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1. Introduction

The traditional silos between scientific disciplines are dissolving, fueled by transformative
advancements and innovative theoretical methodologies. This interdisciplinary shift is especially
pronounced in mathematics, a field undergoing a significant evolution. In an era where mathematical
literacy is paramount, a deficit in understanding equates to a diminished grasp of the natural world’s
intricacies. Through mathematical exploration, we unlock hidden patterns and interrelationships. The
ubiquitous Fibonacci sequence, for example, illuminates growth patterns in flora and reproductive
strategies in fauna. Furthermore, mathematics serves as a cornerstone for modeling complex
phenomena, such as epidemic spread. By employing differential or difference equations to analyze
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interactions within population groups, scientists glean critical insights into the dynamics of infectious
disease transmission.

The intricate interplay between mathematics and physics is exemplified by functional analysis,
a field that has grown in significance alongside theoretical physics. The formal framework of
functional analysis provides the mathematical tools necessary for understanding quantum field theory
and quantum mechanics, while these physical theories have enriched the field with new problems and
inspired the development of innovative functional analytic methods.

Fixed point theory, a significant branch of functional analysis, offers a powerful and versatile
toolkit with broad applicability across diverse fields. Centered on the fundamental concept of a fixed
point, it has profoundly impacted areas such as topology, game theory, optimal control, artificial
intelligence, logic programming, dynamical systems, differential equations, and economics, notably
through the analysis of equilibrium problems and the solution of integral equations. Furthermore,
the inherent ability of fixed point techniques to establish the existence and uniqueness of solutions
to complex fractional differential and integral equations, which arise from the non-local nature of
fractional operators, renders them indispensable in fractional calculus. By leveraging theorems
like the Banach contraction principle and the Leray-Schauder alternative, researchers can effectively
analyze these equations and model real-world phenomena that exhibit memory and hereditary
properties, solidifying fixed point theory’s role as a robust framework for both theoretical and practical
applications, for examples, the existence of the solutions to Fredholm integral equations [1–3],
solving factional integral systems [4–7], solving fractional differential and fractional reaction-diffusion
systems [8–10], and studying the stability for mixed integral fractional delay dynamic systems and
fractional pantograph differential equations [11, 12].

Building upon Bhaskar and Lakshmikantham’s foundational work [13], the concept of coupled
fixed points has not only expanded the theoretical landscape of fixed point theory but also spurred
extensive investigations into its applications across various mathematical domains. Their subsequent
contributions further refined our understanding of coupled fixed points within partially ordered metric
spaces, laying the groundwork for numerous extensions and generalizations. This initial research
has catalyzed a wealth of studies, exploring diverse aspects of coupled fixed points, including their
existence, uniqueness, and stability, as well as their relevance in solving differential and integral
equations, optimization problems, and other areas. The breadth and depth of these developments are
evidenced by the comprehensive body of literature available, like coupled fixed point theorems in
generalized MSs [14–17], coupled fixed point theorems in various spaces [18–21], which collectively
demonstrate the continued significance and evolving nature of coupled fixed point theory.

Building upon the foundation laid by Berinde and Borcut in 2011 [22], the investigation of tripled
fixed points (TFPs) within partially ordered metric spaces has become a vibrant area of research. This
concept has not only enriched the theoretical framework of fixed point theory but has also opened
doors to a multitude of practical applications. The initial introduction of TFPs has sparked a cascade of
studies exploring various aspects, including the establishment of existence and uniqueness theorems,
the development of iterative methods for finding TFPs, and the extension of these concepts to more
generalized settings. The growing interest in TFPs is evidenced by the substantial body of literature,
such as TCP theorems in partially ordered MSs [23,24], and TCP theorems in various spaces [25–27],
which delve into the nuanced properties and diverse applications of these points, demonstrating their
ongoing relevance and the potential for further advancements in this field.
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Throughout this manuscript, we assume that (χ,$) , Υ(χ), and CB(χ) refer to a metric space
(MS), a set of all nonempty subsets of χ, and a set of all nonempty closed and bounded subsets in χ,
respectively. The Hausdorff metric generated by ξ is given by ξ : CB(χ) ×CB(χ)→ CB(χ),

ξ (V,W) = max
{

sup
v∈V

D (v,W) , sup
w∈W

D (w,V)
}
,

where V,W ∈ CB(χ) and D (v,W) = inf {$ (v,w) : w ∈ W} .

Definition 1.1. [28] The subset V of a MS (χ,$) is called proximinal if for each w ∈ χ there is v ∈ V
such that $ (w, v) = D (w,V) .

Definition 1.2. [22, 29] Let (χ,$) be a MS. A trio (v,w, z) ∈ χ3 is said to be a TFP of the mapping
= : χ3 → χ (where χ3 = χ × χ × χ) if v = = (v,w, z) , w = = (w, z, v) , and z = = (z, v,w) . Moreover, if
v = w = z, then the trio (v,w, z) ∈ χ3 is called a strong TFP of the mapping =, i.e., =(v, v, v) = v.

Example 1.3. Assume that χ = [−1, 1] is endowed with the distance metric $(v,w) = |v − w| . If the
mapping = : χ3 → χ is described as:

(i) = (v,w, z) = v+w+z
3 , then (v, v, v) ∈ [−1, 1]3 is a strong TFP of =.

(ii) = (v,w, z) = v−w−z
3 , then (0, 0, 0) ∈ [−1, 1]3 is a unique strong TFP of =.

(iii) = (v,w, z) = |v+w+z|
3 , then (v, v, v) ∈ [0, 1]3 is a strong TFP of =.

Definition 1.4. [22] A trio (v, v, v) ∈ χ3 is called a strong tripled coincidence point (TCP) of the
mappings = : χ3 → χ and θ : χ→ χ if =(v, v, v) = θ(v).

F-contraction mappings, introduced by Wardowski in 2012 [30], provide a generalized framework
for studying fixed point (FP) theorems. By relaxing the traditional contraction condition, F-
contractions encompass a wider class of mappings while still ensuring the existence and uniqueness
of fixed points. This concept has been extensively investigated in various metric spaces, resulting
in significant advancements in FP theory and its applications in diverse fields such as integral
equations [31–34], and functional and differential systems [35–37].

Wardowski [30] considered that z be a class of functions F : R+ → R such that the following
axioms are true:

(Fi) For each v,w > 0, if v < w, then F(v) < F(w), that is, F is strictly increasing;
(Fii) For each sequence {vm}m∈N ⊆ R+, limm→∞ vm = 0 iff limm→∞ F (vm) = −∞;
(Fiii) There is ϑ ∈ (0, 1) in order that limm→∞ (vm)ϑ F (vm) = 0.

Definition 1.5. [30] Assume that = : χ→ χ is an operator defined on a MS (χ,$) . The mapping = is
called an F−contraction if there is a real number a > 0 such that

$
(
= (τ) ,= (v)

)
> 0 implies a + F

[
$

(
= (τ) ,= (v)

)]
≤ F ($ (τ, v)) ,

for all τ, v ∈ χ and F ∈ z.
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According to the above definition, Wardowski [30] presented the following functions with the
corresponding contractions: For each j ∈ {1, 2, 3, 4}, the function F j defined on (0,+∞) belongs to z,

(i) F1(%) = ln(%), $(=τ,=v) ≤ e−a$(τ, v),

(ii) F2(%) = ln(%) + %, $(=τ,=v)
$(τ,v) e$(=τ,=v)−$(τ,v) ≤ e−a,

(iii) F3(%) = −1
√
%
, $(=τ,=v) ≤ 1

(1+τ
√
$(τ,v))2$(τ, v),

(iv) F4(%) = ln(%2 + %), $(=τ,=v)(1+$(=τ,=v))
$(τ,v)(1+$(τ,v)) ≤ e−a,

for all τ, v ∈ χ and % > 0 with a > 0 and =τ , =v.

