-subgroup P. If m^3 is conjugate to m or m^{-1} , for all $m \in P$, then $\operatorname{Out}_{\mathbb{Z}}(X) = 1$, that is, X has the normalizer property.

Theorem 1.3. Let X be an extension of a centerless finite group A by a 2-group P, where $\operatorname{Aut}_{\operatorname{Col}}(A) = \operatorname{Inn}(A)$. If m^3 is conjugate to m or m^{-1} , for all $m \in P$, then $\operatorname{Out}_{\mathbb{Z}}(X) = 1$.

Throughout, X is a finite group, and C_p denotes a cyclic group of order p. Let $H \le X$ or $H \le X$, and $\vartheta \in \operatorname{Aut}(X)$. We denote $\vartheta|_H$ or $\vartheta|_{X/H}$, respectively, if ϑ fixes H or X/H. For a $y \in X$, $\operatorname{conj}(y)$ means $g^{\operatorname{conj}(y)} = g^y$ for all $g \in X$. For any p||X|, we denote $O_p(X)$ to be the largest normal p-subgroup of X and $O_{p'}(X)$ the largest normal p'-subgroup of X. Other notations are standard; refer to [7, 12].

2. Preliminaries

Lemma 2.1. [7] Assume that $H \subseteq X$ and X/H is a p'-group. Then we have the following statements.

- (1) If $\vartheta \in \operatorname{Aut}_c(X)$ is of *p*-power order, then $\vartheta|_H \in \operatorname{Aut}_c(H)$;
- (2) If $\vartheta \in \operatorname{Aut}_{\operatorname{Col}}(X)$ is of *p*-power order, then $\vartheta|_H \in \operatorname{Aut}_{\operatorname{Col}}(H)$;
- (3) If $Out_c(H)$ or $Out_{Col}(H)$ is a p'-group, then so is $Out_c(X)$ or $Out_{Col}(X)$.

Lemma 2.2. [8] $|\operatorname{Out}_c(X) \cap \operatorname{Out}_{\operatorname{Col}}(X)|$ is an odd number if there exists a cyclic Sylow 2-subgroup of X.

- **Lemma 2.3.** Suppose that $H \subseteq X$ and $\vartheta \in \operatorname{Aut}(X)$. Then we have the following statements.
 - (1) If $\vartheta \in \operatorname{Aut}_c(X)$, then $\vartheta|_H \in \operatorname{Aut}(H)$ and $\vartheta|_{X/H} \in \operatorname{Aut}_c(X/H)$.
 - (2) If $\vartheta \in \operatorname{Aut}_{\operatorname{Col}}(X)$, then $\vartheta|_H \in \operatorname{Aut}(H)$ and $\vartheta|_{X/H} \in \operatorname{Aut}_{\operatorname{Col}}(X/H)$.

Proof. These proofs are obvious, so we omit them.

Lemma 2.4. Suppose that $H \subseteq X$ and $\vartheta \in \operatorname{Aut}(X) \setminus \operatorname{Inn}(X)$ is a p-element. If $\vartheta|_{X/H} \in \operatorname{Inn}(X/H)$, then there exists a $\gamma \in \operatorname{Inn}(X)$ satisfying $\gamma \vartheta|_{X/H} = \operatorname{id}|_{X/H}$, and $\gamma \vartheta \in \operatorname{Aut}(X) \setminus \operatorname{Inn}(X)$ remains a p-element.

Proof. By $\vartheta|_{X/H} \in \text{Inn}(X/H)$, so we suppose that $\vartheta|_{X/H} = \text{conj}(x)|_{X/H}$ for some $x \in X$. Let i be a positive integer and $o(\vartheta) = p^i$. Denote $\beta = \text{conj}(x)$. Hence, $\beta^{-1}\vartheta|_{X/H} = \text{id}|_{X/H}$. Suppose that n is positive integer and (n, p) = 1. If $(\beta^{-1}\vartheta)^n$ is the p-part of $\beta^{-1}\vartheta$, then there exist $s, t \in \mathbb{Z}$ satisfying $sn + tp^i = 1$. It is clear that $o((\beta^{-1}\vartheta)^{sn})$ is a power of p, and $(\beta^{-1}\vartheta)^{sn}|_{X/H} = \text{id}|_{X/H}$. By $\text{Inn}(X) \leq \text{Aut}(X)$, there exists a $\gamma \in \text{Inn}(X)$ satisfying $(\beta^{-1}\vartheta)^{sn} = \gamma \vartheta^{sn} = \gamma \vartheta^{1-tp^i} = \gamma \vartheta$. Therefore, $\gamma \vartheta|_{X/H} = (\beta^{-1}\vartheta)^{sn}|_{X/H} = \text{id}|_{X/H}$.

