A significant advancement in the field of fixed point theory is presented in this manuscript. The existence and uniqueness of strong tripled coincidence points for F-contractive mappings in metric spaces were investigated. An extension of this analysis to multivalued F-contractive mappings was provided, establishing the existence of tripled fixed points within this generalized setting. Existing findings in the literature were generalized and refined by these results, offering a more comprehensive understanding of fixed point phenomena. Furthermore, the practical applicability of these theoretical contributions was demonstrated through the study of solutions to various forms of nonlinear integral equations and integral-type inequalities.
Citation: Hasanen A. Hammad, Doha A. Kattan. Strong tripled fixed points under a new class of F-contractive mappings with supportive applications[J]. AIMS Mathematics, 2025, 10(3): 5785-5805. doi: 10.3934/math.2025266
A significant advancement in the field of fixed point theory is presented in this manuscript. The existence and uniqueness of strong tripled coincidence points for F-contractive mappings in metric spaces were investigated. An extension of this analysis to multivalued F-contractive mappings was provided, establishing the existence of tripled fixed points within this generalized setting. Existing findings in the literature were generalized and refined by these results, offering a more comprehensive understanding of fixed point phenomena. Furthermore, the practical applicability of these theoretical contributions was demonstrated through the study of solutions to various forms of nonlinear integral equations and integral-type inequalities.
| [1] |
E. I. Fredholm, Sur une classe d'équations fonctionnelles, Acta Math., 27 (1903), 365–390. https://doi.org/10.1007/BF02421317 doi: 10.1007/BF02421317
|
| [2] | M. D. Rus, A note on the existence of positive solution of Fredholm integral equations, Fix. Point Theory, 5 (2004), 369–377. |
| [3] |
M. I. Berenguer, M. V. F. Munoz, A. I. G. Guillem, M. R. Galan, Numerical treatment of fixed point applied to the nonlinear Fredholm integral equation, Fixed Point Theory Appl., 2009 (2009), 735638. https://doi.org/10.1155/2009/735638 doi: 10.1155/2009/735638
|
| [4] |
K. Zhao, J. Liu, X. Lv, A unified approach to solvability and stability of multipoint BVPs for Langevin and Sturm-Liouville equations with CH-fractional derivatives and impulses via coincidence theory, Fractal Fract., 8 (2024), 111. https://doi.org/10.3390/fractalfract8020111 doi: 10.3390/fractalfract8020111
|
| [5] |
K. Zhao, Study on the stability and its simulation algorithm of a nonlinear impulsive ABC-fractional coupled system with a Laplacian operator via F-contractive mapping, Adv. Cont. Discr. Mod., 2024 (2024), 5. https://doi.org/10.1186/s13662-024-03801-y doi: 10.1186/s13662-024-03801-y
|
| [6] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998. |
| [7] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
| [8] |
H. A. Hammad, M. De la Sen, Involvement of the fixed point technique for solving a fractional differential system, AIMS Math., 7 (2022), 7093–7105. https://doi.org/10.3934/math.2022395 doi: 10.3934/math.2022395
|
| [9] |
Y. Kao, Y. Cao, Y. Chen, Projective synchronization for uncertain fractional reaction-diffusion systems via adaptive sliding mode control based on finite-time scheme, IEEE Trans. Neural Netw. Learn. Syst., 35 (2023), 1–9. https://doi.org/10.1109/TNNLS.2023.3288849 doi: 10.1109/TNNLS.2023.3288849
|
| [10] |
Y. Kao, Y. Li, J. H. Park, X. Chen, Mittag-Leffler synchronization of delayed fractional memristor neural networks via adaptive control, IEEE Trans. Neural Netw. Learn. Syst., 32 (2021), 2279–2284. https://doi.org/10.1109/TNNLS.2020.2995718 doi: 10.1109/TNNLS.2020.2995718
|
| [11] |
H. A. Hammad, M. De la Sen, Stability and controllability study for mixed integral fractional delay dynamic systems endowed with impulsive effects on time scales, Fractal Frac., 7 (2023), 92. https://doi.org/10.3390/fractalfract7010092 doi: 10.3390/fractalfract7010092
|
| [12] |
H. A. Hammad, R. A. Rashwan, A. Nafea, M. E. Samei, S. Noeiaghdam, Stability analysis for a tripled system of fractional pantograph differential equations with nonlocal conditions, J. Vibration Control, 30 (2024), 632–647. https://doi.org/10.1177/10775463221149232 doi: 10.1177/10775463221149232
|
| [13] |
T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. TMA, 65 (2006), 1379–1393. https://doi.org/10.1016/j.na.2005.10.017 doi: 10.1016/j.na.2005.10.017
|
| [14] |
M. Abbas, M. A. Khan, S. Radenović, Common coupled fixed point theorems in cone metric spaces for $w$-compatible mappings, Appl. Math. Comput., 217 (2010), 195–202. https://doi.org/10.1016/j.amc.2010.05.042 doi: 10.1016/j.amc.2010.05.042
|
| [15] |
H. Aydi, M. Postolache, W. Shatanawi, Coupled fixed point results for $(\psi, \phi)$-weakly contractive mappings in ordered $G$- metric spaces, Comput. Math. Appl., 63 (2012), 298–309. https://doi.org/10.1016/j.camwa.2011.11.022 doi: 10.1016/j.camwa.2011.11.022
|
| [16] |
V. Berinde, Coupled fixed point theorems for contractive mixed monotone mappings in partially ordered metric spaces, Nonlinear Anal., 75 (2012), 3218–3228. https://doi.org/10.1016/j.na.2011.12.021 doi: 10.1016/j.na.2011.12.021
|
| [17] |
B. S. Choudhury, P. Maity, Coupled fixed point results in generalized metric spaces, Math. Comput. Model., 54 (2011), 73–79. https://doi.org/10.1016/j.mcm.2011.01.036 doi: 10.1016/j.mcm.2011.01.036
|
| [18] |
H. A. Hammad, F. M. Bota, L. Guran, Wardowski's contraction and fixed point technique for solving systems of functional and integral equations, J. Func. Spaces, 2021 (2021), 7017046. https://doi.org/10.1155/2021/7017046 doi: 10.1155/2021/7017046
|
| [19] |
N. V. Luong, N. X. Thuan, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal., 74 (2011), 983–992. https://doi.org/10.1016/j.na.2010.09.055 doi: 10.1016/j.na.2010.09.055
|
| [20] |
B. Samet, C. Vetro, Coupled fixed point, F-invariant set and fixed point of $N$-order, Ann. Funct. Anal., 1 (2010), 46–56. https://doi.org/10.15352/afa/1399900586 doi: 10.15352/afa/1399900586
|
| [21] |
B. Zlatanov, Coupled best proximity points for cyclic contractive maps and their applications, Fix. Point Theory, 22 (2021), 431–452. https://doi.org/10.24193/fpt-ro.2021.1.29 doi: 10.24193/fpt-ro.2021.1.29
|
| [22] |
V. Berinde, M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal., 74 (2011), 4889–4897. https://doi.org/10.1016/j.na.2011.03.032 doi: 10.1016/j.na.2011.03.032
|
| [23] |
M. Borcut, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Appl. Math. Comput. 218 (2012), 7339–7346. https://doi.org/10.1016/j.amc.2011.11.049 doi: 10.1016/j.amc.2011.11.049
|
| [24] |
B. S. Choudhury, E. Karapınar, A. Kundu, Tripled coincidence point theorems for nonlinear contractions in partially ordered metric spaces, Int. J. Math. Math. Sci., 2012 (2012), 329298. https://doi.org/ 10.1155/2012/329298 doi: 10.1155/2012/329298
