Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Opinion paper Special Issues

Food security as a function of Sustainable Intensification of Crop Production

  • Received: 26 January 2016 Accepted: 27 May 2016 Published: 25 January 2016
  • The challenge to eradicate hunger and establish food security across all its four pillars (availability, accessibility, health and safety, and continuity) is ongoing. The actual situation in global food production leads most of the attention to improving accessibility and safety of food, particularly to vulnerable populations. However, in view of the growth in demand, which includes changes in preferences for example towards food of animal origin, availability and continuity will play larger roles in future. Food production needs to increase over the coming decades at challenging rates, while facing problems of degradation and reduced availability of natural resources for production such as soil and water, and facing increasing challenges from climate change. The actual trends in yield development suggest that a simple gradual improvement of production within the existing concepts will not provide a sustainable or feasible solution, and that more fundamental changes in the agricultural production paradigm are required to face these future challenges. The Sustainable Intensification represents such a change in paradigm in which high production levels are combined with sustainability. The concept of sustainable intensification, the rationale for it and its functional elements, represented by Conservation Agriculture, are presented in this paper.

    Citation: Theodor Friedrich, Amir Kassam. Food security as a function of Sustainable Intensification of Crop Production[J]. AIMS Agriculture and Food, 2016, 1(2): 227-238. doi: 10.3934/agrfood.2016.2.227

    Related Papers:

    [1] Joginder Paul, Mohammad Sajid, Naveen Chandra, Umesh Chandra Gairola . Some common fixed point theorems in bipolar metric spaces and applications. AIMS Mathematics, 2023, 8(8): 19004-19017. doi: 10.3934/math.2023969
    [2] Amer Hassan Albargi . Fixed point theorems for generalized contractions in F-bipolar metric spaces with applications. AIMS Mathematics, 2023, 8(12): 29681-29700. doi: 10.3934/math.20231519
    [3] Hasanen A. Hammad, Hassen Aydi, Choonkil Park . Fixed point approach for solving a system of Volterra integral equations and Lebesgue integral concept in FCM-spaces. AIMS Mathematics, 2022, 7(5): 9003-9022. doi: 10.3934/math.2022501
    [4] Senthil Kumar Prakasam, Arul Joseph Gnanaprakasam, Ozgur Ege, Gunaseelan Mani, Salma Haque, Nabil Mlaiki . Fixed point for an OgF-c in O-complete b-metric-like spaces. AIMS Mathematics, 2023, 8(1): 1022-1039. doi: 10.3934/math.2023050
    [5] Mohammed Shehu Shagari, Trad Alotaibi, OM Kalthum S. K. Mohamed, Arafa O. Mustafa, Awad A. Bakery . On existence results of Volterra-type integral equations via C-algebra-valued F-contractions. AIMS Mathematics, 2023, 8(1): 1154-1171. doi: 10.3934/math.2023058
    [6] Afrah Ahmad Noman Abdou . A fixed point approach to predator-prey dynamics via nonlinear mixed Volterra–Fredholm integral equations in complex-valued suprametric spaces. AIMS Mathematics, 2025, 10(3): 6002-6024. doi: 10.3934/math.2025274
    [7] Erdal Karapınar, Marija Cvetković . An inevitable note on bipolar metric spaces. AIMS Mathematics, 2024, 9(2): 3320-3331. doi: 10.3934/math.2024162
    [8] Menaha Dhanraj, Arul Joseph Gnanaprakasam, Gunaseelan Mani, Rajagopalan Ramaswamy, Khizar Hyatt Khan, Ola Ashour A. Abdelnaby, Stojan Radenović . Fixed point theorem on an orthogonal extended interpolative ψF-contraction. AIMS Mathematics, 2023, 8(7): 16151-16164. doi: 10.3934/math.2023825
    [9] Hasanen A. Hammad, Doha A. Kattan . Strong tripled fixed points under a new class of F-contractive mappings with supportive applications. AIMS Mathematics, 2025, 10(3): 5785-5805. doi: 10.3934/math.2025266
    [10] Hanadi Zahed, Zhenhua Ma, Jamshaid Ahmad . On fixed point results in F-metric spaces with applications. AIMS Mathematics, 2023, 8(7): 16887-16905. doi: 10.3934/math.2023863
  • The challenge to eradicate hunger and establish food security across all its four pillars (availability, accessibility, health and safety, and continuity) is ongoing. The actual situation in global food production leads most of the attention to improving accessibility and safety of food, particularly to vulnerable populations. However, in view of the growth in demand, which includes changes in preferences for example towards food of animal origin, availability and continuity will play larger roles in future. Food production needs to increase over the coming decades at challenging rates, while facing problems of degradation and reduced availability of natural resources for production such as soil and water, and facing increasing challenges from climate change. The actual trends in yield development suggest that a simple gradual improvement of production within the existing concepts will not provide a sustainable or feasible solution, and that more fundamental changes in the agricultural production paradigm are required to face these future challenges. The Sustainable Intensification represents such a change in paradigm in which high production levels are combined with sustainability. The concept of sustainable intensification, the rationale for it and its functional elements, represented by Conservation Agriculture, are presented in this paper.


    One of the most principal and primary part in fixed point theory is the underlying space as well as the contractive condition and the contractive mapping. In 1905, a French mathematician M. Fréchet [1] instigated the idea of metric space (MS), which performs a constructive role in the first result in this theory. Since then, there have been plenty of generalizations of MSs by eliminating or relaxing some axioms, altering the metric function or extracting the approach. Czerwik [2] replaced a number s1 on the right- side of triangular inequality of MS and presented the thought of b-metric spaces (b-MSs) in 1993. Branciari [3] introduced the groundbreaking concept of generalized metric spaces (GMSs) by modifying the triangle inequality of MS and replacing it with a weaker "quadrilateral inequality" involving three terms on the right-hand side. By relaxing the strict triangle inequality, Branciari encompassed a much broader range of "distances" than traditional metric spaces could handle. This enabled researchers to model and analyze relationships in various contexts that would not fit neatly into the classical metric framework. Jleli et al. [4] satisfied the triangle inequality in a function, which is continuous and established a new MS called F-metric space (F-MS). In the above generalizations of MSs, we identify the distance connecting the members of only one set. Hence, an inquiry occurs regarding distance joining the members of two disparate sets can be debated? Similar issues of determining distance can be encountered in distinct domains of the analysis. Moreover, Mutlu et al. [5] initiated a new MS named the bipolar metric space (bip MS) to encounter such problems. Rawat et al. [6] consolidated the above mentioned two creative ideas, especially bip MSs and F-MSs to initiate the conception of F-bipolar metric spaces (F-bip MSs). Alamri [7] harnessed the concept of this new space to secure further significant results in this context.

    On the other hand, the Banach Contraction Principle (BCP) [8] stands as a cornerstone of fixed point theory. It asserts that a self-mapping on a complete MS that satisfies a contraction condition possesses a unique fixed point. However, the mapping in BCP is inherently assumed to be continuous. A critical limitation of this principle lies in its inability to accommodate discontinuous self-mappings within its framework. This shortcoming was addressed by Kannan [9], who established a fixed point theorem that does not require continuity of the mapping. Building upon these foundational results, Reich [10] unified the approaches of Banach and Kannan, proving a more general theorem in 1971. Around the same time, Ćirić [11] introduced the concept of generalized contractions, offering further flexibility in the contractive conditions and significantly broadening the scope of fixed point theory. Eventually, Fisher [12] introduced a rational expression into the theory, further enriching the landscape of fixed point results. In the context of modern generalized MSs, Al-Mazrooei et al. [13] extended these ideas by proving fixed point theorems for rational contractions in F-MSs, thereby highlighting the adaptability of rational contractive conditions in more abstract settings. Within the framework of bip MSs, several researchers have significantly enriched the theory. Gürdal et al. [14] studied fixed points of α-ψ-contractive mappings, while Gaba et al. [15] introduced the concept of (α,BK)-contractions, expanding the control function approach. For more details in this direction, we recommend researchers to consult [16,17,18].

    The interplay between fixed point theory and integral equations extends far beyond pure mathematics, finding substantial applications in modern inverse problems, partial differential equations (PDEs), and image processing. Researchers such as Dong et al. [19] and Lin et al. [20], have applied nonlinear PDE models and level-set methods to imaging and inverse problems, where fixed point theory plays a crucial role in ensuring convergence and solution stability. Zhang and Hofmann [21] developed non-negativity preserving iterative regularization techniques for ill-posed problems, which align naturally with contractive-type mappings. Baravdish et al. [22] explored damped second-order flow models for image denoising, which can be linked to Volterra-type integral formulations analyzed via fixed point methods. Collectively, these studies highlight the synergy between fixed point theory, nonlinear integral equations, and modern applications in PDEs and computational imaging, emphasizing the relevance of generalized MSs such as F-bip MSs.

    In this work, we establish fixed point results for generalized contractions equipped with precisely defined control functions in the setting of F-bip MSs. Our approach not only broadens the scope of fixed point theory but also encapsulates several well-known results from the literature, which appear as particular instances of the theorems presented herein. To reinforce the significance and applicability of the theoretical framework, we provide a meaningful and non-trivial example. Beyond this, we apply our principal results to discuss the existence and uniqueness of solutions to Volterra integral equations, which are integral to modeling dynamic processes in various scientific domains. Moreover, the developed fixed point techniques are extended to homotopy theory, where they offer a powerful tool for studying continuous transformations between mappings, thereby contributing to a deeper understanding of topological invariants and the geometric structure of function spaces.

    The well-known Banach Contraction Principle [8] on complete metric space (CMS) is given as follows.

    Theorem 1. ([8]) Let T:(X,d)(X,d) and (X,d) be a CMS. If there exists θ[0,1) such that

    d(Ta,T)θd(a,),

    for all a,X, then there exists aX such that Ta=a that is unique.

    In [9], Kannan proved a result for the mapping, which is not certainly continuous in such way.

    Theorem 2. ([9]) Let T:(X,d)(X,d) and (X,d) be a CMS. If there exists θ[0,12) such that

    d(Ta,T)θ(d(a,Ta)+d(,T)),

    for all a,X, then there exists aX such that Ta=a that is unique.