Lemma 2.5. Suppose that $N \le X$ and $\vartheta \in \operatorname{Aut}(X)$ is a p-element. Let $\vartheta|_N \in \operatorname{Aut}(N)$ and $\vartheta|_N = \operatorname{conj}(x)|_N$ for some $x \in X$; then there exists a p-element $h \in X$ satisfying $\vartheta|_N = \operatorname{conj}(h)|_N$.

Proof. Let $o(\vartheta) = p^r$, $o(x) = p^s j$, where r, s, $j \in \mathbb{N}$ and (p, j) = 1. Set $i = max\{r, s\}$. By $(p^i, j) = 1$, then there exists $u, v \in \mathbb{Z}$, satisfying $up^i + vj = 1$. Let $h = x^{vj}$, so that h is a p-element. By $z = z^{\theta^{up^i}} = z^{x^{up^i}}$ for any $z \in N$, so that $z^{\vartheta} = z^x = z^{x^{up^i+vj}} = (z^{x^{up^i}})^{x^{vj}} = z^{x^{vj}} = z^h$. Hence, $\vartheta|_N = \text{conj}(h)|_N$.

Lemma 2.6. [13] Suppose that $\vartheta \in \operatorname{Aut}(X)$ is a *p*-element and any chief factor of $X/F^*(X)$ is not isomorphic to C_p . Assume that $H \leq X$ with $H^{\vartheta} = H$. If $\vartheta|_{X/H} = \operatorname{id}|_{X/H}$ and there is an $X \in X$ satisfying $\vartheta|_R = \operatorname{conj}(X)|_R$, where $R \in \operatorname{Syl}(H)$, then we have $Y \in O_p(X)H$ and $\vartheta|_R = \operatorname{conj}(Y)|_R$.

Lemma 2.7. [13] Let $\vartheta \in \operatorname{Aut}(X)$ be a *p*-element. Suppose that $H \leq X$ satisfying $\vartheta|_H = \operatorname{id}|_H$ and $\vartheta|_{X/H} = \operatorname{id}|_{X/H}$. Then $\vartheta|_{X/O_p(Z(H))} = \operatorname{id}|_{X/O_p(Z(H))}$. Moreover, we have $\vartheta \in \operatorname{Inn}(X)$ if $\vartheta|_P = \operatorname{id}|_P$, where $P \in \operatorname{Syl}_p(X)$.

Lemma 2.8. [14] Suppose that $v \in N_{U(\mathbb{Z}X)}(X)$. Then y is conjugate to $v^{-1}yv$ for any $y \in X$.

Lemma 2.9. [1] All central units of $\mathbb{Z}(X)$ are trivial if and only if for every $x \in X$, any generator of $\langle x \rangle$ is conjugate to either x or x^{-1} .

Lemma 2.10. [5] Let $w \in N_{U(\mathbb{Z}X)}(X)$, $H \subseteq X$, and let $R \subseteq X$ be a p-subgroup. Assume that $w^{\beta} = Hx \in X/H$ for some $x \in X$, where $\beta : \mathbb{Z}X \to \mathbb{Z}(X/H)$ is the natural homomorphism. Then there exists an $h \in H$ satisfying $w^{-1}yw = (hx)^{-1}y(hx)$ for every $y \in R$.

Lemma 2.11. [1] Suppose that $v \in N_{U(\mathbb{Z}X)}(X)$, and $\psi_v \in \operatorname{Aut}_{\mathbb{Z}}(X)$. Then $\psi_v^2 \in \operatorname{Inn}(X)$.