|
| [25] |
Z. Mustafa, J. R. Roshan, V. Parvaneh, Existence of a tripled coincidence point in ordered $Gb$-metric spaces and applications to a system of integral equations, J. Inequal. Appl., 2013 (2013), 453. https://doi.org/10.1186/1029-242X-2013-453 doi: 10.1186/1029-242X-2013-453
|
| [26] |
H. Aydi, E. Karapinar, M. Postolache, Tripled coincidence point theorems for weak $\phi $-contractions in partially ordered metric spaces, Fixed Point Theory Appl., 2012 (2012), 44. https://doi.org/10.1186/1687-1812-2012-44 doi: 10.1186/1687-1812-2012-44
|
| [27] |
A. llchev, V. Ivanova, H. Kulina, P. Yaneva, B. Zlatanov, Investigation of equilibrium in oligopoly markets with the help of tripled fixed points in Banach spaces, Econometrics, 12 (2024), 18. https://doi.org/10.3390/econometrics12020018 doi: 10.3390/econometrics12020018
|
| [28] | G. Godefroy, V. Indumathi, Strong proximinality and polyhedral spaces, Rev. Mat. Complut., 14 (2001), 105–125. |
| [29] |
R. A. Rashwan, H. A. Hammad, A. Nafea, A new contribution in fuzzy cone metric spaces by strong fixed point techniques with supportive application, J. Intell. Fuzzy Sys., 42 (2022), 3923–3943. https://doi.org/10.3233/JIFS-212188 doi: 10.3233/JIFS-212188
|
| [30] |
D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94
|
| [31] |
M. U. Ali, T. Kamran, Multivalued F-contractions and related fixed point theorems with an application, Filomat, 30 (2016), 3779–3793. https://doi.org/10.2298/FIL1614779A doi: 10.2298/FIL1614779A
|
| [32] |
T. Hamaizia, Fixed point theorems for generalized $(\psi, \phi, F)$-contraction type mappings in $b-$metric spaces with applications, Open J. Math. Anal., 5 (2021), 35–41. https://doi.org/10.30538/psrp-oma2021.0080 doi: 10.30538/psrp-oma2021.0080
|
| [33] |
A. Asif, M. Nazam, M. Arshad, S. O. Kim, F-metric, F- contraction and common fixed-point theorems with applications, Mathematics, 7 (2019), 586. https://doi.org/10.3390/math7070586 doi: 10.3390/math7070586
|
| [34] |
S. Luambano, S. Kumar, G. Kakiko, Fixed point theorem for F- contraction mappings, in partial metric spaces, Lobachevskii J. Math., 40 (2019), 183–188. https://doi.org/10.1134/S1995080219020094 doi: 10.1134/S1995080219020094
|
| [35] |
M. Nazam, C. Park, M. Arshad, Fixed point problems for generalized contractions with applications, Adv. Differ. Equ., 2021 (2021), 247. https://doi.org/10.1186/s13662-021-03405-w doi: 10.1186/s13662-021-03405-w
|
| [36] |
C. Mongkolkeha, D. Gopal, Some common fixed point theorems for generalized F-contraction involving $w$-distance with some applications to differential equations, Mathematics, 7 (2019), 32. https://doi.org/10.3390/math7010032 doi: 10.3390/math7010032
|
| [37] |
K. Sawangsup, W. Sintunavarat, Y. J. Cho, Fixed point theorems for orthogonal F-contraction mappings on $O$-complete metric spaces, J. Fixed Point Theory Appl., 22 (2020), 10. https://doi.org/10.1007/s11784-019-0737-4 doi: 10.1007/s11784-019-0737-4
|
| [38] |
H. A. Hammad, M. De la Sen, A coupled fixed point technique for solving coupled systems of functional and nonlinear integral equations, Mathematics 7 (2019), 634. https://doi.org/10.3390/math7070634 doi: 10.3390/math7070634
|
| [39] |
H. K. Nashine, B. Samet, Fixed point results for mappings satisfying $(\psi, \varphi)$-weakly contractive condition in partially ordered metric spaces, Nonlinear Anal., 74 (2011), 2201–2209. https://doi.org/10.1016/j.na.2010.11.024 doi: 10.1016/j.na.2010.11.024
|