Research article

$ \eta $-Ricci-Bourguignon solitons in an almost pseudo-$ W_8 $ flat and $ M $-projective flat symmetric Lorentzian Kähler space-time manifold

  • Received: 31 May 2025 Revised: 04 July 2025 Accepted: 17 July 2025 Published: 28 July 2025
  • MSC : 35C08, 53C50, 53C55

  • In this paper, we investigated $ \eta $-Ricci-Bourguignon solitons within the framework of almost pseudo-$ W_8 $ flat and $ M $-projective flat symmetric Lorentzian Kähler space-time manifolds that satisfy the Einstein field equation with and without a cosmological constant. We established necessary and sufficient conditions under which such solitons exhibit expanding, shrinking, or steady behavior. Specifically, we derived constraints on the parameters that govern the soliton dynamics. Furthermore, we extended the results to the case of an $ \eta $-Ricci-Bourguignon soliton for dark fluid, dust fluid, stiff matter, and radiational fluid. Our results contribute to the broader understanding of geometric flows and their interaction with the structure of Lorentzian Kähler geometry using partial differential equations.

    Citation: B. B. Chaturvedi, Prabhawati Bhagat, Mohammad Nazrul Islam Khan. $ \eta $-Ricci-Bourguignon solitons in an almost pseudo-$ W_8 $ flat and $ M $-projective flat symmetric Lorentzian Kähler space-time manifold[J]. AIMS Mathematics, 2025, 10(7): 16837-16864. doi: 10.3934/math.2025757

    Related Papers:

  • In this paper, we investigated $ \eta $-Ricci-Bourguignon solitons within the framework of almost pseudo-$ W_8 $ flat and $ M $-projective flat symmetric Lorentzian Kähler space-time manifolds that satisfy the Einstein field equation with and without a cosmological constant. We established necessary and sufficient conditions under which such solitons exhibit expanding, shrinking, or steady behavior. Specifically, we derived constraints on the parameters that govern the soliton dynamics. Furthermore, we extended the results to the case of an $ \eta $-Ricci-Bourguignon soliton for dark fluid, dust fluid, stiff matter, and radiational fluid. Our results contribute to the broader understanding of geometric flows and their interaction with the structure of Lorentzian Kähler geometry using partial differential equations.



    加载中


    [1] T. Aubin, M$\acute{e}$triques riemanniennes et courbure, J. Differ. Geom., 4 (1970), 383–424.
    [2] A. M. Blaga, Solitons and geometrical structures in a perfect fluid spacetime, Rocky Mountain J. Math., 50 (2020), 41–53. https://doi.org/10.1216/rmj.2020.50.41 doi: 10.1216/rmj.2020.50.41
    [3] J. P. Bourguignon, Ricci curvature and Einstein metrics, In: D. Ferus, W. Kühnel, U. Simon, B. Wegner, Global differential geometry and global analysis, Lecture Notes in Mathematics, Berlin: Springer, 838 (1981), 42–63. https://doi.org/10.1007/BFb0088841
    [4] G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza, L. Mazzieri, The Ricci-Bourguignon flow, Pacific J. Math., 287 (2015), 337–370. https://doi.org/10.2140/pjm.2017.287.337 doi: 10.2140/pjm.2017.287.337
    [5] B. B. Chaturvedi, P. Bhagat, M. N. I. Khan, Novel theorems for a Bochner flat Lorentzian Kähler space-time manifold with $\eta$-Ricci-Yamabe solitons, Chaos Soliton. Fract.: X, 11 (2023), 100097. https://doi.org/10.1016/j.csfx.2023.100097 doi: 10.1016/j.csfx.2023.100097
    [6] B. B. Chaturvedi, K. B. Kaushik, P. Bhagat, M. N. I. Khan, Characterization of solitons in a pseudo-quasi-conformally flat and pseudo- $W_8$ flat Lorentzian Kähler space-time manifolds, AIMS Math., 9 (2024), 19515–19528. https://doi.org/10.3934/math.2024951 doi: 10.3934/math.2024951
    [7] B. B. Chaturvedi, P. Bhagat, $\eta$-Einstein solitons in a Bochner flat Lorentzian Kähler manifold, Palestine J. Math., 13 (2024), 983–992.
    [8] P. H. Chavanis, Cosmology with a stiff matter era, Phys. Rev. D, 92 (2015), 103004. https://doi.org/10.1103/PhysRevD.92.103004 doi: 10.1103/PhysRevD.92.103004
    [9] A. W. Cunha, R. Lemos, F. Roing, On Ricci-Bourguignon solitons: triviality, uniqueness and scalar curvature estimates, J. Math. Anal. Appl., 526 (2023), 127333. https://doi.org/10.1016/j.jmaa.2023.127333 doi: 10.1016/j.jmaa.2023.127333
    [10] U. C. De, A. K. Gazi, On almost pseudo conformally symmetric manifolds, Demonstr. Math., 42 (2009), 869–886. https://doi.org/10.1515/dema-2009-0419 doi: 10.1515/dema-2009-0419
    [11] Y. Dogru, $\eta$-Ricci-Bourguignon solitons with a semi-symmetric metric and semi-symmetric non-metric connection, AIMS Math., 8 (2023), 11943–11952. https://doi.org/10.3934/math.2023603 doi: 10.3934/math.2023603
    [12] S. Dwivedi, Some results on Ricci-Bourguignon solitons and almost solitons, Can. Math. Bull., 64 (2021), 591–604. https://doi.org/10.4153/S0008439520000673 doi: 10.4153/S0008439520000673
    [13] R. S. Hamilton, Tree-manifolds with positive Ricci curvature, J. Differ. Geom., 17 (1982), 255–306.
    [14] S. Mallick, U. C. De, Space times admitting $W_2$-curvature tensor, Int. J. Geom. Methods Mod. Phys., 11 (2014), 1450030. https://doi.org/10.1142/S0219887814500303 doi: 10.1142/S0219887814500303
    [15] B. O'neill, Semi-Riemannian geometry with applications to relativity, 1 Ed., Vol. 103, New York: Academic press, 1983.
    [16] P. Pandey, B. B. Chaturvedi, On a Lorentzian complex space form Natl. Acad. Sci. Lett., 43 (2020), 351–353. https://doi.org/10.1007/s40009-020-00874-7 doi: 10.1007/s40009-020-00874-7
    [17] G. P. Pokhariyal, R. S. Mishra, Curvature tensors and their relativistic significance (Ⅱ), Yokohama Math. J., 19 (1971), 97–103.
    [18] G. P. Pokhariyal, Relativistic significance of curvature tensors, Int. J. Math. Math. Sci., 5 (1982), 133–139. https://doi.org/10.1155/S0161171282000131 doi: 10.1155/S0161171282000131
    [19] B. Prasad, R. P. S. Yadav, S. N. Pandey, Pseudo $W_8$-curvature tensor $\tilde{W}_8$ on a Riemannian manifold, J. Prog. Sci., 9 (2018), 35–43.
    [20] M. D. Siddiqi, M. A Akyol, $\eta$-Ricci-Yamabe solitons on Riemannian submersions from Riemannian submanifold, arXiv, 2020. https://doi.org/10.48550/arXiv.2004.14124
    [21] M. D. Siddiqi, S. A. Siddiqui, Conformal Ricci soliton and geometrical structure in a perfect fluid spacetime, Int. J. Geom. Methods Mod. Phys., 17 (2020), 2050083. https://doi.org/10.1142/S0219887820500838 doi: 10.1142/S0219887820500838
    [22] Y. Soylu, Ricci-Bourguignon solitons and almost solitons with concurrent vector field, Differ. Geom. Dyn. Syst., 24 (2022), 191–200.
    [23] S. K. Srivastava, General relativity and cosmology, Prentice-Hall of India Private Limited, 2008.
    [24] H. Stephani, General relativity: an introduction to the theory of gravitational field, Cambridge university press, 1990.
    [25] M. Traore, H. M. Taştan, S. G. Aydm, On almost $\eta$-Ricci-Bourguignon solitons, Miskolc. Math. Notes, 25 (2024), 493508. https://doi.org/10.18514/MMN.2024.4378 doi: 10.18514/MMN.2024.4378
    [26] M. Traore, H. M. Taştan, On sequential warped product $\eta$-Ricci-Bourguignon solitons, Filomat, 38 (2024), 6785–6797.
    [27] M. Traore, H. M. Taştan, S. G. Aydm, Some characterizations on gradient almost $\eta$-Ricci-Bourguignon solitons, Bol. Soc. Paran. Mat., 43 (2025), 1–12. https://doi.org/10.5269/bspm.70710 doi: 10.5269/bspm.70710
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(477) PDF downloads(33) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog