Bipolar fuzzy sets (BPFs) provide a suitable framework for knowledge representation if some data contains imprecise and ambiguous information. In this manuscript, the lower and upper bounds of the Seidel Laplacian energy of a bipolar fuzzy graph were examined with suitable illustrative examples. Moreover, the energy of a bipolar fuzzy graph, the Laplacian energy of a bipolar fuzzy graph, and the Seidel Laplacian energy of a bipolar fuzzy graph were examined. Furthermore, to address complex multi-criteria decision-making (MCDM) problems involving uncertainty and bipolar information, we proposed novel score functions: The score function, improved score function, and double improved score function. These functions were demonstrated through examples to effectively handle ambiguity and duality in decision-makers' inputs represented via bipolar fuzzy sets.
Citation: Sivaranjani Krishnaraj, O.V. Shanmuga Sundaram, Prasantha Bharathi Dhandapani, Taha Radwan. Seidel Laplacian energy of bipolar fuzzy graphs and enhanced score functions for decision-making applications[J]. AIMS Mathematics, 2025, 10(7): 16865-16888. doi: 10.3934/math.2025758
Bipolar fuzzy sets (BPFs) provide a suitable framework for knowledge representation if some data contains imprecise and ambiguous information. In this manuscript, the lower and upper bounds of the Seidel Laplacian energy of a bipolar fuzzy graph were examined with suitable illustrative examples. Moreover, the energy of a bipolar fuzzy graph, the Laplacian energy of a bipolar fuzzy graph, and the Seidel Laplacian energy of a bipolar fuzzy graph were examined. Furthermore, to address complex multi-criteria decision-making (MCDM) problems involving uncertainty and bipolar information, we proposed novel score functions: The score function, improved score function, and double improved score function. These functions were demonstrated through examples to effectively handle ambiguity and duality in decision-makers' inputs represented via bipolar fuzzy sets.
| [1] | F. Harary, Graph theory, Massachusetts: Addison Wesley, 1969. |
| [2] | A. Bondy, S. R. Murthy, Graph theory with applications, New York: North Holland, 1976. |
| [3] | I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz Graz., 103 (1978), 1–22. |
| [4] | I. Gutman, B. Furtala, Graph energies and their applications, B. Acad. Serbe Sci. et des Arts, 44 (2019), 29–45. |
| [5] | Z. Milovanovic, E. I. Milovanovic, A. Zakic, A short note on graph energy, Match-Commun. Math. Co., 72 (2014), 179–182. |
| [6] |
A. S. Sasipriya, H. Kumar, Energy of fuzzy, intuitionistic fuzzy, and neutrosophic graphs in decision making–a literature review, Int. J. Neutrosophic Sci., 25 (2025), 246–257. https://doi.org/10.54216/IJNS.250123 doi: 10.54216/IJNS.250123
|
| [7] |
S. Yin, Y. Zhao, A. Hussain, K. Ullah, Comprehensive evaluation of rural regional integrated clean energy systems considering multi-subject interest coordination with Pythagorean fuzzy information, Eng. Appl. Artif. Intel., 138 (2024), 109342. https://doi.org/10.1016/j.engappai.2024.109342 doi: 10.1016/j.engappai.2024.109342
|
| [8] |
G. Demir, Fuzzy multi-criteria decision-making based security management: Risk assessment and countermeasure selection in smart cities, Knowl. Decis. Syst. Appl., 1 (2025), 70–91. https://doi.org/10.59543/kadsa.v1i.13701 doi: 10.59543/kadsa.v1i.13701
|
| [9] |
S. Moslem, A novel parsimonious spherical fuzzy analytic hierarchy process for sustainable urban transport solutions, Eng. Appl. Artif. Intel., 128 (2024), 107447. https://doi.org/10.1016/j.engappai.2023.107447 doi: 10.1016/j.engappai.2023.107447
|
| [10] |
S. Yin, Y. Yu, N. Zhang, The effect of digital green strategic orientation on digital green innovation performance: From the perspective of digital green business model innovation, SAGE Open, 2024, 1–23. https://doi.org/10.1177/21582440241261130 doi: 10.1177/21582440241261130
|
| [11] |
T. Mahmood, M. Asif, U. U. Rehman, J. Ahmmad, T-bipolar soft semigroups and related results, Spectrum Mech. Eng. Oper. Res., 1 (2024), 258–271. https://doi.org/10.31181/smeor11202421 doi: 10.31181/smeor11202421
|
| [12] |
M. Akram, Bipolar fuzzy graphs, Inform. Sciences, 181 (2011), 5548–5564. https://doi.org/10.1016/j.ins.2011.07.037 doi: 10.1016/j.ins.2011.07.037
|
| [13] | S. Naz, S. Ashraf, F. Karaaslan, Energy of a bipolar fuzzy graph and its application in decision making, Ital. J. Pure Appl. Math., 40 (2018), 339–352. |
| [14] |
M. A. Alghamdi, N. O. Alshehri, M. Akram, Multi-criteria decision-making methods in bipolar fuzzy environment, Int. J. Fuzzy Syst., 20 (2018), 2057–2064. https://doi.org/10.1007/s40815-018-0499-y doi: 10.1007/s40815-018-0499-y
|
| [15] |
S. N. F. Mohamad, R. Hasni, F. Smarandache, B. Yusoff, Novel concept of energy in bipolar single-valued neutrosophic graphs with applications, Axioms, 10 (2021), 172. https://doi.org/10.3390/axioms10030172 doi: 10.3390/axioms10030172
|
| [16] |
M. Akram, A. Luqman, A new decision-making method based on bipolar neutrosophic directed hypergraphs, J. Appl. Math. Comput., 57 (2018), 547–575. https://doi.org/10.1007/s12190-017-1121-4 doi: 10.1007/s12190-017-1121-4
|
| [17] |
N. Murugesan, O. V. S. Sundaram, Computation of regular expression derivatives, Int. J. Comput. Sci. Mat., 7 (2016), 201–211. https://doi.org/10.1504/IJCSM.2016.077858 doi: 10.1504/IJCSM.2016.077858
|
| [18] |
S. Kavitha, G. Jayalalitha, K. Sivaranjani, Enhanced security in public key cryptography: A novel approach combining Gaussian graceful labeling and NTRU public key cryptosystem, EAI Endorsed Trans. Internet Thing., 10 (2024), 1–7. https://doi.org/10.4108/eetiot.4992 doi: 10.4108/eetiot.4992
|
| [19] | S. Kavitha, G. Jayalalitha, Gaussian graceful labeling, Eur. Chem. Bull., 12 (2023), 8438–8456. |
| [20] |
R. Hemalatha, K. Somasundaram, Sombor index of edge corona product of some classes of graphs, SE. Asian J. Math. Math. Sci., 18 (2022), 307–316. https://doi.org/10.56827/SEAJMMS.2022.1803.25 doi: 10.56827/SEAJMMS.2022.1803.25
|
| [21] |
K. Umapathy, B. Palanivelu, V. Leiva, P. B. Dhandapani, C. Castro, On fuzzy and crisp solutions of a novel fractional pandemic model, Fractal Fract., 7 (2023), 528. https://doi.org/10.3390/fractalfract7070528 doi: 10.3390/fractalfract7070528
|
| [22] |
K. Kalaichelvan, S. Ramalingam, P. B. Dhandapani, V. Leiva, C. Castro, Optimizing the economic order quantity using fuzzy theory and machine learning applied to a pharmaceutical framework, Mathematics, 12 (2024), 819. https://doi.org/10.3390/math12060819 doi: 10.3390/math12060819
|
| [23] |
P. Aruchamy, P. Mahagaonkar, G. Ganesan, P. B. Dhandapani, N. Yahya, Identifying the fetal heart rate and gender with intuitionistic fuzzy total edge magic labelling, Jambura J. Biomath., 6 (2025), 159–165. https://doi.org/10.37905/jjbm.v6i2.30951 doi: 10.37905/jjbm.v6i2.30951
|
| [24] | H. S. Ramane, R. B. Jummannaver, I. Gutman, Seidel Laplacian energy of graphs, Int. J. Appl. Graph Theory, 1 (2017), 74–82. |
| [25] |
K. Sivaranjani, O. V. S. Sundaram, K. Akalyadevi, Seidel Laplacian energy of fuzzy graphs, EAI Endorsed Trans. Energy Web, 11 (2024), 1–6. https://doi.org/10.4108/ew.5297 doi: 10.4108/ew.5297
|
| [26] |
K. Sivaranjani, O. V. S. Sundaram, An analysis of the Seidel Laplacian energy of a fuzzy intuitionistic system, Suranaree J. Sci. Tech., 32 (2024), 1–14. https://doi.org/10.55766/sujst7197 doi: 10.55766/sujst7197
|
| [27] |
C. T. Chen, Extension of the TOPSIS for group decision making under fuzzy Environment, Fuzzy Set. Syst., 114 (2000), 1–9. https://doi.org/10.1016/S0165-0114(97)00377-1 doi: 10.1016/S0165-0114(97)00377-1
|
| [28] |
G. R. Jahanshahloo, L. F. Hosseinzadeh, M. Izadikhah, Extension of the TOPSIS method for decision-making problems with fuzzy data, Appl. Math. Comput., 181 (2006), 1544–1551. https://doi.org/10.1016/j.amc.2006.02.057 doi: 10.1016/j.amc.2006.02.057
|
| [29] | C. L. Hwang, K. S. Yoon, Multiple attribute decision making, methods and applications, Berlin: Springer-Verlag, 1981. |
| [30] |
E. Triantaphyllou, C. T. Lin, Development and evaluation of five fuzzy multiattribute decision making methods, Int. J. Approx. Reason., 14 (1996), 281–310. https://doi.org/10.1016/0888-613X(95)00119-2 doi: 10.1016/0888-613X(95)00119-2
|
| [31] | T. Mahmood, S. Abdullah, M. Bilal, S. Rashid, Multiple criteria decision making based on bipolar valued fuzzy sets, Ann. Fuzzy Math. Inf., 11 (2016), 1003–1009. |