Lemma 2.12. [13] Assume that $\pi(X)$ and $\pi(\operatorname{Aut}_{\operatorname{Col}}(X))$ are the sets of prime divisors of |X| and $|\operatorname{Aut}_{\operatorname{Col}}(X)|$, respectively. Then $\pi(\operatorname{Aut}_{\operatorname{Col}}(X)) \subseteq \pi(X)$.

Lemma 2.13. [13] Let X be a simple group. Then there exists a $q \mid |X|$ such that q-central automorphisms of X are inner automorphisms.

Lemma 2.14. Suppose that $H \le X$ and $\vartheta \in \operatorname{Aut}(X)$ is a p-element. If $\vartheta|_H = \operatorname{conj}(x)|_H$ for some $x \in X$, then there exists a $\gamma \in \operatorname{Inn}(X)$ that satisfies $\gamma \vartheta|_H = \operatorname{id}|_H$ and $\gamma \vartheta$ remains a p-element.

Proof. Similar to the proof of Lemma 2.4, so we omit it.

3. Proof of the theorems

Recall that $F^*(X)$ is said to be the generalized Fitting subgroup of X if $F^*(X)$ is a central product of its Fitting subgroup F(X) and its layer E = E(X), which is generated by the components, i.e., the subnormal quasisimple subgroups of X.

Theorem 3.1. Let $P \in \text{Syl}_2(X)$ and F(X) be the Fitting subgroup of X. Assume that any chief factor of X/F(X) is not isomorphic to C_2 , and K is a maximal subgroup of P satisfying $K \subseteq X$. Then $|\text{Out}_c(X) \cap \text{Out}_{Col}(X)|$ is an odd number; that is, X has the normalizer property.

Proof. Let $\vartheta \in \operatorname{Aut}_c(X) \cap \operatorname{Aut}_{\operatorname{Col}}(X)$ be a 2-element. Then we have to show that $\vartheta \in \operatorname{Inn}(X)$. If $P \leq X$, then, by Lemma 2.1, the assertion follows. If K = 1, then P is a cyclic group of order 2. Hence, according to Lemma 2.2, this concludes the proof.

Henceforth, we suppose that $P \not \supseteq X$ and $K \neq 1$. Under this assumption, we have $K = O_2(X) \neq P$. It follows that the Sylow 2-subgroups of $X/O_2(X)$ are cyclic groups of order 2. Then, by Lemma 2.2, $\operatorname{Out}_c(X/O_2(X)) \cap \operatorname{Out}_{\operatorname{Col}}(X/O_2(X))$ is of odd order. Further, by Lemma 2.3, we obtain that

$$\vartheta|_{X/O_2(X)} \in \operatorname{Aut}_c(X/O_2(X)) \cap \operatorname{Aut}_{\operatorname{Col}}(X/O_2(X)).$$

In addition, by assumption, ϑ is a 2-element. Consequently, $\vartheta|_{X/O_2(X)} \in \text{Inn}(X/O_2(X))$. Therefore, by Lemma 2.4, without losing generality, we can assume the following:

$$\vartheta|_{X/O_2(X)} = \mathrm{id}|_{X/O_2(X)}.$$

Since $\vartheta \in \operatorname{Aut}_{\operatorname{Col}}(X)$, according to Lemma 2.5, there exists a 2-element $x \in X$ satisfying

$$\vartheta|_P = \operatorname{conj}(x)|_P$$
.

We denote $F^*(X)$ as the generalized Fitting subgroup of X. Next we will show that $F^*(X) = F(X)$. Note that the Sylow 2-subgroups of $X/O_2(X)$ are cyclic groups of order 2. Hence, according to Burnside's theorem, there is a normal 2-complement of $X/O_2(X)$. By the Feit-Thompson theorem, which asserts that every group of odd order is solvable, X is solvable. Therefore, $F^*(X) = F(X)$.