Remark 1.6. The authors of [38] proved that, if F(%) = −1
q√%
, where q > 1 and % > 0, then F ∈ z.

Inspired by the aforementioned work, novel F-contractive θ-triplings are introduced, and the
existence of TCPs and strong TCPs is established. By merging the concepts of θ-tripling and
F-contractions, a comprehensive framework for analyzing these fixed-point problems is presented.
Furthermore, an extension of these results to multivalued θ-tripling is provided, and their applicability
to a class of nonlinear integral equations is demonstrated. In addition, integral-type results are explored.

2. Tripled coincidence points

The main results in this section are to obtain some TCPs under F-contractive-type θ-tripling in the
MS. We start our task with the following definitions:

Definition 2.1. Let (χ,$) be an MS and V,W,Z ⊆ χ are non-empty sets. Let = : χ3 → χ and θ : χ→ χ

be two mappings on χ. We say that = is a θ−tripling if

(i) = (v,w, z) ∈ θ (Z) for all v ∈ V, w ∈ W, and z ∈ Z.
(ii) = (w, z, v) ∈ θ (V) for all v ∈ V, w ∈ W, and z ∈ Z.

(iii) = (z, v,w) ∈ θ (W) for all v ∈ V, w ∈ W, and z ∈ Z.

Definition 2.2. Let (χ,$) be a MS and V,W,Z ⊆ χ be non-empty sets. The mapping = is called an
F−contractive-type θ-tripling (FCT-θT, for short) if

(i) = is a θ-tripling with respect to V, W, and Z,
(ii) there are a real number a > 0 and a function F ∈ z in order that

$
(
= (τ, κ, λ) ,= (v,w, z)

)
> 0 implies a + F

[
$

(
= (τ, κ, λ) ,= (v,w, z)

)]
≤ F ($ (θλ, θz)) ,

for all τ, κ, λ, v,w, z ∈ χ.

Theorem 2.3. Let (χ,$) be a complete MS and V,W,Z ⊆ χ be non-empty and closed sets. Assume
that = : χ3 → χ is an FCT-θT and the mapping θ : χ → χ is continuous and sequentially convergent
such that V, W, and Z are invariant under θ. Then, V ∩W ∩ Z , ∅ and =, θ have a TCP in V ∩W ∩ Z,
provided that = is continuous.
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Proof. Assume that (v0,w0, z0) ∈ V ×W × Z such that


θvm+1 = = (wm, zm, vm) ,
θwm+1 = = (zm, vm,wm) ,
θzm+1 = = (vm,wm, zm) .

Then,


θvm ⊂ V,
θwm ⊂ W,
θzm ⊂ Z.

Now,

F ($ (θvm, θvm+1)) = F
(
$

(
= (wm−1, zm−1, vm−1) ,= (wm, zm, , vm)

))
≤ F ($ (θvm−1, θvm)) − a

= F
(
$

(
= (wm−2, zm−2, vm−2) ,= (wm−1, zm−1, vm−1)

))
− a

≤ F ($ (θvm−2, θvm−1)) − 2a

. . .

≤ F ($ (θv0, θv1)) − ma. (2.1)

Letting m→ ∞ in (2.1), we have

lim
m→∞

F ($ (θvm, θvm+1)) = −∞,

which implies that
lim

m→∞
$ (θvm, θvm+1) = 0.

Assume that ρm = $ (θvm, θvm+1) . Utilizing the condition (Fiii), there exists ϑ ∈ (0, 1) in order that
limm→∞ (ρm)ϑ F (ρm) = 0. Thus, by (2.1), we get

F (ρm) ≤ F (ρ0) − ma.

Multiple the two sides in (ρm)ϑ , one can write

(ρm)ϑ F (ρm) ≤ (ρm)ϑ F (ρ0) − ma (ρm)ϑ ,

and in another form, we can write

(ρm)ϑ F (ρm) − (ρm)ϑ F (ρ0) ≤ −ma (ρm)ϑ .

Suppose that m → ∞, then the above inequality gives limm→∞m (ρm)ϑ = 0. Hence, there is a natural
number M in order that

m (ρm)ϑ ≤ 1 for all m ≥ M.

It follows that, for m ≥ M,

ρm ≤
1

m
1
ϑ

.

For k > m ≥ M, we get

$ (θvm, θvk) ≤ $ (θvm, θvm+1) +$ (θvm+1, θvm+2) + · · · +$ (θvk−1, θvk)

= ρm + ρm+1 + · · · + ρk−1
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≤

k−1∑
j=m

ρ j ≤

∞∑
j=m

ρ j ≤

∞∑
j=m

1

j
1
ϑ

.

As the series
∞∑

j=m

1

j
1
ϑ

is convergence, then limm→∞$ (θvm, θvk) = 0. Thus, the sequence {θvm} is a Cauchy

sequence. Since θ is continuous and sequentially convergent, and χ is complete, then we conclude that
{θvm} converges to {θv} (say) in V . On the other hand, if {vm} converges to some v ∈ χ, then θvm

converges to θv ∈ V because of the continuity of θ.
By the same procedure, one can obtain that

lim
m→∞

wm = w ∈ W ⇒ lim
m→∞

θwm = θw ∈ W,

lim
m→∞

zm = z ∈ Z ⇒ lim
m→∞

θzm = θz ∈ Z.

Now,

F ($ (θvm, θwm)) = F
(
$

(
= (wm−1, zm−1, vm−1) ,= (zm−1, vm−1,wm−1)

))
≤ F ($ (θ (vm−1) , θ (wm−1))) − a

= F
(
$

(
= (wm−2, zm−2, vm−2) ,= (zm−2, vm−2,wm−2)

))
− a

≤ F ($ (θ (vm−2) , θ (wm−2))) − 2a

. . .

≤ F ($ (θv0, θw0)) − ma.

Passing m→ ∞, we have

lim
m→∞

F ($ (θvm, θwm)) = 0⇒ lim
m→∞

$ (θvm, θwm) = $ (θv, θw) = 0

⇒ θv = θw.

Similarly, we can prove that θw = θz. Hence, θv = θw = θz. Therefore, V ∩W ∩ Z , ∅. �

Now,

F
(
$

(
θvm,= (v,wm−1, zm−1)

))
= F

(
$

(
= (wm−1, zm−1, vm−1) ,= (v,wm−1, zm−1)

))
≤ F ($ (θvm−1, θzm−1)) − a

= F
(
$

(
= (wm−2, zm−2, vm−2) ,= (vm−1,wm−1, zm−1)

))
− a

≤ F ($ (θvm−2, θzm−2)) − 2a

. . .

≤ F ($ (θv0, θz0)) − ma.

Letting m→ ∞, and using the continuity of =, we get

lim
m→∞

F
(
$

(
θvm,= (v,wm−1, zm−1)

))
= F

(
$

(
θv,= (v,w, z)

))
= −∞,

which implies that
lim

m→∞
$

(
θvm,= (v,wm−1, zm−1)

)
= $

(
θv,= (v,w, z)

)
= 0.