    Reich [10] merged the above two fixed point results in this way.

    Theorem 3. Let T:(X,d)(X,d) and (X,d) be a CMS. If there exist θ1,θ2[0,1) such that θ1+2θ2<1 and

    d(Ta,T)θ1d(a,)+θ2(d(a,Ta)+d(,T)),

    for all a,X, then there exists aX such that Ta=a that is unique.

    In [12], Fisher proved the following result in this way.

    Theorem 4. ([12]) Let T:(X,d)(X,d) and (X,d) be a CMS. If there exist θ1,θ2[0,1) such that θ1+θ2<1 and

    d(Ta,T)θ1d(a,)+θ2d(a,Ta)d(T,)1+d(a,),

    for all a,X, then there exists aX such that Ta=a that is unique.

    Jleli et al. [4] presented a compulsive expansion of a MS in this fashion.

    Let F be the set of all continuous mappings :R+R. fulfilling these axioms:

    (F1) (t1)<(t2), for t1<t2,

    (F2) for {tι}R+, limιtι=0 limι(tι)=.

    Definition 1. ([4]) Let X and let d:X×XR+. Suppose that there exists (,β)F×R+ such that for all (a,)X×X,

    (i) d(a,)=0 a=,

    (ii) d(a,)=d(,a),

    (iii) for all (wι)pι=1X with (w1,wp)=(a,), we have

    d(a,)>0(d(a,))(p1ι=1d(wι,wι+1))+β,

    where p2. Then (X,d) is professed to be an F-MS.

    Mutlu et al. [5] pioneered the bip MS concept with this perspective.

    Definition 2 ([5]) Consider X and Y and d:X×YR+ be a mapping. If the mapping d verifies

    (bi1) d(a,)=0 a=,

    (bi2) d(a,)=d(,a), if a,XY,

    (bi3) d(a,)d(a,/)+d(a/,/)+d(a/,),

    for all (a,),(a/,/)X×Y. Then (XY,d) is recognized as bip MS.

    Definition 3. ([5]) Consider (X1,Y1,d1) and (X2,Y2,d2) be two bip MS. A mapping T:(X1,Y1,d1) (X2,Y2,d2) is called a covariant, if T(X1)X2 and T(Y1)Y2. Likewise, a mapping T:(X1,Y1,d1) (X2,Y2,d2) is contravariant, if T(X1)Y2 and T(X2)Y1.

    Rawat et al. [6] synthesized the aforementioned inventive ideas, especially bip MS and F-MS and initiated the thought of F-bip MS as follows:

    Definition 4. ([6]) Let X and Y and let d:X×Y[0,+) and there exists (,β)F×R+ such that for all (a,)X×Y,

    (D1) d(a,)=0 a=,

    (D2) d(a,)=d(,a), if a,XY,

    (D3) for all (wι)pι=1X and (ϰι)pι=1Y with (w1,ϰp)=(a,), we have

    d(a,)>0implies(d(a,))(p1ι=1d(wι+1,ϰι)+pι=1d(wι,ϰι))+β,

    where p2, then (X,Y,d) is professed to be an F-bip MS.

    Remark 1. ([6]) Considering Y=X, p=2ι, wȷ=w2ȷ1 and ϰȷ=w2ȷ in Definition 4, we obtain a sequence (wȷ)2ιȷ=1X with (w1,w2ι)=(a,) such that axiom (iii) of Definition 1 hold. Therefore, each F-MS qualifies as an F-bipolar MS, though the reverse is not applicable.

    Definition 5. ([6]) Let (X,Y,d) be an F-bip MS.

    (i) A sequence (aι,ι) on X×Y is called a bisequence.

    (ii) If (aι) and (ι) are convergent, then (aι, ι) is also convergent, and if (aι) and (ι) converge to a same point, then (aι, ι) is said to be biconvergent.

    (iii) A bisequence (aι,ι) in (X,Y,d) is termed as Cauchy bisequence, if for any given ϵ>0, there exists ι0N in order to d(aι,p)<ϵ, for ι,pι0.

    Definition 6. ([6]) An F-bip MS (X,Y,d) is denoted as complete when each Cauchy bisequence within (X,Y,d) converges.

    Throughout this section, we depict a complete F-bip MS by (X,Y,d).

    Theorem 5. Let T:(X,Y,d) (X,Y,d) be contravariant and continuous mapping. If there exist the mappings θ1,θ2,θ3:(XY)×(XY)[0,1) such that

    (a) θ1(Ta,)θ1(a,) and θ1(a,T)θ1(a,),

    θ2(Ta,)θ2(a,) and θ2(a,T)θ2(a,),

    θ3(Ta,)θ3(a,) and θ3(a,T)θ3(a,),

    (b) θ1(a,)+θ2(a,)+θ3(a,)<1,

    (c)

    d(T,Ta)θ1(a,)d(a,)+θ2(a,)d(a,Ta)+θ3(a,)d(T,) (3.1)

    then there exists a unique point aXY such that Ta=a.

    Proof. Let a0 X. Define the bisequence (aι,ι) in (X,Y,d) by

    ι=Taι  and  aι+1=Tι,

    for all ιN. By the inequality (3.1), we have

    d(aι,ι)=d(Tι1,Taι)θ1(aι,ι1)d(aι,ι1)+θ2(aι,ι1)d(aι,Taι)+θ3(aι,ι1)d(Tι1,ι1)=θ1(aι,ι1)d(aι,ι1)+θ2(aι,ι1)d(aι,ι)+θ3(aι,ι1)d(aι,ι1)=θ1(Tι1,ι1)d(aι,ι1)+θ2(Tι1,ι1)d(aι,ι)+θ3(Tι1,ι1)d(aι,ι1)θ1(ι1,ι1)d(aι,ι1)+θ2(ι1,ι1)d(aι,ι)+θ3(ι1,ι1)d(aι,ι1)=θ1(Taι1,ι1)d(aι,ι1)+θ2(Taι1,ι1)d(aι,ι)+θ3(Taι1,ι1)d(aι,ι1),

    which yields

    d(aι,ι)θ1(aι1,ι1)d(aι,ι1)+θ2(aι1,ι1)d(aι,ι)+θ3(aι1,ι1)d(aι,ι1)θ1(a0,ι1)d(aι,ι1)+θ2(a0,ι1)d(aι,ι)+θ3(a0,ι1)d(aι,ι1).

    This further entails that

    d(aι,ι)θ1(a0,ι1)d(aι,ι1)+θ2(a0,ι1)d(aι,ι)+θ3(a0,ι1)d(aι,ι1)=θ1(a0,Taι1)d(aι,ι1)+θ2(a0,Taι1)d(aι,ι)+θ3(a0,Taι1)d(aι,ι1),

    that is,

    d(aι,ι)θ1(a0,aι1)d(aι,ι1)+θ2(a0,aι1)d(aι,ι)+θ3(a0,aι1)d(aι,ι1)=θ1(a0,Tι2)d(aι,ι1)+θ2(a0,Tι2)d(aι,ι)+θ3(a0,Tι2)d(aι,ι1)θ1(a0,ι2)d(aι,ι1)+θ2(a0,ι2)d(aι,ι)+θ3(a0,ι2)d(aι,ι1)θ1(a0,0)d(aι,ι1)+θ2(a0,0)d(aι,ι)θ3(a0,0)d(aι,ι1).

    It yields that

    d(aι,ι)θ1(a0,0)+θ3(a0,0)1θ2(a0,0)d(aι,ι1). (3.2)

    Moreover,

    d(aι,ι1)=d(Tι1,Taι1)θ1(aι1,ι1)d(aι1,ι1)+θ2(aι1,ι1)d(aι1,Taι1)+θ3(aι1,ι1)d(Tι1,ι1)=θ1(aι1,ι1)d(aι1,ι1)+θ2(aι1,ι1)d(aι1,ι1)+θ3(aι1,ι1)d(aι,ι1)=θ1(Tι2,ι1)d(aι1,ι1)+θ2(Tι2,ι1)d(aι1,ι1)+θ3(aι1,ι1)d(aι,ι1),

    which implies

    d(aι,ι1)θ1(ι2,ι1)d(aι1,ι1)+θ2(ι2,ι1)d(aι1,ι1)+θ3(ι2,ι1)d(aι,ι1)=θ1(Taι2,ι1)d(aι1,ι1)+θ2(Taι2,ι1)d(aι1,ι1)+θ3(Taι2,ι1)d(aι,ι1)θ1(aι2,ι1)d(aι1,ι1)+θ2(aι2,ι1)d(aι1,ι1)+θ3(Taι2,ι1)d(aι,ι1)θ1(a0,ι1)d(aι1,ι1)+θ2(a0,ι1)d(aι1,ι1)+θ3(a0,ι1)d(aι,ι1),

    signifying that

    d(aι,ι1)θ1(a0,ι1)d(aι1,ι1)+θ2(a0,ι1)d(aι1,ι1)+θ3(a0,ι1)d(aι,ι1)=θ1(a0,Taι1)d(aι1,ι1)+θ2(a0,Taι1)d(aι1,ι1)+θ3(a0,Taι1)d(aι,ι1)θ1(a0,aι1)d(aι1,ι1)+θ2(a0,aι1)d(aι1,ι1)+θ3(a0,aι1)d(aι,ι1)=θ1(a0,Tι2)d(aι1,ι1)+θ2(a0,Tι2)d(aι1,ι1)+θ3(a0,Tι2)d(aι,ι1),

    which implies

    d(aι,ι1)θ1(a0,ι2)d(aι1,ι1)+θ2(a0,ι2)d(aι1,ι1)+θ3(a0,ι2)d(aι,ι1)θ1(a0,0)d(aι1,ι1)+θ2(a0,0)d(aι1,ι1)+θ3(a0,0)d(aι,ι1),

    implying definitively that

    d(aι,ι1)θ1(a0,0)+θ2(a0,0)1θ3(a0,0)d(aι1,ι1). (3.3)

    Taking μ=max{θ1(a0,0)+θ3(a0,0)1θ2(a0,0),θ1(a0,0)+θ2(a0,0)1θ3(a0,0)}<1. Therefore by (3.2) and (3.3), we have

    d(aι,ι)μ2ιd(a0,0). (3.4)

    Likewise, we get

    d(aι+1,ι)μ2ι+1d(a0,0), (3.5)

    for all ιN. Under condition (D3) for (,β)F×R+ and a chosen ϵ>0, a δ>0 exists with the property that

    0<t<δ  (t)<(ϵ)β. (3.6)

    By the inequalities (3.4) and (3.5), we get

    p1ı=ιd(aı+1,ı)+pı=ιd(aı,ı)(μ2ι+μ2ι+2+...+μ2p)d(a0,0)+(μ2ι+1+μ2ι+3+...+μ2p1)d(a0,0)μ2ιι=0μιd(a0,0)=μ2ι1μd(a0,0),

    for p>ι. Since limιμ2ι1μd(a0,0)=0, so there exists ι0N, such that

    0<μ2ι1μd(a0,0)<δ,

    for ιι0. Combining (F1) and (3.6) for p>ιι0 gives us

    (p1ı=ιd(aı+1,ı)+pı=ιd(aı,ı))(μ2ι1μd(a0,0))<(ϵ)β. (3.7)

    By (D3) and Eq (3.7), we get that d(aι,p) >0, yields

    (d(aι,p))(p1ı=ιd(aı+1,ı)+pı=ιd(aı,ı))+β<(ϵ).