Now, according to Lemma 2.6, there is $y \in O_2(X)$ satisfying

$$\vartheta|_{O_2(X)} = \operatorname{conj}(y)|_{O_2(X)}.$$

Moreover, given that $\vartheta|_P = \operatorname{conj}(x)|_P$ and $O_2(X) \leq P$, we conclude that

$$\vartheta|_{O_2(X)} = \operatorname{conj}(x)|_{O_2(X)}.$$

Consequently, $conj(x)|_{O_2(X)} = \vartheta|_{O_2(X)} = conj(y)|_{O_2(X)}$, which implies that

$$xy^{-1} \in C_X(O_2(X)).$$

Since $\vartheta|_{X/O_2(X)} = \operatorname{id}|_{X/O_2(X)}$, $P^{\vartheta} = P$. Additionally, by $\vartheta|_P = \operatorname{conj}(x)|_P$, we can have $P^{\vartheta} = P^x$. Accordingly, we have $P^x = P$, which yields $x \in N_X(P)$. Thus $x \in P$, as x is a 2-element. Note that $y \in O_2(X) \le P$; we obtain that $xy^{-1} \in P$.

If $xy^{-1} \notin O_2(X)$, then $P = \langle xy^{-1}, O_2(X) \rangle$ since $O_2(X)$ is a maximal subgroup of P. We derive that $xy^{-1} \in \mathbb{Z}(P)$ and thus

$$\theta$$
conj $(y^{-1})|_P = \text{conj}(xy^{-1})|_P = \text{id}|_P$.

Moreover, it is obvious that

$$\vartheta \operatorname{conj}(y^{-1})|_{O_2(X)} = \operatorname{id}|_{O_2(X)}$$

and

$$\vartheta$$
conj $(y^{-1})|_{X/O_2(X)} = id|_{X/O_2(X)}$.

According to Lemma 2.7, we have $\vartheta \operatorname{conj}(y^{-1}) \in \operatorname{Inn}(X)$, which implies that $\vartheta \in \operatorname{Inn}(X)$.

If $xy^{-1} \in O_2(X)$, then $x \in O_2(X)$. As a result, we have

$$\vartheta$$
conj $(x^{-1})|_{X/O_2(X)} = id|_{X/O_2(X)}$.

In addition, we can see that

$$\vartheta \operatorname{conj}(x^{-1})|_{O_2(X)} = \operatorname{id}|_{O_2(X)},$$

and

$$\theta$$
conj $(x^{-1})|_P = id|_P$.

Using Lemma 2.7, we have $\vartheta \operatorname{conj}(x^{-1}) \in \operatorname{Inn}(X)$ and thus $\vartheta \in \operatorname{Inn}(X)$. Hence, in either case, we have $\vartheta \in \operatorname{Inn}(X)$.

Remark 3.2. The requirement that X/F(X) does not have a chief factor isomorphic to C_2 cannot be omitted. For instance, with the assumption that $\operatorname{Out}_c(X) \cap \operatorname{Out}_{\operatorname{Col}}(X)$ is of even order, Marciniak and Roggenkamp [11] constructed a group $X = (C_2^4 \times C_3) \rtimes C_2^3$.

Theorem 3.3. Let $X = O_{2'}(X) \rtimes P$ be a semidirect product of a normal 2-complement $O_{2'}(X)$ by a Sylow 2-subgroup P. If m^3 is conjugate to m or m^{-1} , for all $m \in P$, then $\operatorname{Out}_{\mathbb{Z}}(X) = 1$, that is, X has the normalizer property.

Proof. To demonstrate that the assertion is true for X, we need only prove that $\operatorname{Aut}_{\mathbb{Z}}(X) \subseteq \operatorname{Inn}(X)$. Suppose that $\vartheta \in \operatorname{Aut}_{\mathbb{Z}}(X)$. It follows that for all $x \in X$, there exists $w \in N_{\operatorname{U}(\mathbb{Z}X)}(X)$ satisfies $x^{\vartheta} = w^{-1}xw$. We suppose the augmentation map as follows:

$$\epsilon: \mathbb{Z}X \to \mathbb{Z}(\sum_{x \in X} r_x x \mapsto \sum_{x \in X} r_x),$$

where $r_x \in \mathbb{Z}$ for any $x \in X$. Then we have $\epsilon(w) = 1$ or -1 since $w \in U(\mathbb{Z}X)$. It is evident that $\vartheta = \operatorname{conj}(w) = \operatorname{conj}(-w)$. Hence, we can assume that $\epsilon(w) = 1$.