Hence, θv = = (v,w, z) . Analogously, we can show that θw = = (w, z, v) and θz = = (z, v,w) . This
proves that the element (v,w, z) is a TCP.
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Theorem 2.4. With the aid of the assertions of Theorem 2.3, =, θ have a unique strong TCP, provided
that θ is injective.

Proof. Thanks to Theorem 2.3, θv = θw = θz. Since θ is injective, then v = w = z. This proves that
θv = = (v, v, v).

For the uniqueness, assume that % is another strong TCP of = and θ such that % , v. By our
contractive mapping, we have

F ($ (θ%, θv)) = F
(
$

(
= (%, %, %) ,= (v, v, v)

))
≤ F ($ (θ%, θv)) − a.

Here, a contradiction exists because a > 0. This illustrate that = and θ have a unique strong TCP. �

Corollary 2.5. Let (χ,$) be a complete MS and V,W,Z ⊆ χ be non-empty and closed sets. Assume that
θ : χ → χ is a continuous and sequentially convergent mapping such that V, W, and Z are invariant
under θ. If = : χ3 → χ satisfies the condition

$
(
= (τ, κ, λ) ,= (v,w, z)

)
> 0, it implies,

a + F
[
$

(
= (τ, κ, λ) ,= (v,w, z)

)]
≤ F (max {$ (θτ, θv) , $ (θκ, θw) , $ (θλ, θz)}) . (2.2)

Then, V ∩W ∩ Z , ∅ and =, θ have a TCP in V ∩W ∩ Z, provided that = is continuous.

Proof. The proof follows immediately with Theorem 2.3 if we consider

max {$ (θτ, θv) , $ (θκ, θw) , $ (θλ, θz)} = $ (θτ, θv) ,
or max {$ (θτ, θv) , $ (θκ, θw) , $ (θλ, θz)} = $ (θκ, θw) ,
or max {$ (θτ, θv) , $ (θκ, θw) , $ (θλ, θz)} = $ (θλ, θz) .

�

Definition 2.6. Let (χ,$) be an MS and V,W,Z ⊆ χ be non-empty sets. We say that the mapping = is
a strict FCT-θT, if

(i) = is a θ−tripling with respect to V, W, and Z,
(ii) there are a real number a > 0 and a function F ∈ z with F (τ + κ) ≤ F (τ) + F (κ) such that

$
(
= (v,w, z) ,= (τ, κ, λ)

)
> 0 implies a + F

[
$

(
= (v,w, z) ,= (τ, κ, λ)

)]
≤ F ($ (θz, θλ)) ,

for all τ, z ∈ V, κ,w ∈ W, λ, v ∈ Z.

Theorem 2.7. Let (χ,$) be a complete MS and V,W,Z ⊆ χ be non-empty and closed sets. Assume
that = : χ3 → χ is a strict FCT-θT and θ : χ→ χ is a continuous and sequentially convergent mapping
such that V, W, and Z are invariant under θ. Then, V ∩W ∩ Z , ∅ and =, θ have a TCP in V ∩W ∩ Z,
provided that = is continuous.

Proof. Assume that (v0,w0, z0) ∈ V ×W × Z such that


θvm+1 = = (wm, zm, vm) ,
θwm+1 = = (zm, vm,wm) ,
θzm+1 = = (vm,wm, zm) .

Then


θvm ⊂ V,
θwm ⊂ W,
θzm ⊂ Z.
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Now,

F ($ (θvm, θvm+1)) ≤ F ($ (θvm, θwm) +$ (θwm, θvm+1))

≤ F ($ (θvm, θwm)) + F ($ (θwm, θvm+1))

= F
(
$

(
= (wm−1, zm−1, vm−1) ,= (zm−1, vm−1,wm−1)

))
+F

(
$

(
= (zm−1, vm−1,wm−1) ,= (wm, zm, vm)

))
≤ F ($ (θvm−1, θwm−1)) + F ($ (θwm−1, θvm)) − 2a

= F
(
$

(
= (wm−2, zm−2, vm−2) ,= (zm−2, vm−2,wm−2)

))
+F

(
$

(
= (zm−2, vm−2,wm−2) ,= (wm−1, zm−1, vm−1)

))
− 2a

≤ F ($ (θvm−2, θwm−2)) + F ($ (θwm−2, θvm−1)) − 4a

. . .

≤ F ($ (θv0, θw0)) + F ($ (θw0, θv1)) − 2ma.

Letting m→ ∞ in the above inequality, we get

lim
m→∞

F ($ (θvm, θvm+1)) = −∞,

which yields
lim

m→∞
$ (θvm, θvm+1) = 0.

Utilizing the triangle inequality, for l > m, one can write

$ (θvm, θvl) ≤ $ (θvm, θvm+1) +$ (θvm+1, θvm+2) + · · · +$ (θvl−1, θvl)→ 0 as m→ ∞.

Thus, {θvm} is a Cauchy sequence. Similar to the proof of Theorem 2.3, we conclude that

lim
m→∞

vm = v ∈ V ⇒ lim
m→∞

θvm = θv ∈ V,

lim
m→∞

wm = w ∈ W ⇒ lim
m→∞

θwm = θw ∈ W,

lim
m→∞

zm = z ∈ Z ⇒ lim
m→∞

θzm = θz ∈ Z.

The rest of the proof is similar to the proof of Theorem 2.3. Hence, V ∩W ∩Z , ∅ and the trio (v,w, z)
is a TCP. �

Theorem 2.8. With the aid of the assumptions of Theorem 2.7,=, θ have a unique strong TCP, provided
that θ is injective.

Proof. The proof follows immediately from Theorem 2.4. �

Remark 2.9. In Theorems 2.4 and 2.8, if we considered θ (v) = v, then =, θ have a unique strong TFP.

Example 2.10. Assume that χ = [−2, 2] equipped with a metric $ = |v − w| . Assume that V = [0, 2],
W = [0, 1], and Z = [−2, 0]. Define the mappings = : χ3 → χ and θ : χ→ χ by

= (v,w, z) =


−|z|
6 , if (v,w, z) ∈ V ×W × Z,
v
6 , if (w, z, v) ∈ W × Z × V,
w
6 , if (z, v,w) ∈ Z × V ×W,
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and θ(v) = v
3 for v ∈ χ. Clearly, θ is an injective mapping. Furthermore, suppose that F(%) = ln(%),

% > 0. Then,

F
[
$

(
= (τ, κ, λ) ,= (v,w, z)

)]
= F

[
$

(
− |λ|

6
,
− |z|

6

)]
= ln

∣∣∣∣∣ |λ|6 − |z|6
∣∣∣∣∣

≤ ln
∣∣∣∣∣λ3 − z

3

∣∣∣∣∣ − ln(2) = F ($ (θλ, θz)) − ln(2).

Therefore, all requirements of Theorem 2.4 are fulfilled with a = ln(2) > 0. Hence, =, θ have a unique
strong TCP. The unique strong TCP is (0, 0, 0) ∈ V ∩W ∩ Z.

3. Multivalued F-contractive mappings and TCPs

In this section, we obtain some TCPs for multivalued F-contractive-type θ-tripling (FCT-θT,
for short).

Definition 3.1. Let (χ,$) be an MS, V,W,Z ⊆ χ be non-empty sets, and Θ = V ∪W ∪ Z. Suppose that
θ : Θ→ Θ is a given mapping. We say that the mapping = : Θ3 → Υ (Θ) is a multivalued FCT-θT, if

(i) = (V ×W × Z) ⊂ θ (Z) , = (W × Z × V) ⊂ θ (V), and = (Z × V ×W) ⊂ θ (W) ,
(ii) there are a real number a > 0 and a function F ∈ z with F (τ + κ) ≤ F (τ) + F (κ) such that

ξ
(
= (v,w, z) ,= (τ, κ, λ)

)
> 0 implies ,

a + F
[
ξ
(
= (v,w, z) ,= (τ, κ, λ)

)]
≤ F ($ (θz, θλ)) .

for all v,w, z, τ, κ, λ ∈ Θ.

Theorem 3.2. Let (χ,$) be a complete MS and V,W,Z ⊆ χ be non-empty, closed, and bounded sets.
Assume that = : Θ3 → ΥProx (Θ) is a multivalued FCT-θT and θ : Θ → Θ is a continuous and
sequentially convergent mapping such that V, W, and Z are invariant under θ. Then, V ∩ W ∩ Z , ∅
and =, θ have a TCP in V ∩W ∩ Z, whenever = is continuous.

Proof. Assume that v0 ∈ V, w0 ∈ W, and z0 ∈ Z. Then, V, W, and Z are invariant under θ. Further,
= (v0,w0, z0) ∈ ΥProx (Θ) , = (w0, z0, v0) ∈ ΥProx (Θ) , and = (z0, v0,w0) ∈ ΥProx (Θ) . Thus, there exist
v1 ∈ V, w1 ∈ W, and z1 ∈ Z such that θv1 = = (w0, z0, v0) , θw1 = = (z0, v0,w0) , and θz1 = = (v0,w0, z0) .
Also, we can write

$ (θv0, θv1) = D
(
θv0,= (w0, z0, v0)

)
,

$ (θw0, θw1) = D
(
θw0,= (z0, v0,w0)

)
,

$ (θz0, θz1) = D
(
θz0,= (v0,w0, z0)

)
.

Since v1, w1, and z1 exist, then = (w1, z1, v1) , = (z1, v1,w1) , and = (v1,w1, z1) exist in ΥProx (Θ) .
Again, there are v2 ∈ V, w2 ∈ W, and z2 ∈ Z such that θv2 = = (w1, z1, v1) , θw2 = = (z1, v1,w1) ,

and θz2 = = (v1,w2, z2) . Moreover, we have

$ (θv1, θv2) = D
(
θv1,= (w1, z1, v1)

)
,
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$ (θw1, θw2) = D
(
θw1,= (z1, v1,w1)

)
,

$ (θz1, θz2) = D
(
θz1,= (v1,w1, z1)

)
.

Repeating the above process, we have sequences


θvm ⊂ V,
θwm ⊂ W,
θzm ⊂ Z,

such that


θvm+1 ∈ = (wm, zm, vm) ,
θwm+1 ∈ = (zm, vm,wm) ,
θzm+1 ∈ = (vm,wm, zm) ,

and 
$ (θvm, θvm+1) = D

(
θvm,= (wm, zm, vm)

)
,

$ (θwm, θwm+1) = D
(
θwm,= (zm, vm,wm)

)
,

$ (θzm, θzm+1) = D
(
θzm,= (vm,wm, zm)

)
.

Now, assume that θvm < = (wm, zm, vm) . Then, D
(
θvm,= (wm, zm, vm)

)
> 0 and

F ($ (θvm, θvm+1)) = F
(
D

(
θvm,= (wm, zm, vm)

))
≤ F

(
ξ
(
= (wm−1, zm−1, vm−1) ,= (wm, zm, vm)

))
≤ F ($ (θvm−1, θvm)) − a

= F
(
D

(
= (wm−2, zm−2, vm−2) ,= (wm−1, zm−1, vm−1)

))
− a

≤ F ($ (θvm−2, θvm−1)) − 2a

. . .

≤ F ($ (θv0, θv1)) − ma. (3.1)

Taking m→ ∞ in (3.1), we have

lim
m→∞

F ($ (θvm, θvm+1)) = −∞,

which implies that
lim

m→∞
$ (θvm, θvm+1) = 0.

Assume that ρm = $ (θvm, θvm+1) . Using the condition (Fiii), there exists ϑ ∈ (0, 1) such that
limm→∞ (ρm)ϑ F (ρm) = 0. Thus, by (3.1), we get

F (ρm) ≤ F (ρ0) − ma,

which yields
(ρm)ϑ F (ρm) ≤ (ρm)ϑ F (ρ0) − ma (ρm)ϑ ,

and in another form, we can write

(ρm)ϑ F (ρm) − (ρm)ϑ F (ρ0) ≤ −ma (ρm)ϑ .

Assume that m → ∞, then the above inequality gives limm→∞m (ρm)ϑ = 0. Hence, there is a natural
number M in order that

m (ρm)ϑ ≤ 1 for all m ≥ M.

It follows that, for m ≥ M,

ρm ≤
1

m
1
ϑ

.
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For k > m ≥ M, we get

$ (θvm, θvk) ≤ $ (θvm, θvm+1) +$ (θvm+1, θvm+2) + · · · +$ (θvk−1, θvk)

= ρm + ρm+1 + · · · + ρk−1

≤

k−1∑
j=m

ρ j ≤

∞∑
j=m

ρ j ≤

∞∑
j=m

1

j
1
ϑ

.

As the series
∞∑

j=m

1

j
1
ϑ

is convergence, then limm→∞$ (θvm, θvk) = 0. Thus, the sequence {θvm} is a Cauchy

sequence. Since θ is continuous and sequentially convergent, and χ is complete, then we conclude that
{θvm} converges to {θv} (say) in V . On the other hand, if {vm} converges to some v ∈ χ, then θvm

converges to θv ∈ V due to the continuity of θ.
By the same procedure, one can obtain that

lim
m→∞

wm = w ∈ W ⇒ lim
m→∞

θwm = θw ∈ W,

lim
m→∞

zm = z ∈ Z ⇒ lim
m→∞

θzm = θz ∈ Z.

Now,

F
(
D

(
θvm,= (v,wm−1, zm−1)

))
= F

(
ξ
(
= (wm−1, zm−1, vm−1) ,= (v,wm−1, zm−1)

))
≤ F ($ (θvm−1, θzm−1)) − a

≤ F ($ (θvm−1, θvm) +$ (θvm, θzm−1)) − a

≤ F ($ (θvm−1, θvm)) + F ($ (θvm, θzm−1)) − a

= F
(
D

(
θvm−1,= (wm−1, zm−1, vm−1)

))
+ F ($ (θvm, θzm−1)) − a

≤ F
(
ξ
(
= (wm−2, zm−2, vm−2) ,= (wm−1, zm−1, vm−1)

))
+F ($ (θvm, θzm−1)) − a

≤ F ($ (θvm−2, θvm−1)) + F ($ (θvm, θzm−1)) − 2a

. . .

≤ F ($ (θv0, θv1)) + F ($ (θvm, θzm−1)) − ma.

Letting m→ ∞, and using the continuity of =, we get

lim
m→∞

F
(
D

(
θvm,= (v,wm−1, zm−1)

))
= F

(
D

(
θv,= (v,w, z)

))
= −∞,

which implies that
lim

m→∞
D

(
θvm,= (v,wm−1, zm−1)

)
= D

(
θv,= (v,w, z)

)
= 0.

Hence, θv = = (v,w, z) . Similarly, we can show that θw = = (w, z, v) and θz = = (z, v,w) . This proves
that the trio (v,w, z) is a TCP of θ and =. �

4. Supportive applications

This section is important as it highlights the practical applications of our research. By showing
how our techniques can solve nonlinear integral systems, a topic of significant interest, we emphasize
the broader impact of FP theory.
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4.1. Some integral-type results

Assume that f is a family of functions φ : R+ → R+ satisfying the axioms below:

(i) φ is a positive Lebesgue integrable mapping on each compact subset of R+,

(ii) for all ε > 0,
∫ ε

0
φ(r)dr > 0.

Corollary 4.1. Replacing the contractive condition of Theorem 2.3 by the formula∫ $(=(τ,κ,λ),=(v,w,z))

0
φ(r)dr > 0 implies

∫ a+F[$(=(τ,κ,λ),=(v,w,z))]

0
φ(r)dr ≤

∫ F($(θλ,θz))

0
φ(r)dr, (4.1)

where φ ∈ f. If the rest of the requirements of Theorem 2.3 hold, then there exists a TCP of the mapping
= and θ.

Proof. Consider the function Λ(β) =
∫ β

0
φ(r)dr such that Λ(r1) ≤ Λ(r2) implies that r1 ≤ r2 for each

r1, r1 ∈ R+. Then, (4.1) can be expressed as

Λ(a + F
[
$

(
= (τ, κ, λ) ,= (v,w, z)

)]
) ≤ Λ (F ($ (θλ, θz))) ,

which yields
a + F

[
$

(
= (τ, κ, λ) ,= (v,w, z)

)]
≤ F ($ (θλ, θz)) ,

provided that $
(
= (τ, κ, λ) ,= (v,w, z)

)
> 0. �

Corollary 4.2. Replacing the contractive condition of Theorem 3.2 by the formula∫ ξ(=(v,w,z),=(τ,κ,λ))

0
φ(r)dr > 0 implies

∫ a+F[ξ(=(v,w,z),=(τ,κ,λ))]

0
φ(r)dr ≤

∫ F($(θz,θλ))

0
φ(r)dr, (4.2)

where φ ∈ f. If the rest of the hypotheses of Theorem 3.2 are satisfied, then there exists a TCP of the
mapping = and θ.

Proof. The proof is similar to Corollary 4.1. �

Remark 4.3. If we take the mapping θ as an injective mapping in Corollaries 4.1 and 4.2, we have a
strong TCP of = and θ.

Motivated by [39], assume that ϕ ∈ N is a fixed number and {φk}k∈[1,ϕ] is a family of ϕ functions
contained on f. For each r ≥ 0, we define

ℵ1(r) =

∫ r

0
φ1(r)dr,

ℵ2(r) =

∫ ℵ1(r)

0
φ2(r)dr =

∫ ∫ r
0 φ1(r)dr

0
φ2(r)dr,

ℵ3(r) =

∫ ℵ2(r)

0
φ3(r)dr =

∫ ∫ ∫ r
0 φ1(r)dr

0 φ2(r)dr

0
φ3(r)dr,

. . .

ℵϕ(r) =

∫ ℵ(ϕ−1)(r)

0
φϕ(r)dr.

We have the following result:
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Corollary 4.4. Exchange the contractive condition of Theorem 2.3 by the hypotheses below

ℵϕ
(
a + F

[
$

(
= (τ, κ, λ) ,= (v,w, z)

)])
≤ ℵϕ (F ($ (θλ, θz))) . (4.3)

If the rest of the requirements of Theorem 2.3 are satisfied, then there exists a TCP of the mapping =
and θ.

Proof. Specify the function ℵϕ(r) such that ℵϕ(r1) ≤ ℵϕ(r2) implies that r1 ≤ r2 for each r1, r1 ∈ R+.

Then, (4.3) can be written as

a + F
[
$

(
= (τ, κ, λ) ,= (v,w, z)

)]
) ≤ (F ($ (θλ, θz))) ,

provided that $
(
= (τ, κ, λ) ,= (v,w, z)

)
> 0. The proof can be completed by Theorem 2.3. �

Corollary 4.5. Exchange the contractive condition of Theorem 3.2 by the following assumption:

ℵϕ
(
a + F

[
ξ
(
= (v,w, z) ,= (τ, κ, λ)

)])
≤ ℵϕ (F ($ (θz, θλ))) .

If the rest of the axioms of Theorem 3.2 are true, then, there exists a TCP of the mapping = and θ.

Proof. The proof is similar to Corollary 4.4. �

Remark 4.6. If θ is an injective mapping in Corollaries 4.4 and 4.5, we have a strong TCP of = and θ.

4.2. Solving a system of nonlinear integral equations

Assume that χ = C ([0, l],R) is the set of all continuous and sequential convergence functions
described on [0, l]. Define a metric distance $ : χ × χ → R by $ (τ, κ) = sups∈[0,l] |τ(s) − κ(s)| for all
τ, κ ∈ χ. Clearly, the pair (χ,$) is a complete MS.

Suppose we have the following system:
τ (s) =

∫ l

0
a (s, r) Ξ (r, τ (r) , κ(r), λ(r)) dr, r ∈ [0, l],

κ (s) =
∫ l

0
a (s, r) Ξ (r, κ(r), λ(r), τ (r)) dr, r ∈ [0, l],

λ (s) =
∫ l

0
a (s, r) Ξ (r, λ(r), τ (r) , κ(r)) dr, r ∈ [0, l],

(4.4)

where l ∈ (0,∞) is a real number, a : [0, l] × [0, l]→ R, and Ξ : [0, l] × R3 → R.
Before we present our main results, we need the following hypotheses:

(H1) The function Ξ : [0, l] × R3 → R is continuous.
(H2) There are closed subsets V, W, and Z such that for τ, κ, λ, v,w, z ∈ V ∪W ∪ Z, we have

|Ξ (r, τ (r) , κ(r), λ(r)) − Ξ (r, v (r) ,w(r), z(r))| ≤
1
a
|λ(r) − z(r)| , where a > 0.

(H3) sups∈[0,l]a (s, r) ≤ 1.

Theorem 4.7. Under the hypotheses (H1)–(H3), the nonlinear problem (4.4) has a solution on χ.
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Proof. The mechanism of the FP technique is summarized in equating a given operator with the
problem under study and searching for a unique FP for this operator that is considered a unique solution
to the problem presented. So, we define the mapping = : χ3 → χ by

= (τ, κ, λ) (s) =

∫ l

0
a (s, r) Ξ (r, τ (r) , κ(r), λ(r)) dr, r ∈ [0, l], τ, κ, λ ∈ χ,

and θ(τ) (s) = τ(s). Then, for each λ(r) ∈ V, κ(r) ∈ W, and τ (r) ∈ Z, the problem (4.4) yields

= (τ, κ, λ) (s) =

∫ l

0
a (s, r) Ξ (r, τ (r) , κ(r), λ(r)) dr

= τ (s)

= θ(τ) (s) ∈ θ (Z) , (4.5)

= (κ, λ, τ) (s) =

∫ l

0
a (s, r) Ξ (r, κ(r), λ(r), τ (r)) dr

= κ(s)
= θ(κ) (s) ∈ θ (W) , (4.6)

and

= (λ, τ, κ) (s) =

∫ l

0
a (s, r) Ξ (r, λ(r), τ (r) , κ(r)) dr

= λ(s)
= θ(λ) (s) ∈ θ (V) . (4.7)

It follows from (4.5) and (4.6) that the mapping = is a θ-tripling with respect to V, W, and Z.
Next, we show that the mapping = is an FCT-θT. Assume that τ, κ, λ, v,w, z ∈ V ∪W ∪ Z. Then∣∣∣= (τ, κ, λ) (s) − = (v,w, z) (s)

∣∣∣
=

∣∣∣∣∣∣
∫ l

0
a (s, r) Ξ (r, τ (r) , κ(r), λ(r)) dr −

∫ l

0
a (s, r) Ξ (r, v (r) ,w(r), z(r)) dr

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ l

0
a (s, r) [Ξ (r, τ (r) , κ(r), λ(r)) − Ξ (r, v (r) ,w(r), z(r))] dr

∣∣∣∣∣∣
≤

∫ l

0
a (s, r) |Ξ (r, τ (r) , κ(r), λ(r)) − Ξ (r, v (r) ,w(r), z(r))| dr

≤

∫ l

0

1
a
|λ(r) − z(r)|a (s, r) dr

≤

∫ l

0

1
a

sup
q∈[0,l]

|θ(λ)(q) − θ(z)(q)|a (s, r) dr

≤
1
a
$ (θ(λ), θ(z))

∫ l

0
a (s, r) dr

≤
1
a
$ (θ(λ), θ(z)) .
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This leads to
sup
s∈[0,l]

∣∣∣= (τ, κ, λ) (s) − = (v,w, z) (s)
∣∣∣ ≤ 1

a
$ (θ(λ), θ(z)) ,

that is,

$
(
= (τ, κ, λ) ,= (v,w, z)

)
≤

1
a
$ (θ(λ), θ(z)) .

Taking the natural logarithm on both sides, we have

ln
(
$

(
= (τ, κ, λ) ,= (v,w, z)

))
≤ ln

(
1
a
$ (θ(λ), θ(z))

)
= ln ($ (θ(λ), θ(z))) − ln(a).

Thus, = is an FCT-θT with F (%) = ln (%) , % > 0. Consequently, all requirements of Theorem 2.3 are
fulfilled. Hence = and θ have a TCP (v,w, z) ∈ V ∪W ∪Z, which is a solution to the problem (4.5). �

5. Solving another form of integral equations

Let χ = C ([0, l],R) be defined in the above part and (χ,$) is a complete MS under the distance
$ (τ, κ) = maxs∈[0,l] |τ(s) − κ(s)| for all τ, κ ∈ χ. Consider the following system:

τ̃ (s) = ` (s) +
∫ l

0
ã (s, r)

[
Ξ1 (r, τ̃ (r)) + Ξ2 (r, κ̃ (r)) + Ξ3

(
r, λ̃ (r)

)]
dr,

κ̃ (s) = ` (s) +
∫ l

0
ã (s, r)

[
Ξ1 (r, κ̃ (r)) + Ξ2

(
r, λ̃ (r)

)
+ Ξ3 (r, τ̃ (r))

]
dr,

λ̃ (s) = ` (s) +
∫ l

0
ã (s, r)

[
Ξ1

(
r, λ̃ (r)

)
+ Ξ2 (r, τ̃ (r)) + Ξ3 (r, κ̃ (r))

]
dr,

(5.1)

for all r ∈ [0, l]. Assume that the following assertions hold:

(A1) The functions ` : [0, l]→ R, ã : [0, l]×R→ R, and Ξ j : [0, l]×R→ R ( j = 1, 2, 3) are continuous.
(A2) There exist closed subsets V, W, and Z and there exists a positive constant η such that for τ̃, κ̃, λ̃ ∈

V ∪W ∪ Z, we get

|Ξ1 (r, τ̃ (r)) − Ξ1 (r, κ̃ (r))| ≤ η |̃τ − κ̃| ,∣∣∣∣Ξ2 (r, κ̃ (r)) − Ξ2

(
r, λ̃ (r)

)∣∣∣∣ ≤ η
∣∣∣̃λ − κ̃∣∣∣ ,∣∣∣∣Ξ3

(
r, λ̃ (r)

)
− Ξ3 (r, τ̃ (r))

∣∣∣∣ ≤ η
∣∣∣̃τ − λ̃∣∣∣ .

(A3)

ηmax
s∈[0,l]

∫ l

0
ã (s, r) ≤

1
3a
, a > 0.

Our main theorem in this part is as follows:

Theorem 5.1. Via the assertions (A1)–(A3), the considered problem (5.1) has a solution on χ.

Proof. Describe the mapping = : χ3 → χ by

=
(̃
τ, κ̃, λ̃

)
(s) = ` (s) +

∫ l

0
ã (s, r)

[
Ξ1 (r, τ̃ (r)) + Ξ2 (r, κ̃ (r)) + Ξ3

(
r, λ̃ (r)

)]
dr,
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and θ(̃τ) (s) = τ̃(s). Then, for each λ̃(r) ∈ V, κ̃(r) ∈ W, and τ̃ (r) ∈ Z, the problem (5.1) implies that

=
(̃
τ, κ̃, λ̃

)
(s) = ` (s) +

∫ l

0
ã (s, r)

[
Ξ1 (r, τ̃ (r)) + Ξ2 (r, κ̃ (r)) + Ξ3

(
r, λ̃ (r)

)]
dr

= τ̃ (s)

= θ(̃τ) (s) ∈ θ (Z) ,

=
(̃
κ, λ̃, τ̃

)
(s) = ` (s) +

∫ l

0
ã (s, r)

[
Ξ1 (r, κ̃ (r)) + Ξ2

(
r, λ̃ (r)

)
+ Ξ3 (r, τ̃ (r))

]
dr

= κ̃(s)
= θ(̃κ) (s) ∈ θ (W) ,

and

=
(̃
λ, τ̃, κ̃

)
(s) = ` (s) +

∫ l

0
ã (s, r)

[
Ξ1

(
r, λ̃ (r)

)
+ Ξ2 (r, τ̃ (r)) + Ξ3 (r, κ̃ (r))

]
dr

= λ̃(s)
= θ(̃λ) (s) ∈ θ (V) .

From the above three inequalities, we have that the mapping = is a θ−tripling with respect to V, W,
and Z. �

Now, for τ̃, κ̃, λ̃, ṽ, w̃, z̃ ∈ V ∪W ∪ Z, we have∣∣∣∣= (̃
τ, κ̃, λ̃

)
(s) − = (̃v, w̃, z̃) (s)

∣∣∣∣
=

∣∣∣∣∣∣
∫ l

0
ã (s, r)

([
Ξ1 (r, τ̃ (r)) − Ξ1 (r, ṽ (r))

]
+

[
Ξ2 (r, κ̃ (r)) − Ξ2 (r, w̃ (r))

]
−

[
Ξ3

(
r, λ̃ (r)

)
− Ξ3

(
r, λ̃ (r)

)])
dr

∣∣∣∣
≤

∫ l

0
ã (s, r) (|Ξ1 (r, τ̃ (r)) − Ξ1 (r, ṽ (r))| + |Ξ2 (r, κ̃ (r)) − Ξ2 (r, w̃ (r))|+

+
∣∣∣∣Ξ3

(
r, λ̃ (r)

)
− Ξ3 (r, z̃ (r))

∣∣∣∣) dr

≤

∫ l

0
ηã (s, r)

(
|̃τ (r) − ṽ (r)| + |̃κ (r) − w̃ (r)| +

∣∣∣̃λ (r) − z̃ (r)
∣∣∣) dr

≤
3
3a

max
r∈[0,l]

{
|̃τ (r) − ṽ (r)| , |̃κ (r) − w̃ (r)| ,

∣∣∣̃λ (r) − z̃ (r)
∣∣∣} (since d + e + f ≤ 3 max{d, e, f })

=
1
a

max
r∈[0,l]

{
|θ (̃τ) (r) − θ (̃v) (r)| , |θ (̃κ) (r) − θ (w̃) (r)| ,

∣∣∣∣θ (̃λ) (r) − θ (̃z) (r)
∣∣∣∣}

≤
1
a

max
{
$ (θ(̃τ), θ(̃v)) , $ (θ(̃κ), θ(w̃)) , $

(
θ(̃λ), θ(̃z)

)}
,

which implies that

max
s∈[0,l]

∣∣∣∣= (̃
τ, κ̃, λ̃

)
(s) − = (̃v, w̃, z̃) (s)

∣∣∣∣ ≤ 1
a

max
{
$ (θ(̃τ), θ(̃v)) , $ (θ(̃κ), θ(w̃)) , $

(
θ(̃λ), θ(̃z)

)}
,

AIMS Mathematics Volume 10, Issue 3, 5785–5805.



5801

that is,

$
(
=

(̃
τ, κ̃, λ̃

)
,= (̃v, w̃, z̃)

)
≤

1
a

max
{
$ (θ(̃τ), θ(̃v)) , $ (θ(̃κ), θ(w̃)) , $

(
θ(̃λ), θ(̃z)

)}
.

Taking the natural logarithm on both sides, we have

ln
(
=

(̃
τ, κ̃, λ̃

)
,= (̃v, w̃, z̃)

)
≤ ln

(
1
a

max
{
$ (θ(̃τ), θ(̃v)) , $ (θ(̃κ), θ(w̃)) , $

(
θ(̃λ), θ(̃z)

)})
= ln

(
max

{
$ (θ(̃τ), θ(̃v)) , $ (θ(̃κ), θ(w̃)) , $

(
θ(̃λ), θ(̃z)

)})
− ln(a).

Hence, the condition (2.2) of Corollary 2.5 is fulfilled with F (%) = ln (%) , % > 0. Consequently, all
assumptions of Corollary 2.5 are satisfied. Then, = and θ have a TCP (v,w, z) ∈ V ∪W ∪ Z, which is a
solution to the problem (5.1).

Remark 5.2. If we consider χ = C ([m, n],R) is a complete MS equipped with the same distance
defined in the above part, Corollary 2.5 can be applied to solve the following problem:

τ̂ (s) = ̂̀(s) +

∫ n

m
(a1 (s, r) + a1 (s, r) + a2 (s, r))

×
(
Ω1

(
r, τ̂ (r)

)
+ Ω2

(
r, κ̂ (r)

)
+ Ω3

(
r, λ̂ (r)

))
dr,

for all s ∈ [m, n], under the following conditions:

(C1) The functions ̂̀ : [m, n] → R, a j : [m, n] × [m, n] → R, and Ω j : [m, n] × R → R ( j = 1, 2, 3)
are continuous.

(C2) There exist closed subsets V, W, and Z and there exist constants η1, η2, η3 > 0 such that for
τ̂, κ̂, λ̂ ∈ V ∪W ∪ Z, we have

|Ω1 (r, τ̃ (r)) −Ω1 (r, κ̃ (r))| ≤ η1 |̃τ − κ̃| ,∣∣∣∣Ω2 (r, κ̃ (r)) −Ω2

(
r, λ̃ (r)

)∣∣∣∣ ≤ η2

∣∣∣̃λ − κ̃∣∣∣ ,∣∣∣∣Ω3

(
r, λ̃ (r)

)
−Ω3 (r, τ̃ (r))

∣∣∣∣ ≤ η3

∣∣∣̃τ − λ̃∣∣∣ .
(C3) We suppose that

max {η1, η2, η3}

(
max
s∈[m,n]

∫ n

m
(a1 (s, r) + a1 (s, r) + a2 (s, r))

)
≤

1
3a
.

6. Conclusions

Results confirming the existence of a TCP have been obtained, along with the definition of the
F-contractive-type θ-coupling. For the previously mentioned mapping, we have established both
the existence and uniqueness of a strong TCP. These findings make a significant contribution to the
field of fixed point theory, broadening the scope of existing results and providing a new framework
for analyzing various mathematical problems. Furthermore, we have demonstrated the practical
applicability of our theoretical results by showing their relevance to the existence of solutions for
certain types of nonlinear integral equations and other integral-type problems.

During our research, we encountered the following challenges:

AIMS Mathematics Volume 10, Issue 3, 5785–5805.
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• Tripled best proximity point: We were unable to achieve a tripled best proximity point
within the context of TFP and TCP. This limitation highlights an opportunity for future
exploration, especially in the areas of cyclic mappings, cyclic F-contractive-type mappings, and
their applications.
• Wardowski’s function: While the authors in Remark 1.6 proposed an alternative form of

Wardowski’s function, the associated conditions, characteristics, and the potential for unique fixed
points and TFP remain unexplored.

7. Abbreviations

MS=⇒metric space.
TFP=⇒tripled fixed point.
TCP=⇒tripled coincidence point.
FCT-θT=⇒F-contractive-type θ-tripling.
MFCT-θT=⇒multivalued F-contractive-type θ-tripling.
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14. M. Abbas, M. A. Khan, S. Radenović, Common coupled fixed point theorems in cone
metric spaces for w-compatible mappings, Appl. Math. Comput., 217 (2010), 195–202.
https://doi.org/10.1016/j.amc.2010.05.042

15. H. Aydi, M. Postolache, W. Shatanawi, Coupled fixed point results for (ψ, φ)-weakly
contractive mappings in ordered G-metric spaces, Comput. Math. Appl., 63 (2012), 298–309.
https://doi.org/10.1016/j.camwa.2011.11.022

16. V. Berinde, Coupled fixed point theorems for contractive mixed monotone mappings
in partially ordered metric spaces, Nonlinear Anal., 75 (2012), 3218–3228.
https://doi.org/10.1016/j.na.2011.12.021

17. B. S. Choudhury, P. Maity, Coupled fixed point results in generalized metric spaces, Math. Comput.
Model., 54 (2011), 73–79. https://doi.org/10.1016/j.mcm.2011.01.036

18. H. A. Hammad, F. M. Bota, L. Guran, Wardowski’s contraction and fixed point technique for
solving systems of functional and integral equations, J. Func. Spaces, 2021 (2021), 7017046.
https://doi.org/10.1155/2021/7017046

19. N. V. Luong, N. X. Thuan, Coupled fixed points in partially ordered metric spaces and application,
Nonlinear Anal., 74 (2011), 983–992. https://doi.org/10.1016/j.na.2010.09.055

AIMS Mathematics Volume 10, Issue 3, 5785–5805.

http://dx.doi.org/https://doi.org/10.1186/s13662-024-03801-y
http://dx.doi.org/https://doi.org/10.3934/math.2022395
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2023.3288849
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2020.2995718
http://dx.doi.org/https://doi.org/10.3390/fractalfract7010092
http://dx.doi.org/https://doi.org/10.1177/10775463221149232
http://dx.doi.org/https://doi.org/10.1016/j.na.2005.10.017
http://dx.doi.org/https://doi.org/10.1016/j.amc.2010.05.042
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2011.11.022
http://dx.doi.org/https://doi.org/10.1016/j.na.2011.12.021
http://dx.doi.org/https://doi.org/10.1016/j.mcm.2011.01.036
http://dx.doi.org/https://doi.org/10.1155/2021/7017046
http://dx.doi.org/https://doi.org/10.1016/j.na.2010.09.055


5804

20. B. Samet, C. Vetro, Coupled fixed point, F-invariant set and fixed point of N-order, Ann. Funct.
Anal., 1 (2010), 46–56. https://doi.org/10.15352/afa/1399900586

21. B. Zlatanov, Coupled best proximity points for cyclic contractive maps and their applications, Fix.
Point Theory, 22 (2021), 431–452. https://doi.org/10.24193/fpt-ro.2021.1.29

22. V. Berinde, M. Borcut, Tripled fixed point theorems for contractive type mappings
in partially ordered metric spaces, Nonlinear Anal., 74 (2011), 4889–4897.
https://doi.org/10.1016/j.na.2011.03.032

23. M. Borcut, Tripled coincidence theorems for contractive type mappings in partially ordered metric
spaces, Appl. Math. Comput. 218 (2012), 7339–7346. https://doi.org/10.1016/j.amc.2011.11.049

24. B. S. Choudhury, E. Karapınar, A. Kundu, Tripled coincidence point theorems for nonlinear
contractions in partially ordered metric spaces, Int. J. Math. Math. Sci., 2012 (2012), 329298.
https://doi.org/ 10.1155/2012/329298

25. Z. Mustafa, J. R. Roshan, V. Parvaneh, Existence of a tripled coincidence point in ordered Gb-
metric spaces and applications to a system of integral equations, J. Inequal. Appl., 2013 (2013),
453. https://doi.org/10.1186/1029-242X-2013-453

26. H. Aydi, E. Karapinar, M. Postolache, Tripled coincidence point theorems for weak φ-
contractions in partially ordered metric spaces, Fixed Point Theory Appl., 2012 (2012), 44.
https://doi.org/10.1186/1687-1812-2012-44

27. A. llchev, V. Ivanova, H. Kulina, P. Yaneva, B. Zlatanov, Investigation of equilibrium in oligopoly
markets with the help of tripled fixed points in Banach spaces, Econometrics, 12 (2024), 18.
https://doi.org/10.3390/econometrics12020018

28. G. Godefroy, V. Indumathi, Strong proximinality and polyhedral spaces, Rev. Mat. Complut., 14
(2001), 105–125.

29. R. A. Rashwan, H. A. Hammad, A. Nafea, A new contribution in fuzzy cone metric spaces by
strong fixed point techniques with supportive application, J. Intell. Fuzzy Sys., 42 (2022), 3923–
3943. https://doi.org/10.3233/JIFS-212188

30. D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces,
Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94

31. M. U. Ali, T. Kamran, Multivalued F-contractions and related fixed point theorems with an
application, Filomat, 30 (2016), 3779–3793. https://doi.org/10.2298/FIL1614779A

32. T. Hamaizia, Fixed point theorems for generalized (ψ, φ, F)-contraction type mappings in b−metric
spaces with applications, Open J. Math. Anal., 5 (2021), 35–41. https://doi.org/10.30538/psrp-
oma2021.0080

33. A. Asif, M. Nazam, M. Arshad, S. O. Kim, F-metric, F-contraction and common fixed-point
theorems with applications, Mathematics, 7 (2019), 586. https://doi.org/10.3390/math7070586

34. S. Luambano, S. Kumar, G. Kakiko, Fixed point theorem for F-contraction
mappings, in partial metric spaces, Lobachevskii J. Math., 40 (2019), 183–188.
https://doi.org/10.1134/S1995080219020094

35. M. Nazam, C. Park, M. Arshad, Fixed point problems for generalized contractions with
applications, Adv. Differ. Equ., 2021 (2021), 247. https://doi.org/10.1186/s13662-021-03405-w

AIMS Mathematics Volume 10, Issue 3, 5785–5805.

http://dx.doi.org/https://doi.org/10.15352/afa/1399900586
http://dx.doi.org/https://doi.org/10.24193/fpt-ro.2021.1.29
http://dx.doi.org/https://doi.org/10.1016/j.na.2011.03.032
http://dx.doi.org/https://doi.org/10.1016/j.amc.2011.11.049
http://dx.doi.org/https://doi.org/ 10.1155/2012/329298
http://dx.doi.org/https://doi.org/10.1186/1029-242X-2013-453
http://dx.doi.org/https://doi.org/10.1186/1687-1812-2012-44
http://dx.doi.org/ https://doi.org/10.3390/econometrics12020018
http://dx.doi.org/ https://doi.org/10.3390/econometrics12020018
http://dx.doi.org/https://doi.org/10.3233/JIFS-212188
http://dx.doi.org/https://doi.org/10.1186/1687-1812-2012-94
http://dx.doi.org/https://doi.org/10.2298/FIL1614779A
http://dx.doi.org/https://doi.org/10.30538/psrp-oma2021.0080
http://dx.doi.org/https://doi.org/10.30538/psrp-oma2021.0080
http://dx.doi.org/ https://doi.org/10.3390/math7070586
http://dx.doi.org/https://doi.org/10.1134/S1995080219020094
http://dx.doi.org/https://doi.org/10.1186/s13662-021-03405-w


5805

36. C. Mongkolkeha, D. Gopal, Some common fixed point theorems for generalized F-contraction
involving w-distance with some applications to differential equations, Mathematics, 7 (2019), 32.
https://doi.org/10.3390/math7010032

37. K. Sawangsup, W. Sintunavarat, Y. J. Cho, Fixed point theorems for orthogonal F-contraction
mappings on O-complete metric spaces, J. Fixed Point Theory Appl., 22 (2020), 10.
https://doi.org/10.1007/s11784-019-0737-4

38. H. A. Hammad, M. De la Sen, A coupled fixed point technique for solving coupled
systems of functional and nonlinear integral equations, Mathematics 7 (2019), 634.
https://doi.org/10.3390/math7070634

39. H. K. Nashine, B. Samet, Fixed point results for mappings satisfying (ψ, ϕ)-weakly contractive
condition in partially ordered metric spaces, Nonlinear Anal., 74 (2011), 2201–2209.
https://doi.org/10.1016/j.na.2010.11.024

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 3, 5785–5805.

http://dx.doi.org/https://doi.org/10.3390/math7010032
http://dx.doi.org/https://doi.org/10.1007/s11784-019-0737-4
http://dx.doi.org/https://doi.org/10.3390/math7070634
http://dx.doi.org/https://doi.org/10.1016/j.na.2010.11.024
http://creativecommons.org/licenses/by/4.0

	Introduction
	Tripled coincidence points
	Multivalued F-contractive mappings and TCPs
	Supportive applications
	Some integral-type results
	Solving a system of nonlinear integral equations

	Solving another form of integral equations
	Conclusions
	Abbreviations