    Likewise, for ι>pι0, d(aι,p) >0 yields

    (d(aι,p))(ι1ı=pd(aı+1,ı)+ιı=pd(aı,ı))+β<(ϵ).

    Hence, by (F1), d(aι,p)<ϵ, for all p,ιι0. Therefore, (aι,ι) is a Cauchy bisequence in (X,Y,d). By the completeness of (X,Y,d), we have (aι,ι) aXY. Thus, (aι)a,(ι)a. Also, since T is continuous, we have

    (aι)a  (ι)=(Taι)Ta.

    Also, given that (ι) converges to a unique limit a within the intersection of X and Y, then Ta=a. Consequently, T possesses a fixed point.

    Now, assuming T possesses an additional fixed point σ, then Tσ=σ implies that σXY. Thus,

    d(a,σ)=d(Ta,Tσ)θ1(σ,a)d(σ,a)+θ2(σ,a)d(σ,Tσ)+θ3(σ,a)d(Ta,a)=θ1(σ,a)d(σ,a)

    is contradiction, except a=σ.

    Example 1. Let X=N{0} and Y=1n{0}. Define d:X×Y[0, ) as follows:

    d(a,)={0,if(a,)=(1,12),|a|,otherwise.

    Then, (X,Y,d) is complete F-bip MS for (t)=lnt, t>0 and β>3. Define T:XY XY by

    T(a)={11+a,ifaX,1aa,ifaY{0},0,ifa=0

    Then, T is contravariant mapping. Define θ1,θ2,θ3:(XY)×(XY)[0,1) as follows:

    θ1(a,)=56,
    θ2(a,)=19+max{|a|,||},

    and

    θ3(a,)=140+max{|a|,||}.

    It is very simple to satisfy all the assumptions of Theorem 5. Hence, by Theorem 5, T(0)=0.

    Corollary 1. Let T:(X,Y,d) (X,Y,d) be contravariant and continuous mapping. If there exist θ1,θ2,θ3:(XY)[0,1) such that

    (a) θ1(Ta)θ1(a) and θ1(T)θ1(), θ2(Ta)θ2(a) and θ2(T)θ2(), θ3(Ta)θ3(a) and θ3(T)θ3(),

    (b) θ1(a)+θ2(a)+θ3(a)<1,

    (c)

    d(T,Ta)θ1(a)d(a,)+θ2(a)d(a,Ta)+θ3(a)d(T,)

    then there exists a unique point aXY such that Ta=a.

    Proof. Define θ1,θ2,θ3:(XY)×(XY)[0,1) be

    θ1(a,)=θ1(a), θ2(a,)=θ2(a) and θ3(a,)=θ3(a).

    Then, for all (a,)(XY)×(XY), we have

    (a)

    θ1(Ta,)=θ1(Ta)θ1(a)=θ1(a,)
    θ2(Ta,)=θ2(Ta)θ2(a)=θ2(a,)
    θ3(Ta,)=θ3(Ta)θ3(a)=θ3(a,).

    (b) θ1(a,)+θ2(a,)+θ3(a,)=θ1(a)+θ2(a)+θ3(a)<1,

    (c)

    d(T,Ta)θ1(a)d(a,)+θ2(a)d(a,Ta)+θ3(a)d(T,)=θ1(a,)d(a,)+θ2(a,)d(a,Ta)+θ3(a,)d(T,).

    By Theorem 5, T has a unique fixed point.

    Corollary 2. Let T:(X,Y,d) (X,Y,d) be contravariant and continuous mapping. If there exist θ1,θ2,θ3[0,1) such that θ1+θ2+θ3<1 and

    d(T,Ta)θ1d(a,)+θ2d(a,Ta)+θ3d(T,)

    for all (a,)(XY)×(XY), then there exists a unique point aXY such that Ta=a.

    Proof. Take θ1()=θ1, θ2()=θ2 and θ3()=θ3 in Corollary 1.

    Corollary 3. ([6]) Let T:(X,Y,d) (X,Y,d) be a contravariant and continuous mapping. If there exists θ[0,1) such that

    d(T,Ta)θd(a,),

    for all (a,)(XY)×(XY), then there exists a unique point aXY such that Ta=a.

    Proof. Take θ1=θ, θ2=θ3=0 in Corollary 2.

    Remark 2. If we put (t)=ln(t) and β=0 in Corollary 3, then the notion of F-bip MS is restricted to notion of bip MS, and we acquire the prime theorem of Mutlu et al. [5] as an immediate conclusion.

    Remark 3. If we take X=Y in the result Corollary 3, then the idea of F -bip MS is decreased to the thought of F-MS and we deduce the principal theorem of Jleli et al. [4].

    Theorem 6. Let T:(X,Y,d) (X,Y,d) be a contravariant and continuous mapping. If there exist the mappings θ1,θ2:(XY)×(XY)[0,1) such that

    (a) θ1(Ta,)θ1(a,) and θ1(a,T)θ1(a,), θ2(Ta,)θ2(a,) and θ2(a,T)θ2(a,),

    (b) θ1(a,)+θ2(a,)<1,

    (c)

    d(T,Ta)θ1(a,)d(a,)+θ2(a,)d(a,Ta)d(T,)1+d(a,) (3.8)

    for all (a,)(XY)×(XY), then there exists a unique point aXY such that Ta=a.

    Proof. Let a0X and 0Y. Define the bisequence (aι,ι) in (X,Y,d) by

    ι=Taι and aι+1=Tι,

    for all ιN. From (3.8), we get

    d(aι,ι)=d(Tι1,Taι)θ1(aι,ι1)d(aι,ι1)+θ2(aι,ι1)d(aι,Taι)d(Tι1,ι1)1+d(aι,ι1)=θ1(aι,ι1)d(aι,ι1)+θ2(aι,ι1)d(aι,ι)d(aι,ι1)1+d(aι,ι1)
    θ1(aι,ι1)d(aι,ι1)+θ2(aι,ι1)d(aι,ι)=θ1(Tι1,ι1)d(aι,ι1)+θ2(Tι1,ι1)d(aι,ι)θ1(ι1,ι1)d(aι,ι1)+θ2(ι1,ι1)d(aι,ι)=θ1(Taι1,ι1)d(aι,ι1)+θ2(Taι1,ι1)d(aι,ι)θ1(aι1,ι1)d(aι,ι1)+θ2(aι1,ι1)d(aι,ι)θ1(a0,ι1)d(aι,ι1)+θ2(a0,ι1)d(aι,ι).

    This further strengthens the conclusion that

    d(aι,ι)θ1(a0,ι1)d(aι,ι1)+θ2(a0,ι1)d(aι,ι)=θ1(a0,Taι1)d(aι,ι1)+θ2(a0,Taι1)d(aι,ι)θ1(a0,aι1)d(aι,ι1)+θ2(a0,aι1)d(aι,ι)=θ1(a0,Tι2)d(aι,ι1)+θ2(a0,Tι2)d(aι,ι)θ1(a0,ι2)d(aι,ι1)+θ2(a0,ι2)d(aι,ι)θ1(a0,0)d(aι,ι1)+θ2(a0,0)d(aι,ι),

    implying definitively that

    d(aι,ι)θ1(a0,0)1θ2(a0,0)d(aι,ι1). (3.9)

    Moreover,

    d(aι,ι1)=d(Tι1,Taι1)θ1(aι1,ι1)d(aι1,ι1)+θ2(aι1,ι1)d(aι1,Taι1)d(Tι1,ι1,)1+d(aι1,ι1)=θ1(aι1,ι1)d(aι1,ι1)+θ2(aι1,ι1)d(aι1,ι1)d(aι,ι1)1+d(aι1,ι1),

    which yields that

    d(aι,ι1)θ1(aι1,ι1)d(aι1,ι1)+θ2(aι1,ι1)d(ι1,aι)=θ1(Tι2,ι1)d(aι1,ι1)+θ2(Tι2,ι1)d(ι1,aι)θ1(ι2,ι1)d(aι1,ι1)+θ2(ι2,ι1)d(ι1,aι)=θ1(Taι2,ι1)d(aι1,ι1)+θ2(Taι2,ι1)d(ι1,aι)θ1(aι2,ι1)d(aι1,ι1)+θ2(aι2,ι1)d(ι1,aι)θ1(a0,ι1)d(aι1,ι1)+θ2(a0,ι1)d(ι1,aι),

    which further contributes to the evidence that

    d(aι,ι1)θ1(a0,ι1)d(aι1,ι1)+θ2(a0,ι1)d(ι1,aι)=θ1(a0,Taι1)d(aι1,ι1)+θ2(a0,Taι1)d(ι1,aι)θ1(a0,aι1)d(aι1,ι1)+θ2(a0,aι1)d(ι1,aι)=θ1(a0,Tι2)d(aι1,ι1)+θ2(a0,Tι2)d(ι1,aι)θ1(a0,ι2)d(aι1,ι1)+θ2(a0,ι2)d(ι1,aι)θ1(a0,0)d(aι1,ι1)+θ2(a0,0)d(ι1,aι).

    Hence,

    d(aι,ι1)θ1(a0,0)1θ2(a0,0)d(aι1,ι1). (3.10)

    Now, if we take θ1(a0,0)1θ2(a0,0)=μ, then (3.9) and (3.10) becomes

    d(aι,ι)μd(aι,ι1), (3.11)

    and

    d(aι,ι1)μd(aι1,ι1). (3.12)

    Applying both (3.11) and (3.12), we can infer that

    d(aι,ι)μ2ιd(a0,0). (3.13)

    Likewise,

    d(aι+1,ι)μ2ι+1d(a0,0), (3.14)

    for all ιN. For any fixed ϵ>0 and a pair (,β)F×R+ satisfying (D3), we can find a δ>0 such that

    0<t<δ  (t)<(ϵ)β. (3.15)

    From (3.13) and (3.14), we get

    p1ı=ιd(aı+1,ı)+pı=ιd(aı,ı)(μ2ι+μ2ι+2+...+μ2p)d(a0,0)+(μ2ι+1+μ2ι+3+...+μ2p1)d(a0,0)μ2ιι=0μιd(a0,0)=μ2ι1μd(a0,0),

    for p>ι. Since limιμ2ι1μd(a0,0)=0, so there exists ι0N, such that

    0<μ2ι1μd(a0,0)<δ,

    for ιι0. Therefore, for p>ιι0, employing (F1) and inequality (3.15), we obtain

    (p1ı=ιd(aı+1,ı)+pı=ιd(aı,ı))(μ2ι1μd(a0,0))<(ϵ)β. (3.16)

    By (D3) and Eq (3.16), we get that d(aι,p) >0 implies

    (d(aι,p))(p1ı=ιd(aı+1,ı)+pı=ιd(aı,ı))+β<(ϵ).

    Likewise, for ι>pι0, d(aι,p) >0 yields

    (d(aι,p))(ι1ı=pd(aı+1,ı)+ιı=pd(aı,ı))+β<(ϵ).

    Subsequently, according to (F1), d(aι,p)<ϵ, for all p,ιι0. Therefore, (aι,ι) constitutes a Cauchy bisequence in (X,Y,d). By the completeness of (X,Y,d), so (aι,ι) aXY. So (aι)a,(ι)a. Also, since T is continuous, we get

    (aι)a  (ι)=(Taι)Ta.

    Also, since (ι) has a limit a in XY. Hence, Ta=a. So T has a fixed point.

    Let Ta/=a/a=Ta. Then,

    d(a,a/)=d(Ta,Ta/)θ1(a/,a)d(a/,a)+θ2(a/,a)d(a/,Ta/)d(Ta,a)1+d(a/,a)=θ1(a/,a)d(a/,a),

    which is a contradiction, except a=a/.

    Corollary 4. Let T:(X,Y,d) (X,Y,d) be contravariant and continuous mapping. If there exist the mappings θ1,θ2:(XY)[0,1) such that

    (a) θ1(Ta)θ1(a) and θ1(T)θ1(),

    θ2(Ta)θ2(a) and θ2(T)θ2(),

    (b) θ1(a)+θ2(a)<1,

    (c)

    d(T,Ta)θ1(a)d(a,)+θ2(a)d(a,Ta)d(T,)1+d(a,)

    for all (a,)(XY)×(XY), then there exists a unique point aXY such that Ta=a.

    Proof. Define θ1,θ2:(XY)×(XY)[0,1) be

    θ1(a,)=θ1(a) and θ2(a,)=θ2(a).

    Then, for all (a,)(XY)×(XY), we have

    (a)

    θ1(Ta,)=θ1(Ta)θ1(a)=θ1(a,),
    θ2(Ta,)=θ2(Ta)θ2(a)=θ2(a,),

    (b) θ1(a,)+θ2(a,)=θ1(a)+θ2(a)<1,

    (c)

    d(T,Ta)θ1(a)d(a,)+θ2(a)d(a,Ta)d(T,)1+d(a,)=θ1(a,)d(a,)+θ2(a,)d(a,Ta)d(T,)1+d(a,).

    By Theorem 6, T has a unique fixed point.

    Corollary 5. ([7]) Let T:(X,Y,d) (X,Y,d) be contravariant and continuous mapping. If there exist the constants θ1,θ2[0,1) such that θ1+θ2<1 and

    d(T,Ta)θ1d(a,)+θ2d(a,Ta)d(T,)1+d(a,)

    for all (a,)(XY)×(XY), then there exists a unique point aXY such that Ta=a.

    Proof. Take θ1()=θ1 and θ2()=θ2 in Corollary 4.

    Remark 4. If X=Y in above Corollary, then F-bip MS is converted to F-MS, and we obtain a key theorem that extends the results of Ahmad et al. [13] as an outcome of our main result.

    Integral equations, particularly those with Volterra-type kernels, have long presented intriguing challenges in various fields. In this subsection, we embark on a journey to unlock solutions for such an equation, wielding the powerful tool of rational contractions within the elegant realm of F-bip MS. By navigating the unique properties of contravariant mappings in this setting, we not only demonstrate the existence of a solution but potentially also its uniqueness. This approach offers both theoretical rigor and practical applicability, promising valuable insights into the equation's behavior and solution.

    Beyond mathematical intrigue, Volterra integral equations are intricately woven into the fabric of signal processing, a discipline that breathes life into our technological world. Imagine the bustling cityscape of information, filled with the murmurs of digital signals carrying voices, music, and countless other data streams. Volterra integral equations act as meticulous tailors in this vibrant space, shaping and reshaping these signals to our needs. Moreover, their applicability extends to inverse problems in partial differential equations, as demonstrated by Shcheglov et al. [23], and to ecological modeling, such as predator-prey dynamics, through nonlinear mixed Volterra-Fredholm integral equations in complex-valued suprametric spaces, as investigated by Abdou [24].

    Consider a Volterra integral equation

    φ(t)=g(t)+XYK(t,,φ(t))d, (4.1)

    represents a mathematical model used to describe the behavior of a system when processing signals. Let us break down the components of this equation:

    φ(t) is the output signal, representing the response of the system at time t,

    g(t) is the input signal or excitation applied to the system at time t,

    XYK(t,,φ(t))d is the integral term, which involves a kernel function K(t,,φ(t)) and is integrated over a Lebesgue measurable set XY, g(t) is a given function and XYK(a,,φ(t))d is an integral term involving a kernel function K(a,,φ(t)). The domain of integration is XY. This integral captures the memory or history-dependent effects of the system.

    In signal processing, the Volterra integral equation is often used to model nonlinear systems. The kernel function K(a,,φ(t)) describes how the current output at time t depends not only on the current input g(t) but also on the past values of the output φ(t). This memory effect is particularly useful for capturing the behavior of systems that exhibit nonlinear and memory-dependent responses.

    Theorem 7. Consider the Volterra integral Eq (4.1). If the underlying conditions are met:

    (i) There is a continuous function Υ:X2Y2[0,) and control functions θ1,θ2,θ3:L(Y)×L(Y)[0,1) such that

    |K(t,,φ())K(t,,ϕ())|Υ(t,){θ1(ϕ(),φ())|ϕ()φ()|+θ2(ϕ(),φ())|ϕ()Aϕ()|+θ3(ϕ(),φ())|Aφ()φ()|},

    for all t,(X2Y2), A:L(X)L(Y)L(X)L(Y),

    (ii) i.e. \sup_{\mathfrak{t}\in X\cup Y}\int_{X\cup Y}\left \vert \Upsilon \left(\mathfrak{t}, \flat \right) \right \vert d\flat \leq 1,

    (iii) \theta _{1}\left(\mathfrak{A}\phi (\flat), \varphi (\flat)\right) \leq \theta _{1}\left(\phi (\flat), \varphi (\flat)\right) and \theta _{1}\left(\phi (\flat), \mathfrak{A}\varphi (\flat)\right) \leq \theta _{1}\left(\phi (\flat), \varphi (\flat)\right),

    \theta _{2}\left(\mathfrak{A}\phi (\flat), \varphi (\flat)\right) \leq \theta _{2}\left(\phi (\flat), \varphi (\flat)\right) and \theta _{2}\left(\phi (\flat), \mathfrak{A}\varphi (\flat)\right) \leq \theta _{2}\left(\phi (\flat), \varphi (\flat)\right),

    \theta _{3}\left(\mathfrak{A}\phi (\flat), \varphi (\flat)\right) \leq \theta _{3}\left(\phi (\flat), \varphi (\flat)\right) and \theta _{3}\left(\phi (\flat), \mathfrak{A}\varphi (\flat)\right) \leq \theta _{3}\left(\phi (\flat), \varphi (\flat)\right),

    (iv) \theta _{1}\left(\phi (\flat), \varphi (\flat)\right) +\theta _{2}\left(\phi (\flat), \varphi (\flat)\right) +\theta _{3}\left(\phi (\flat), \varphi (\flat)\right) < 1.

    Under these conditions, the integral Eq (4.1) possesses a unique solution within the combined space \mathfrak{L}^{\infty }\left(X\right) \cup \mathfrak{L}^{\infty }\left(Y\right).