For $X/O_{2'}(X)$, we use the bar notation for the elements and subgroups. Namely, we denote $\bar{x} := xO_{2'}(X)$, $\bar{U} := UO_{2'}(X)/O_{2'}(X)$, for any $x \in X$, $U \leq X$, respectively. Specifically, we have $\bar{X} := X/O_{2'}(X)$.

Denote

$$\rho: \mathbb{Z}X \to \mathbb{Z}\bar{X} \, (\sum_{x \in Y} r_x x \mapsto \sum_{x \in Y} r_x \bar{x})$$

the natural homomorphism for $\mathbb{Z}X$ to $\mathbb{Z}\bar{X}$.

Claim 1. Notation as above, there exists an $h \in X$ satisfying $\rho(w) = \bar{h}$ and $\vartheta|_{\bar{X}} = \text{conj}(h)|_{\bar{X}}$.

By $w \in N_{\mathrm{U}(\mathbb{Z}X)}(X)$, then $\rho(w) \in N_{\mathrm{U}(\mathbb{Z}\bar{X})}(\bar{X})$. According to Lemma 2.8, $O_{2'}(X)^{\vartheta} = O_{2'}(X)$ and $\vartheta|_{\bar{X}} \in \mathrm{Aut}(\bar{X})$. Since for any $x \in X$, $x^{\vartheta} = w^{-1}xw$, so

$$\bar{x}^{\theta|\bar{x}} = \overline{w^{-1}xw} = \rho(w^{-1}xw) = \rho(w)^{-1}\bar{x}\rho(w). \tag{3.1}$$

Therefore, $\vartheta|_{\bar{X}}$ is induced by $\rho(w)$ via conjugation, namely, $\vartheta|_{\bar{X}} \in \operatorname{Aut}_{\mathbb{Z}}(\bar{X})$. According to Lemma 2.3, we have $\vartheta|_{\bar{X}} \in \operatorname{Inn}(\bar{X})$. It follows that there is a $y \in X$ satisfying $\vartheta|_{\bar{X}} = \operatorname{conj}(\bar{y})|_{\bar{X}}$, which implies that $\bar{x}^{\vartheta|_{\bar{X}}} = \bar{x}^{\rho(w)} = \bar{x}^{\bar{y}}$ for any $\bar{x} \in \bar{X}$. Then, $\rho(w)\bar{y}^{-1} \in \operatorname{Z}(\operatorname{U}(\mathbb{Z}\bar{X}))$. Moreover, for all $m \in P$, $\bar{X} \cong P$ and m^3 is conjugate to m or m^{-1} . According to Lemma 2.9, it is trivial for all central units of $\mathbb{Z}(\bar{X})$. Hence, there is a central element \bar{z} of \bar{X} satisfying $\rho(w)\bar{y}^{-1} = \bar{z}$. Denote by $\bar{h} = \overline{zy}$. Therefore, $\rho(w) = \bar{h}$. According to Eq (3.1), we obtain

$$\vartheta|_{\bar{X}} = \operatorname{conj}(h)|_{\bar{X}}. \tag{3.2}$$

Claim 2. θ conj $(h^{-1})|_{O_{2'}(X)} \in Aut_{Col}(O_{2'}(X)).$

For any $k \in O_{2'}(X)$, we have $k^{\vartheta} = w^{-1}kw$. Since $w \in N_{U(\mathbb{Z}X)}(X)$ and Lemma 2.8, this implies that $w^{-1}kw$ and k are conjugate in X. Therefore, there exists a $g \in X$ satisfying $k^{\vartheta} = k^{g}$. But $O_{2'}(X) \preceq X$, so we get that $k^{\vartheta} \in O_{2'}(X)$. Then, it follows that $\vartheta|_{O_{2'}(X)} \in \operatorname{Aut}(O_{2'}(X))$ and $\vartheta \operatorname{conj}(h^{-1})|_{O_{2'}(X)} \in \operatorname{Aut}(O_{2'}(X))$. Hence, we need to check that $\vartheta \operatorname{conj}(h^{-1})|_{O_{2'}(X)} \in \operatorname{Aut}_{\operatorname{Col}}(O_{2'}(X))$. Suppose that $p \in \pi(O_{2'}(X))$ and $P \in \operatorname{Syl}_{p}(O_{2'}(X))$. Consequently, according to Lemma 2.10, there is a $p \in O_{2'}(X)$ satisfying

$$\vartheta \operatorname{conj}(h^{-1})|_{P} = \operatorname{conj}(b)|_{P} \tag{3.3}$$

Accordingly, $\vartheta \operatorname{conj}(h^{-1})|_{O_{2'}(X)} \in \operatorname{Aut}_{\operatorname{Col}}(O_{2'}(X))$, since the Eq (3.3) holds.

Claim 3. $\vartheta \in \text{Inn}(X)$.

Write $\psi := \theta \operatorname{conj}((bh)^{-1})$. By equation (3.2), we get that

$$\psi|_{X/O_{2'}(X)} = \mathrm{id}|_{X/O_{2'}(X)}. \tag{3.4}$$

Since $\vartheta \in \operatorname{Aut}_{\mathbb{Z}}(X)$, this implies that $\psi = \vartheta \operatorname{conj}((bh)^{-1}) \in \operatorname{Aut}_{\mathbb{Z}}(X)$. According to Lemma 2.11, $\psi^2 \in \operatorname{Inn}(X)$. We may suppose that ψ is a 2-element. So is $\psi|_{O_{2'}(X)}$. Note that

$$\psi|_{O_{2'}(X)} = \rho \operatorname{conj}(h^{-1})\operatorname{conj}(b^{-1})|_{O_{2'}(X)} \in \operatorname{Aut}_{\operatorname{Col}}(O_{2'}(X)).$$

By Lemma 2.12 and $\psi|_{O_{2'}(X)}$ being a 2-element, we deduce that

$$\psi|_{O_{2'}(X)} = \mathrm{id}|_{O_{2'}(X)}.\tag{3.5}$$

Now by Lemma 2.7, Eqs (3.4) and (3.5) yield that $\psi|_{X/O_2(Z(O_{2'}(X)))} = \mathrm{id}|_{X/O_2(Z(O_{2'}(X)))}$. Since $O_{2'}(X)$ is a 2'-group, it follows that $\psi = \mathrm{id}$, that is, $\vartheta \mathrm{conj}((bh)^{-1}) = \mathrm{id}$. Hence $\vartheta \in \mathrm{Inn}(X)$.

Corollary 3.4. Let X have a Sylow 2-subgroup of order 2. Then X has the normalizer property (see [10]).

Proof. According to Burnside's theorem, there is a normal 2-complement $O_{2'}(X)$ of X. Then the consequence is immediate from Theorem 3.3.

Theorem 3.5. Let X be an extension of a centerless finite group A by a 2-group P, where $\operatorname{Aut}_{\operatorname{Col}}(A) = \operatorname{Inn}(A)$. If m^3 is conjugate to m or m^{-1} , for all $m \in P$, then $\operatorname{Out}_{\mathbb{Z}}(X) = 1$.

Proof. Let $\vartheta \in \operatorname{Aut}_{\mathbb{Z}}(X)$ be a p-element; we will show that $\vartheta \in \operatorname{Inn}(X)$. Since $X/A \cong P$ has proofs similar to those of Claim 1 and Claim 2 in Theorem 3.3, then there exists some $h \in X$ such that $\vartheta|_{X/A} = \operatorname{conj}(h)|_{X/A}$ and $\vartheta \operatorname{conj}(h^{-1})|_A \in \operatorname{Aut}_{\operatorname{Col}}(A)$. Since $\operatorname{Aut}_{\operatorname{Col}}(A) = \operatorname{Inn}(A)$, we know that $\vartheta \operatorname{conj}(h^{-1})|_A \in \operatorname{Inn}(A)$. Thus there exists some $a \in A$ satisfying

$$\vartheta \operatorname{conj}(h^{-1})|_{A} = \operatorname{conj}(a)|_{A}. \tag{3.6}$$

Write $\psi := \vartheta \operatorname{conj}((ah)^{-1})$. By $\vartheta|_{X/A} = \operatorname{conj}(h)|_{X/A}$, we obtain

$$\psi|_{X/A} = \mathrm{id}|_{X/A}.\tag{3.7}$$

By Eq (3.6), we have

$$\psi|_A = \mathrm{id}|_A. \tag{3.8}$$

Now by Lemma 2.7, Eqs (3.7) and (3.8) yield that $\psi|_{X/O_p(Z(A))} = \mathrm{id}|_{X/O_p(Z(A))}$. Since Z(A) = 1, it follows that $\psi = \mathrm{id}$, that is, $\vartheta \mathrm{conj}((ah)^{-1}) = \mathrm{id}$. Hence $\vartheta \in \mathrm{Inn}(X)$. We are done.

Corollary 3.6. Let *X* be an extension of a finite complete group *F* by a cyclic group *P* of order 4 or a quaternion group *P* of order 8. Then $Out_{\mathbb{Z}}(X) = 1$.

Proof. Since F is a complete group, then Z(F) = 1 and Aut(F) = Inn(F). Since P is a cyclic group of order 4 or $P = \langle a, b | a^4 = 1, b^2 = a^2, b^{-1}ab = a^3 \rangle$, which implies that m^3 is conjugate to m or m^{-1} , for all $m \in P$. Thus the result is immediate from Theorem 3.5.

Corollary 3.7. Let X be an extension of an almost simple group H by a cyclic group P of order 4 or a quaternion group P of order 8. Then $Out_{\mathbb{Z}}(X) = 1$.

Proof. Since *H* is an almost simple group, then there exists some non-abelian simple group *A* satisfying $A \le H \le \operatorname{Aut}(A)$. Obviously Z(H) = 1. Next we show that $\operatorname{Aut}_{\operatorname{Col}}(H) = \operatorname{Inn}(H)$. By Lemma 2.13, there exists a prime $q \mid |A|$ such that *q*-central automorphisms of *A* are inner. Let $\vartheta \in \operatorname{Aut}_{\operatorname{Col}}(H)$ and $Q \in \operatorname{Syl}_q(H)$. By definition, then there exists some $h \in H$ satisfying $\vartheta|_Q = \operatorname{conj}(h)|_Q$. According to Lemma 2.14, we may assume that $\vartheta|_Q = \operatorname{id}|_Q$. Set $D = Q \cap A$; thus, $D \in \operatorname{Syl}_q(A)$ and $\vartheta|_D = \operatorname{id}|_D$. Note that $A \le H$. By Lemma 2.3, we deduce that $\vartheta|_A$ is a *q*-central automorphism of *A*. Hence, $\vartheta|_A \in \operatorname{Inn}(A)$, that is, $\vartheta|_A = \operatorname{conj}(a)|_A$ for some $a \in A$. Set $\psi = \vartheta \operatorname{conj}(a^{-1})$, then $\psi|_A = \operatorname{id}|_A$. Again note that *A* is a nonabelian simple group; we obtain $C_H(A) = C_{\operatorname{Aut}(A)}(A) \cap H = 1$ because *A* identifies with $\operatorname{Inn}(A)$. Thus, for any $y \in H$ and $x \in A$, we have $(y^{-1}xy)^{\psi} = (y^{-1})^{\psi}xy^{\psi} = y^{-1}xy$; this implies that $y^{\psi}y^{-1} \in C_H(A) = 1$, i.e., $\psi = \operatorname{id}$. Hence, $\vartheta \in \operatorname{Inn}(H)$. So this result is immediate from Theorem 3.5.

Example 3.8. Let *X* be an extension of a simple group *A* by a cyclic group *P* of order 4 or a quaternion group *P* of order 8. Then $Out_{\mathbb{Z}}(X) = 1$.

Proof. According to the abelianity of the simple group, the proof splits into two cases.

- (1) Let A be a non-abelian simple group. This is a direct consequence of Corollary 3.7.
- (2) Let A be an abelian simple group. It is known that A is a cyclic group of order p, where p is a prime. If p = 2, then X is a 2-group. By the definition of Coleman automorphisms, we obtain that $\text{Out}_{\text{Col}}(X) = 1$; this implies that $\text{Out}_{\mathbb{Z}}(X) = 1$. If $p \neq 2$, the assertion is a direct consequence of Theorem 3.3.

Corollary 3.9. Let X be an extension of a symmetric group Σ_i ($i \ge 3$) by a cyclic group P of order 4 or a quaternion group P of order 8. Then $\mathrm{Out}_{\mathbb{Z}}(X) = 1$.

Proof. If $i \ge 3$ and $i \ne 6$, then Σ_i is a complete group. Hence, the assertion is immediate from Corollary 3.6. If i = 6, then Σ_6 is an almost simple group. Hence, the assertion is immediate from Corollary 3.7.

4. Conclusions

This paper continues the study of the normalizer problem of finite groups with prescribed 2-subgroups. We have proven that X has the normalizer property, if X is an extension of some centerless finite groups by 2-groups with trivial central units or X is a semidirect product of a finite group of odd order by a 2-group with trivial central units. Additionally, we have shown that under some conditions class-preserving Coleman automorphisms of 2-power order of some finite groups are inner. In particular, the normalizer property holds for these groups.

Author contributions

Liang Zhang: Conceptualization, Writing-original draft; Jinke Hai: Funding acquisition, Editing, Writing-original draft. All authors have read and agreed to the published version of the manuscript.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

Supported by NSF of China (12471021).

Conflict of interest

The authors declare there are no conflicts of interest.

References

- 1. S. K. Sehgal, *Units in integral group rings*, Longman Scientific & Technical, 1993.
- 2. D. B. Coleman, On the modular group ring of a *p*-group, *Proc. Amer. Math. Soc.*, **5** (1964), 511–514. https://doi.org/10.2307/2034735
- 3. S. Jackowski, Z. S. Marciniak, Group automorphisms inducing the identity map on cohomology, *J. Pure Appl. Algebra*, **44** (1987), 241–250. https://doi.org/10.1016/0022-4049(87)90028-4
- 4. M. Hertweck, A counterexample to the isomorphism problem for integral group rings, *Ann. Math.*, **154** (2001), 115–138. https://doi.org/10.2307/3062112

- 5. J. K. Hai, J. D. Guo, The normalizer property for the integral group ring of the wreath product of two symmetric groups S_k and S_n , Commun. Algebra, **45** (2017), 1278–1283. https://doi.org/10.1080/00927872.2016.1175613
- 6. A. Van Antwerpen, Coleman automorphisms of finite groups and their minimal normal subgroups, *J. Pure Appl. Algebra*, **222** (2018), 3379–3394. https://doi.org/10.1016/j.jpaa.2017.12.013
- 7. M. Hertweck, Class-preserving Coleman automorphisms of finite groups, *Monatsh. Math.*, **136** (2002), 1–7. https://doi.org/10.1007/s006050200029
- 8. M. Hertweck, Local analysis of the normalizer problem, *J. Pure Appl. Algebra*, **163** (2001), 259–276. https://doi.org/10.1016/S0022-4049(00)00167-5
- 9. M. Hertweck, E. Jespers, Class-preserving automorphisms and the normalizer property for Blackburn groups, *J. Group Theory*, **12** (2009), 157–169. https://doi.org/10.1515/JGT.2008.068
- 10. M. Mazur, Automorphisms of finite groups, *Commun. Algebra*, **22** (1994), 6259–6271. https://doi.org/10.1080/00927879408825187
- 11. Z. S. Marciniak, K. W. Roggenkamp, The normalizer of a finite group in its integral group ring and Čech cohomology, In: *Algebra-representation theory*, 2001, 159–188.
- 12. H. Kurzweil, B. Stellmacher, *The theory of finite groups: An introduction*, New York: Springer-Verlag, 2004. https://doi.org/10.1007/b97433
- 13. M. Hertweck, W. Kimmerle, Coleman automorphisms of finite groups, *Math. Z.*, **242** (2002), 203–215. https://doi.org/10.1007/s002090100318
- 14. T. Petit Lobão, C. Polcino Milies, The normalizer property for integral group rings of Frobenius groups, *J. Algebra*, **256** (2002), 1–6. https://doi.org/10.1016/S0021-8693(02)00156-4

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)