    Proof. Consider \mathfrak{X} as \mathfrak{L}^{\infty }\left(X\right) and \mathfrak{Z} as \mathfrak{L}^{\infty }\left(Y\right), both being normed linear spaces, with X and Y representing Lebesgue measureable sets and m\left(X\cup Y\right) < \infty. Define d:\mathfrak{X}\times \mathfrak{Z} \rightarrow \mathbb{R} ^{+} by

    \begin{equation*} d\left( \flat , \mathfrak{a}\right) = \left \Vert \flat -\mathfrak{a}\right \Vert _{\infty }, \end{equation*}

    for all \flat, \mathfrak{a}\in \mathfrak{X}\times \mathfrak{Z}. Then \left(\mathfrak{X}, \mathfrak{Z}, d\right) is complete \mathfrak{F} -bip MS and \mathfrak{J}:\mathfrak{X}\cup \mathfrak{Z}\rightarrow \mathfrak{X} \cup \mathfrak{Z} is defined by

    \begin{equation*} \mathfrak{J}\left( \varphi (\mathfrak{t})\right) = g(\mathfrak{t} )+\int_{X\cup Y}K(\mathfrak{t}, \flat , \varphi (\mathfrak{t}))d\flat , \end{equation*}

    for \mathfrak{t}\in X\cup Y. Now

    \begin{eqnarray*} d\left( \mathfrak{J}\left( \varphi (\mathfrak{t})\right) , \mathfrak{J}\left( \phi (\mathfrak{t})\right) \right) & = &\left \Vert \mathfrak{J}\left( \varphi (\mathfrak{t})\right) -\mathfrak{J}\left( \phi (\mathfrak{t})\right) \right \Vert \\ & = &\left \vert \int_{X\cup Y}K(\mathfrak{t}, \flat , \varphi (\mathfrak{t} ))d\flat -\int_{X\cup Y}K(\mathfrak{t}, \flat , \phi (\mathfrak{t}))d\flat \right \vert \\ &\leq &\int_{X\cup Y}\left \vert K(\mathfrak{t}, \flat , \varphi (\mathfrak{t} ))-K(\mathfrak{t}, \flat , \phi (\mathfrak{t}))\right \vert d\flat \\ &\leq &\int_{X\cup Y}\Upsilon \left( \mathfrak{t}, \flat \right) \left \{ \begin{array}{c} \theta _{1}\left( \phi (\flat ), \varphi (\flat )\right) \left \Vert \phi (\flat )-\varphi (\flat )\right \Vert \\ +\theta _{2}\left( \phi (\flat ), \varphi (\flat )\right) \left \Vert \phi (\flat )-\mathfrak{J}\phi (\flat )\right \Vert \\ +\theta _{3}\left( \phi (\flat ), \varphi (\flat )\right) \left \Vert \mathfrak{J}\varphi (\flat )-\varphi (\flat )\right \Vert \end{array} \right \} d\flat \\ &\leq &\left \{ \begin{array}{c} \theta _{1}\left( \phi (\flat ), \varphi (\flat )\right) \left \Vert \phi (\flat )-\varphi (\flat )\right \Vert \\ +\theta _{2}\left( \phi (\flat ), \varphi (\flat )\right) \left \Vert \phi (\flat )-\mathfrak{J}\phi (\flat )\right \Vert \\ +\theta _{3}\left( \phi (\flat ), \varphi (\flat )\right) \left \Vert \mathfrak{J}\varphi (\flat )-\varphi (\flat )\right \Vert \end{array} \right \} \int_{X\cup Y}\left \vert \Upsilon \left( \mathfrak{t}, \flat \right) \right \vert d\flat \\ &\leq &\left \{ \begin{array}{c} \theta _{1}\left( \phi (\flat ), \varphi (\flat )\right) \left \Vert \phi (\flat )-\varphi (\flat )\right \Vert \\ +\theta _{2}\left( \phi (\flat ), \varphi (\flat )\right) \left \Vert \phi (\flat )-\mathfrak{J}\phi (\flat )\right \Vert \\ +\theta _{3}\left( \phi (\flat ), \varphi (\flat )\right) \left \Vert \mathfrak{J}\varphi (\flat )-\varphi (\flat )\right \Vert \end{array} \right \} \sup\limits_{\mathfrak{t}\in X\cup Y}\int_{X\cup Y}\left \vert \Upsilon \left( \mathfrak{t}, \flat \right) \right \vert d\flat \\ &\leq &\left \{ \begin{array}{c} \theta _{1}\left( \phi , \varphi \right) \left \Vert \phi -\varphi \right \Vert \\ +\theta _{2}\left( \phi , \varphi \right) \left \Vert \phi -\mathfrak{J}\phi \right \Vert \\ +\theta _{3}\left( \phi , \varphi \right) \left \Vert \mathfrak{J}\varphi -\varphi \right \Vert \end{array} \right \} \\ & = &\theta _{1}\left( \phi , \varphi \right) d\left( \phi , \varphi \right) +\theta _{2}\left( \phi , \varphi \right) d\left( \phi , \mathfrak{J}\left( \phi \right) \right) +\theta _{3}\left( \phi , \varphi \right) d\left( \mathfrak{J}\left( \varphi \right) , \varphi \right) . \end{eqnarray*}

    Hence, by Theorem 5, the operator \mathfrak{J} has a unique solution in \mathfrak{X}\cup \mathfrak{Z}.

    The concept of fixed points in homotopy theory extends the classical notion from algebraic topology to a broader and more abstract setting. Fixed points arise when considering continuous mappings or transformations between spaces that have a degree of symmetry or self-mapping properties. In the context of homotopy theory, fixed points become particularly intriguing when exploring homotopy classes of mappings, and they serve as key elements in characterizing the structure and behavior of topological spaces.

    Theorem 8. Let \left(\mathfrak{X}, \mathfrak{Z}\right) is a pair of open subset of \left(X, Y\right) and \left(\overline{\mathfrak{X}}, \overline{\mathfrak{Z }}\right) is a pair of closed subset of \left(X, Y\right) and \left(\mathfrak{X}, \mathfrak{Z}\right) \subseteq \left(\overline{\mathfrak{X}}, \overline{\mathfrak{Z}}\right). Suppose \mathcal{E}:\left(\overline{ \mathfrak{X}}\cup \overline{\mathfrak{Z}}\right) \times \left[0, 1\right] \rightarrow X\cup Y is a function fulfiling the conditions:

    (h1) \mathfrak{a}\not = \mathcal{E}\left(\mathfrak{a}, q\right) for each \mathfrak{a}\in \partial \mathfrak{X}\cup \partial \mathfrak{Z} and q\in \left[0, 1\right], where \partial \mathfrak{X} and \partial \mathfrak{Z} represents the differential of \mathfrak{X} and \mathfrak{Z} likewise,

    (h2) for all \mathfrak{a}\in \overline{\mathfrak{X}} , \flat \in \overline{ \mathfrak{Z}} and q\in \left[0, 1\right]

    \begin{eqnarray*} d\left( \mathcal{E}\left( \flat , q\right) , \mathcal{E}\left( \mathfrak{a} , q\right) \right) \leq \theta _{1}\left( \mathfrak{a}, \flat \right) d\left( \mathfrak{a}, \flat \right) +\theta _{2}\left( \mathfrak{a}, \flat \right) \frac{d\left( \mathfrak{a}, \mathcal{E}\left( \mathfrak{a}, q\right) \right) d\left( \mathcal{E}\left( \flat , q\right) , \flat \right) }{1+d\left( \mathfrak{a}, \flat \right) }, \end{eqnarray*}

    where \theta _{1}, \theta _{2}:\left(\overline{\mathfrak{X}}\cup \overline{ \mathfrak{Z}}\right) \times \left(\overline{\mathfrak{X}}\cup \overline{ \mathfrak{Z}}\right) \rightarrow \lbrack 0, 1),

    (h3) there exists \aleph \geq 0 such that

    \begin{equation*} d\left( \mathcal{E}\left( \mathfrak{a}, r\right) , \mathcal{E}\left( \flat , \tau \right) \right) \leq \aleph \left \vert r-\tau \right \vert , \end{equation*}

    for all \mathfrak{a}, \flat \in \left(\overline{\mathfrak{X}}\cup \overline{ \mathfrak{Z}}\right) and r, \tau \in \left[0, 1\right],

    (h4) \theta _{1}\left(\mathcal{E}\left(\mathfrak{a}, r\right), \flat \right) \leq \theta _{1}\left(\mathfrak{a}, \flat \right) and \theta _{1}\left(\mathfrak{a}, \mathcal{E}\left(\flat, \tau \right) \right) \leq \theta _{1}\left(\mathfrak{a}, \flat \right), \theta _{2}\left(\mathcal{E}\left(\mathfrak{a}, r\right), \flat \right) \leq \theta _{2}\left(\mathfrak{a}, \flat \right) and \theta _{2}\left(\mathfrak{a}, \mathcal{E}\left(\flat, \tau \right) \right) \leq \theta _{2}\left(\mathfrak{a}, \flat \right), and \theta _{1}\left(\mathfrak{a}, \flat \right) +\theta _{2}\left(\mathfrak{a}, \flat \right) < 1.

    A fixed point for \mathcal{E}\left(\cdot, 0\right) is a necessary and sufficient condition for \mathcal{E}\left(\cdot, 1\right) to have a fixed point as well.

    Proof. Let

    \begin{equation*} \Theta _{1} = \left \{ \pi \in \left[ 0, 1\right] :\mathfrak{a} = \mathcal{E} \left( \mathfrak{a}, \pi \right) , \mathfrak{a}\in \mathfrak{X}\right \}, \end{equation*}

    and

    \begin{equation*} \Theta _{2} = \left \{ \tau \in \left[ 0, 1\right] :\flat = \mathcal{E}\left( \flat , \tau \right) , \flat \in \mathfrak{Z}\right \} . \end{equation*}

    As \mathcal{E}\left(\cdot, 0\right) has a fixed point in \mathfrak{X} \cup \mathfrak{Z}, then we obtain 0\in \Theta _{1}\cap \Theta _{2}. Thus, \Theta _{1}\cap \Theta _{2}\not = \emptyset . Now, we prove that \Theta _{1}\cap \Theta _{2} is both open and closed in \left[0, 1\right]. Thus, \Theta _{1} = \Theta _{2} = [0, 1] by connectedness. Let \left(\left \{ \pi _{\iota }\right \} _{\iota = 1}^{\infty }\right), \left(\left \{ \tau _{\iota }\right \} _{\iota = 1}^{\infty }\right) \subseteq \left(\Theta _{1}, \Theta _{2}\right) with \left(\pi _{\iota }, \tau _{\iota }\right) \rightarrow \left(\rho, \rho \right) \in \lbrack 0, 1] as \iota \rightarrow \infty. Now we assert that \rho \in \Theta _{1}\cap \Theta _{2}. As \left(\pi _{\iota }, \tau _{\iota }\right) \in \Theta _{1}\cap \Theta _{2}, for \iota \in \mathbb{N} \cup \{0\}. Thus, there is \left(\mathfrak{a}_{\iota }, \flat _{\iota }\right) \in \left(\mathfrak{X}, \mathfrak{Z}\right) such that \flat _{\iota } = \mathcal{E}\left(\mathfrak{a}_{\iota }, \pi _{\iota }\right) and \mathfrak{a}_{\iota +1} = \mathcal{E}\left(\flat _{\iota }, \tau _{\iota }\right). Also, we get

    \begin{eqnarray*} d\left( \mathfrak{a}_{\iota +1}, \flat _{\iota }\right) & = &d\left( \mathcal{E }\left( \flat _{\iota }, \tau _{\iota }\right) , \mathcal{E}\left( \mathfrak{a} _{\iota }, \pi _{\iota }\right) \right) \\ &\leq &\theta _{1}\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) +\theta _{2}\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) \frac{ d\left( \mathfrak{a}_{\iota }, \mathcal{E}\left( \mathfrak{a}_{\iota }, \pi _{\iota }\right) \right) d\left( \mathcal{E}\left( \flat _{\iota }, \tau _{\iota }\right) , \flat _{\iota }\right) }{1+d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) } \\ & = &\theta _{1}\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) +\theta _{2}\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) \frac{ d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) d\left( \mathfrak{a} _{\iota +1}, \flat _{\iota }\right) }{1+d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) } \\ &\leq &\theta _{1}\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) +\theta _{2}\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) d\left( \mathfrak{a}_{\iota +1}, \flat _{\iota }\right) \\ & = &\theta _{1}\left( \mathcal{E}\left( \flat _{\iota -1}, \tau _{\iota -1}\right) , \flat _{\iota }\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) +\theta _{2}\left( \mathcal{E}\left( \flat _{\iota -1}, \tau _{\iota -1}\right) , \flat _{\iota }\right) d\left( \mathfrak{a}_{\iota +1}, \flat _{\iota }\right) \\ &\leq &\theta _{1}\left( \flat _{\iota -1}, \flat _{\iota }\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) +\theta _{2}\left( \flat _{\iota -1}, \flat _{\iota }\right) d\left( \mathfrak{a}_{\iota +1}, \flat _{\iota }\right) \\ & = &\theta _{1}\left( \mathcal{E}\left( \mathfrak{a}_{\iota -1}, \pi _{\iota -1}\right) , \flat _{\iota }\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) +\theta _{2}\left( \mathcal{E}\left( \mathfrak{a}_{\iota -1}, \pi _{\iota -1}\right) , \flat _{\iota }\right) d\left( \mathfrak{a}_{\iota +1}, \flat _{\iota }\right) \\ &\leq &\theta _{1}\left( \mathfrak{a}_{\iota -1}, \flat _{\iota }\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) +\theta _{2}\left( \mathfrak{a}_{\iota -1}, \flat _{\iota }\right) d\left( \mathfrak{a}_{\iota +1}, \flat _{\iota }\right) \\ &\leq &\cdot \cdot \cdot \leq \theta _{1}\left( \mathfrak{a}_{0}, \flat _{\iota }\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) +\theta _{2}\left( \mathfrak{a}_{0}, \flat _{\iota }\right) d\left( \mathfrak{ a}_{\iota +1}, \flat _{\iota }\right), \end{eqnarray*}

    signifying that

    \begin{eqnarray*} d\left( \mathfrak{a}_{\iota +1}, \flat _{\iota }\right) &\leq &\theta _{1}\left( \mathfrak{a}_{0}, \flat _{\iota }\right) d\left( \mathfrak{a} _{\iota }, \flat _{\iota }\right) +\theta _{2}\left( \mathfrak{a}_{0}, \flat _{\iota }\right) d\left( \mathfrak{a}_{\iota +1}, \flat _{\iota }\right) \\ & = &\theta _{1}\left( \mathfrak{a}_{0}, \mathcal{E}\left( \mathfrak{a}_{\iota }, \pi _{\iota }\right) \right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) +\theta _{2}\left( \mathfrak{a}_{0}, \mathcal{E}\left( \mathfrak{a} _{\iota }, \pi _{\iota }\right) \right) d\left( \mathfrak{a}_{\iota +1}, \flat _{\iota }\right) \\ &\leq &\theta _{1}\left( \mathfrak{a}_{0}, \mathfrak{a}_{\iota }\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) +\theta _{2}\left( \mathfrak{a}_{0}, \mathfrak{a}_{\iota }\right) d\left( \mathfrak{a}_{\iota +1}, \flat _{\iota }\right) \\ & = &\theta _{1}\left( \mathfrak{a}_{0}, \mathcal{E}\left( \flat _{\iota -1}, \tau _{\iota -1}\right) \right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) +\theta _{2}\left( \mathfrak{a}_{0}, \mathcal{E}\left( \flat _{\iota -1}, \tau _{\iota -1}\right) \right) d\left( \mathfrak{a}_{\iota +1}, \flat _{\iota }\right) \\ &\leq &\theta _{1}\left( \mathfrak{a}_{0}, \flat _{\iota -1}\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) +\theta _{2}\left( \mathfrak{a} _{0}, \flat _{\iota -1}\right) d\left( \mathfrak{a}_{\iota +1}, \flat _{\iota }\right) \\ &\leq &\cdot \cdot \cdot \leq \theta _{1}\left( \mathfrak{a}_{0}, \flat _{0}\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) +\theta _{2}\left( \mathfrak{a}_{0}, \flat _{0}\right) d\left( \mathfrak{a}_{\iota +1}, \flat _{\iota }\right) , \end{eqnarray*}

    that is

    \begin{equation*} d\left( \mathfrak{a}_{\iota +1}, \flat _{\iota }\right) \leq \frac{\theta _{1}\left( \mathfrak{a}_{0}, \flat _{0}\right) }{1-\theta _{2}\left( \mathfrak{a}_{0}, \flat _{0}\right) }d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) . \end{equation*}

    Moreover,

    \begin{eqnarray*} d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) & = &d\left( \mathcal{E} \left( \flat _{\iota -1}, \tau _{\iota -1}\right) , \mathcal{E}\left( \mathfrak{a}_{\iota }, \pi _{\iota }\right) \right) \\ &\leq &\theta _{1}\left( \mathfrak{a}_{\iota }, \flat _{\iota -1}\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota -1}\right) +\theta _{2}\left( \mathfrak{a}_{\iota }, \flat _{\iota -1}\right) \frac{ d\left( \mathfrak{a}_{\iota }, \mathcal{E}\left( \mathfrak{a}_{\iota }, \pi _{\iota }\right) \right) d\left( \mathcal{E}\left( \flat _{\iota -1}, \tau _{\iota -1}\right) , \flat _{\iota -1}\right) }{1+d\left( \mathfrak{a}_{\iota }, \flat _{\iota -1}\right) } \\ & = &\theta _{1}\left( \mathfrak{a}_{\iota }, \flat _{\iota -1}\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota -1}\right) +\theta _{2}\left( \mathfrak{a }_{\iota }, \flat _{\iota -1}\right) \frac{d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota -1}\right) }{1+d\left( \mathfrak{a}_{\iota }, \flat _{\iota -1}\right) } \\ &\leq &\theta _{1}\left( \mathfrak{a}_{\iota }, \flat _{\iota -1}\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota -1}\right) +\theta _{2}\left( \mathfrak{a}_{\iota }, \flat _{\iota -1}\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) \\ & = &\theta _{1}\left( \mathcal{E}\left( \flat _{\iota -1}, \tau _{\iota -1}\right) , \flat _{\iota -1}\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota -1}\right) +\theta _{2}\left( \mathcal{E}\left( \flat _{\iota -1}, \tau _{\iota -1}\right) , \flat _{\iota -1}\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) \\ &\leq &\theta _{1}\left( \flat _{\iota -1}, \flat _{\iota -1}\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota -1}\right) +\theta _{2}\left( \flat _{\iota -1}, \flat _{\iota -1}\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) \\ & = &\theta _{1}\left( \mathcal{E}\left( \mathfrak{a}_{\iota -1}, \pi _{\iota -1}\right) , \flat _{\iota -1}\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota -1}\right) +\theta _{2}\left( \mathcal{E}\left( \mathfrak{a}_{\iota -1}, \pi _{\iota -1}\right) , \flat _{\iota -1}\right) d\left( \mathfrak{a} _{\iota }, \flat _{\iota }\right) \\ &\leq &\theta _{1}\left( \mathfrak{a}_{\iota -1}, \flat _{\iota -1}\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota -1}\right) +\theta _{2}\left( \mathfrak{a}_{\iota -1}, \flat _{\iota -1}\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) \\ &\leq &\cdot \cdot \cdot \leq \theta _{1}\left( \mathfrak{a}_{0}, \flat _{\iota -1}\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota -1}\right) +\theta _{2}\left( \mathfrak{a}_{0}, \flat _{\iota -1}\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right), \end{eqnarray*}

    which further implies that

    \begin{eqnarray*} d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) &\leq &\theta _{1}\left( \mathfrak{a}_{0}, \flat _{\iota -1}\right) d\left( \mathfrak{a} _{\iota }, \flat _{\iota -1}\right) +\theta _{2}\left( \mathfrak{a}_{0}, \flat _{\iota -1}\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) \\ & = &\theta _{1}\left( \mathfrak{a}_{0}, \mathcal{E}\left( \mathfrak{a}_{\iota -1}, \pi _{\iota -1}\right) \right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota -1}\right) +\theta _{2}\left( \mathfrak{a}_{0}, \mathcal{E}\left( \mathfrak{a}_{\iota -1}, \pi _{\iota -1}\right) \right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) \\ &\leq &\theta _{1}\left( \mathfrak{a}_{0}, \mathfrak{a}_{\iota -1}\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota -1}\right) +\theta _{2}\left( \mathfrak{a}_{0}, \mathfrak{a}_{\iota -1}\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) \\ & = &\theta _{1}\left( \mathfrak{a}_{0}, \mathcal{E}\left( \flat _{\iota -2}, \tau _{\iota -2}\right) \right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota -1}\right) +\theta _{2}\left( \mathfrak{a}_{0}, \mathcal{E}\left( \flat _{\iota -2}, \tau _{\iota -2}\right) \right) d\left( \mathfrak{a} _{\iota }, \flat _{\iota }\right) \\ &\leq &\theta _{1}\left( \mathfrak{a}_{0}, \flat _{\iota -2}\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota -1}\right) +\theta _{2}\left( \mathfrak{a }_{0}, \flat _{\iota -2}\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) \\ &\leq &\cdot \cdot \cdot \leq \theta _{1}\left( \mathfrak{a}_{0}, \flat _{0}\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota -1}\right) +\theta _{2}\left( \mathfrak{a}_{0}, \flat _{0}\right) d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) . \end{eqnarray*}

    It yields

    \begin{equation*} d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) \leq \frac{\theta _{1}\left( \mathfrak{a}_{0}, \flat _{0}\right) }{1-\theta _{2}\left( \mathfrak{a}_{0}, \flat _{0}\right) }d\left( \mathfrak{a}_{\iota }, \flat _{\iota -1}\right) . \end{equation*}

    As in the proof of Theorem 6, we can esaily prove that \left(\mathfrak{a}_{\iota }, \flat _{\iota }\right) is a Cauchy bisequence in (\mathfrak{X}, \mathfrak{Z}) . As (\mathfrak{X}, \mathfrak{Z}) is complete, so there exists \rho _{1}\in \mathfrak{X}\cap \mathfrak{Z} such that \lim_{\iota \rightarrow \infty }\left(\mathfrak{a}_{\iota }\right) = \lim_{\iota \rightarrow \infty }\left(\flat _{\iota }\right) = \rho _{1}. Now, consider

    \begin{eqnarray*} d\left( \mathcal{E}\left( \rho _{1}, \tau \right) , \flat _{\iota }\right) & = &d\left( \mathcal{E}\left( \rho _{1}, \tau \right) , \mathcal{E}\left( \mathfrak{a}_{\iota }, \pi _{\iota }\right) \right) \\ &\leq &\theta _{1}\left( \mathfrak{a}_{\iota }, \rho _{1}\right) d\left( \mathfrak{a}_{\iota }, \rho _{1}\right) +\theta _{2}\left( \mathfrak{a}_{\iota }, \rho _{1}\right) \frac{d\left( \mathfrak{a}_{\iota }, \mathcal{E}\left( \mathfrak{a}_{\iota }, \pi _{\iota }\right) \right) d\left( \mathcal{E}\left( \rho _{1}, \tau \right) , \rho _{1}\right) }{1+d\left( \mathfrak{a}_{\iota }, \theta _{1}\right) } \\ & = &\theta _{1}\left( \mathfrak{a}_{\iota }, \rho _{1}\right) d\left( \mathfrak{a}_{\iota }, \rho _{1}\right) +\theta _{2}\left( \mathfrak{a}_{\iota }, \rho _{1}\right) \frac{d\left( \mathfrak{a}_{\iota }, \flat _{\iota }\right) d\left( \mathcal{E}\left( \rho _{1}, \tau \right) , \rho _{1}\right) }{1+d\left( \mathfrak{a}_{\iota }, \rho _{1}\right) }. \end{eqnarray*}

    Applying limit as \iota \rightarrow \infty, we get d\left(\mathcal{E} \left(\rho _{1}, \tau \right), \rho _{1}\right) = 0, which implies that \mathcal{E}\left(\rho _{1}, \tau \right) = \rho _{1}. Similarly, \mathcal{E} \left(\rho _{1}, \pi \right) = \rho _{1}. Thus, \pi = \tau \in \Theta _{1}\cap \Theta _{2}, and evidently \Theta _{1}\cap \Theta _{2} is closed set in [0, 1]. Now we show that \Theta _{1}\cap \Theta _{2} is open in [0, 1]. Let \left(\pi _{0}, \tau _{0}\right) \in \left(\Theta _{1}, \Theta _{2}\right), then there is a bisequence \left(\mathfrak{a}_{0}, \flat _{0}\right) so that \mathfrak{a}_{0} = \mathcal{E}\left(\mathfrak{a} _{0}, \pi _{0}\right), \flat _{0} = \mathcal{E}\left(\flat _{0}, \tau _{0}\right). Since \mathfrak{X}\cup \mathfrak{Z} is open, so there exists r > 0 so that B_{d}\left(\mathfrak{a}_{0}, r\right) \subseteq \mathfrak{X}\cup \mathfrak{Z} and B_{d}\left(r, \flat _{0}\right) \subseteq \mathfrak{X}\cup \mathfrak{Z}, in which B_{d}\left(\mathfrak{a} _{0}, r\right) and B_{d}\left(r, \flat _{0}\right) denote the open balls with centres \mathfrak{a}_{0} and \flat _{0} independently and radius r. We select \pi \in \left(\tau _{0}-\epsilon, \tau _{0}+\epsilon \right) and \tau \in \left(\pi _{0}-\epsilon, \pi _{0}+\epsilon \right) such that

    \begin{equation*} \left \vert \pi -\tau _{0}\right \vert \leq \frac{1}{\aleph ^{\iota }} < \frac{ \epsilon }{2}, \end{equation*}
    \begin{equation*} \left \vert \tau -\pi _{0}\right \vert \leq \frac{1}{\aleph ^{\iota }} < \frac{ \epsilon }{2}, \end{equation*}

    and

    \begin{equation*} \left \vert \pi _{0}-\tau _{0}\right \vert \leq \frac{1}{\aleph ^{\iota }} < \frac{\epsilon }{2}. \end{equation*}

    Hence, we have

    \begin{equation*} \flat \in \overline{B_{\Theta _{1}\cup \Theta _{2}}\left( \mathfrak{a} _{0}, r\right) } = \left \{ \flat :\flat _{0}\in \mathfrak{Z}:d\left( \mathfrak{a }_{0}, \flat \right) \leq r+d\left( \mathfrak{a}_{0}, \flat _{0}\right) \right \}, \end{equation*}

    and

    \begin{equation*} \mathfrak{a}\in \overline{B_{\Theta _{1}\cup \Theta _{2}}\left( r, \flat _{0}\right) } = \left \{ \mathfrak{a}:\mathfrak{a}_{0}\in \mathfrak{X}:d\left( \mathfrak{a}, \flat _{0}\right) \leq r+d\left( \mathfrak{a}_{0}, \flat _{0}\right) \right \} . \end{equation*}

    Furthermore, we have

    \begin{eqnarray*} d\left( \mathcal{E}\left( \mathfrak{a}, \pi \right) , \flat _{0}\right) & = &d\left( \mathcal{E}\left( \mathfrak{a}, \pi \right) , \mathcal{E}\left( \flat _{0}, \tau _{0}\right) \right) \\ &\leq &d\left( \mathcal{E}\left( \mathfrak{a}, \pi \right) , \mathcal{E}\left( \flat , \tau _{0}\right) \right) +d\left( \mathcal{E}\left( \mathfrak{a} _{0}, \pi \right) , \mathcal{E}\left( \flat , \tau _{0}\right) \right) +d\left( \mathcal{E}\left( \mathfrak{a}_{0}, \pi \right) , \mathcal{E}\left( \flat _{0}, \tau _{0}\right) \right) \\ &\leq &2\aleph \left \vert \pi -\tau _{0}\right \vert +d\left( \mathcal{E} \left( \mathfrak{a}_{0}, \pi \right) , \mathcal{E}\left( \flat , \tau _{0}\right) \right) \\ &\leq &\frac{2}{\aleph ^{\iota }-1}+\theta _{1}\left( \mathfrak{a}_{0}, \flat \right) d\left( \mathfrak{a}_{0}, \flat \right) +\theta _{2}\left( \mathfrak{a}_{0}, \flat \right) \frac{d\left( \mathfrak{a }_{0}, \mathcal{E}\left( \mathfrak{a}_{0}, \pi \right) \right) d\left( \mathcal{E}\left( \flat , \tau _{0}\right) , \flat \right) }{1+d\left( \mathfrak{a}_{0}, \flat \right) } \\ & = &\frac{2}{\aleph ^{\iota }-1}+\theta _{1}\left( \mathfrak{a}_{0}, \flat \right) d\left( \mathfrak{a}_{0}, \flat \right) +\theta _{2}\left( \mathfrak{a }_{0}, \flat \right) \frac{d\left( \mathfrak{a}_{0}, \mathfrak{a}_{0}\right) d\left( \flat , \flat \right) }{1+d\left( \mathfrak{a}_{0}, \flat \right) } \\ & = &\frac{2}{\aleph ^{\iota }-1}+\theta _{1}\left( \mathfrak{a}_{0}, \flat \right) d\left( \mathfrak{a}_{0}, \flat \right) \\ &\leq &\frac{2}{\aleph ^{\iota }-1}+d\left( \mathfrak{a}_{0}, \flat \right) . \end{eqnarray*}

    Taking the limit as \iota \rightarrow \infty, we get

    \begin{equation*} d\left( \mathcal{E}\left( \mathfrak{a}, \pi \right) , \flat _{0}\right) \leq d\left( \mathfrak{a}_{0}, \flat \right) \leq r+d\left( \mathfrak{a}_{0}, \flat _{0}\right) . \end{equation*}

    By corresponding fashion, we get

    \begin{equation*} d\left( \mathfrak{a}_{0}, \mathcal{E}\left( \flat , \tau \right) \right) \leq d\left( \mathfrak{a}, \flat _{0}\right) \leq r+d\left( \mathfrak{a}_{0}, \flat _{0}\right) . \end{equation*}

    However,

    \begin{equation*} d\left( \mathfrak{a}_{0}, \flat _{0}\right) = d\left( \mathcal{E}\left( \mathfrak{a}_{0}, \pi _{0}\right) , \mathcal{E}\left( \flat _{0}, \tau _{0}\right) \right) \leq \aleph \left \vert \pi _{0}-\tau _{0}\right \vert \leq \frac{1}{\aleph ^{\iota -1}}\rightarrow 0 \end{equation*}

    \underline {{\rm{as}}\; \iota \to \infty.\; {\rm{T}}} his yields that \mathfrak{a}_{0} = \flat _{0}. Hence, for \tau = \pi \in \left(\tau _{0}-\epsilon, \tau _{0}+\epsilon \right) and \mathcal{E}\left(\cdot, \pi \right) :\overline{B_{\Theta _{1}\cup \Theta _{2}}\left(\mathfrak{a}_{0}, r\right) }\rightarrow \overline{ B_{\Theta _{1}\cup \Theta _{2}}\left(\mathfrak{a}_{0}, r\right) }. Given that all the conditions of Theorem 6 are met, a fixed point in in \overline{\mathfrak{X}}\cup \overline{\mathfrak{Z}} for \mathcal{E}\left(\cdot, \pi \right) is assured, and this point is inherently within \mathfrak{X\cup Z}. Then, \pi = \tau \in \Theta _{1}\cap \Theta _{2} for each \tau \in \left(\tau _{0}-\epsilon, \tau _{0}+\epsilon \right). Hence, \left(\tau _{0}-\epsilon, \tau _{0}+\epsilon \right) \in \Theta _{1}\cap \Theta _{2} which gives \Theta _{1}\cap \Theta _{2} is open in the closed interval [0, 1]. The converse of it can be obtained by the similar procedure.

    In this manuscript, we introduced some precise control functions in the contractive inequalities and proved fixed points of contravariant mappings in the situation of this new space. As consequences of our major results, we derived some well-known results of literature. An illustrative example is also flourished to verify the authenticity of accomplished theorem. As an application, we solved a Volterra integral equation, which was predominantly highlighted in signal processing and electrical engineering by employing our results.

    Analyzing the convergence rate and stability properties of our iterative scheme under different control functions for rational contractions could offer significant theoretical advancements and optimize convergence speed in practical applications. Applying our fixed point results to model real-world engineering problems in areas like heat transfer, vibration analysis, and circuit design could demonstrate their practical potential and contribute to solving critical engineering challenges.

    Mohammed H. Alharbi: conceptualization, formal analysis, investigation, visualization, writing-original draft, writing-review and editing; Jamshaid Ahmad: conceptualization, formal analysis, methodology, validation, writing-original draft, writing-review and editing. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare no conflict of interest.

    [1] FAO (1996) The Rome Declaration on World Food Security; The World Food Summit. FAO, Rome. Available from: http://www.fao.org/wfs/
    [2] Royal Society (2009) Reaping the benefits: Science and the sustainable intensification of global agriculture. RS Policy Document 11/09. London.
    [3] Foresight (2011) The Future of Food and Farming. The Government Office for Science, London.
    [4] FAO (2011) Save and Grow: a policymaker’s guide to the sustainable intensification of smallholder crop production. FAO, Rome. 102.
    [5] MEA (2205) Millennium Ecosystem Assessment Reports. World Resource Institute. Washington D.C., Island Press.
    [6] Kassam A, Basch G, Friedrich T, et al. (2013) Sustainable soil management is more than what and how crops are grown. In: R. Lal and R. A. Stewart (Eds.). Principles of Soil Management in Agro-ecosystems. Advances in Soil Science. CRC Press.
    [7] WDR (2008) Agriculture for Development. World Development Report. Washington, DC: World Bank.
    [8] IAASTD (2009) Agriculture at the crossroads. International assessment of agricultural knowledge, science and technology for development. Island Press, Washington D.C.
    [9] Godfray C, Beddington JR, Crute IR, et al. (2010) Food security: The challenge of feeding 9 billion people. Science 327: 812-818. doi: 10.1126/science.1185383
    [10] FAO (2012) World Agriculture towards 2030/2050. The 2012 revision. N. Alexandratos and J. Bruinsma (eds). FAO, Rome.
    [11] FAO (2012) State of Food and Agriculture (SOFA) 2012 - Investing in agriculture for a better future. FAO, Rome.
    [12] FAO (2013) State of Food and Agriculture (SOFA) 2013 - Food systems for better nutrition. FAO, Rome.
    [13] FAO (2013) State of Food Insecurity (SOFI) 2013 – The multiple dimensions of food security, FAO, Rome.
    [14] FAO (2015) State of Food Insecurity (SOFI) 2015 - Meeting the 2015 international hunger targets: taking stock of uneven progress. FAO, Rome.
    [15] FAO (2015) State of Food and Agriculture (SOFA) 2015 - Social protection and agriculture: breaking the cycle of rural poverty. FAO, Rome.
    [16] UN (2015) Open Working Group proposal for Sustainable Development Goals, Full report of the Open Working Group of the General Assembly on Sustainable Development Goals, A/68/970. Available from: http://undocs.org/A/68/970
    [17] FAO (2014) Panorama de la Seguridad Alimentaria y Nutricional en América Latina y el Caribe 2014, FAO, Santiago de Chile
    [18] FAO (2014) Manual de Agricultura Climaticamente Intelligente. FAO, Rome.
    [19] The Global Food Security programme (2015) Extreme weather and resilience of the global food system Final Project Report from the UK-US Taskforce on Extreme Weather and Global Food System Resilience, The Global Food Security programme, UK. 20.
    [20] Winterbottom R, Reij C, Garrity D, et al. (2013) “Improving Land and Water Management.” Working Paper, Installment 4 of Creating a Sustainable Food Future. Washington, DC: World Resources Institute. 44.
    [21] Friedrich T (2007) Degradation of Natural Resources and Measures for Mitigation; in: APCAEM/MoA-PRC (Eds.): Handbook of the International Seminar on Enhancing Extension of Conservation Agriculture Techniques in Asia and the Pacific, Asian and Pacific Centre for Agricultural Engineering and Machinery (APCAEM) and Ministry of Agriculture of the Peoples Republic of China, Zhengzhou China, 24-26 Oct. 2007. 47-61.
    [22] SAI (2010) Water Conservation Technical Brief, TB 9 - Use of a conservation tillage system as a way to reduce water the footprint of crops; The SAI Platform, 22.
    [23] Montgomery D (2007) Dirt: The erosion of civilizations. University California Press, Berkeley and Los Angeles. 287.
    [24] Gibbs HK, Salmon JM (2015) Mapping the world’s degraded lands. Appl Geogr 57: 12-21. doi: 10.1016/j.apgeog.2014.11.024
    [25] Friedrich T, Kassam AH, Shaxson F (2009) Conservation Agriculture. In: Agriculture for Developing Countries. Science and Technology Options Assessment (STOA) Project. European Parliament. European Technology Assessment Group, Karlsruhe, Germany.
    [26] Kassam A, Friedrich T, Shaxson F, et al. (2009) The spread of Conservation Agriculture: Justification, sustainability and uptake. Int J Agric Sust 7: 292-320. doi: 10.3763/ijas.2009.0477
    [27] HLPE (2012) Climate change and food security. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security. Rome.
    [28] IPCC (2014) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1132.
    [29] FAO (2008) State of Food and Agriculture (SOFA) 2008 - Biofuels: prospects, risks and opportunities. FAO, Rome.
    [30] Haugen-Kozyra K, Goddard T (2009) Conservation agriculture protocols for green house gas offsets in a working carbon markets. Paper presented at the IV World Congress on Conservation Agriculture, 3-7 February 2009, New Delhi, India.
    [31] Corsi S, Friedrich T, Kassam A, et al. (2012) Soil Organic Carbon Accumulation and Greenhouse Gas Emission Reductions from Conservation Agriculture: A literature review, Integrated Crop Management Vol.16. FAO, Rome. 101.
    [32] FAO (2014) Agricultura Familiar en América Latina y el Caribe: Recomendaciones de Política; S. Salcedo y L. Guzmán (eds.). FAO, Chile.
    [33] FAO (2015) Save and Grow in practice: maize, rice and wheat. FAO, Rome.
    [34] 33. Kassam A, Friedrich T (2012) An ecologically sustainable approach to agricultural production intensification: Global perspectives and developments. Field Actions Sci Rep Special Issue 6.
    [35] FAO. What is CA? Conservation Agriculture Website of FAO. 2013. Available from: www.fao.org/ag/ca/1a.html
    [36] Saturnino HM, Landers JN (2002) The Environment and Zero Tillage; APDC-FAO, Brasilia, Brazil UDC 504:631/635, CDD 631.521
    [37] Baig MN, Gamache PM (2009) The Economic, Agronomic and Environmental Impact of No-Till on the Canadian Prairies. Alberta Reduced Tillage Linkages. Canada. 134.
    [38] Lindwall CW, Sonntag B (Eds) (2010) Landscape Transformed: The History of Conservation Tillage and Direct Seeding. Knowledge Impact in Society. Saskatoon: University of Saskatchewan. 219.
    [39] Mello I, van Raij B (2006) No-till for sustainable agriculture in Brazil. Proc World Assoc Soil Water Conserv P1: 49-57.
    [40] Kassam A, Friedrich T, Derpsch R, et al. (2015) Overview of the Worldwide Spread of Conservation Agriculture. Field Actions Sci Rep 8.
    [41] FAO. AquaStat: CA Adoption Worldwide. 2016. Available from: www.fao/ag/ca/6c.html
    [42] Gonsalves J, Campilan D, Smith G, Bui VL, Jimenez FM (Eds.) (2015) Towards Climate Resilience in Agriculture for Southeast Asia: An overview for decision-makers. Hanoi, Vietnam: International Center for Tropical Agriculture (CIAT). CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). 450.
    [43] FAO (2010) An international consultation on integrated crop-livestock systems for development - The way forward for sustainable production intensification; Integrated Crop Management Vol.13. FAO, Rome. 63.
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7256) PDF downloads(1533) Cited by(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog