Research article

A fixed point approach to predator-prey dynamics via nonlinear mixed Volterra–Fredholm integral equations in complex-valued suprametric spaces

  • Received: 23 December 2024 Revised: 03 February 2025 Accepted: 14 February 2025 Published: 18 March 2025
  • MSC : 46S40, 47H10, 54H25

  • This study explores the concept of complex-valued suprametric spaces, a recent and generalized framework in fixed point theory. This concept extends both complex-valued spaces and classical metric spaces. The article aims to establish common fixed point results for rational contractions governed by control functions dependent on two variables within the setting of complex-valued suprametric spaces. These findings generalize several well-known results in the field. An illustrative example is provided to validate the novelty of the key result. Furthermore, the study derives common fixed point theorems for rational contractions with control functions of a single variable under the same framework. As a practical application, the findings are applied to study the solution of a nonlinear mixed Volterra–Fredholm integral equation within the context of predator-prey dynamics.

    Citation: Afrah Ahmad Noman Abdou. A fixed point approach to predator-prey dynamics via nonlinear mixed Volterra–Fredholm integral equations in complex-valued suprametric spaces[J]. AIMS Mathematics, 2025, 10(3): 6002-6024. doi: 10.3934/math.2025274

    Related Papers:

  • This study explores the concept of complex-valued suprametric spaces, a recent and generalized framework in fixed point theory. This concept extends both complex-valued spaces and classical metric spaces. The article aims to establish common fixed point results for rational contractions governed by control functions dependent on two variables within the setting of complex-valued suprametric spaces. These findings generalize several well-known results in the field. An illustrative example is provided to validate the novelty of the key result. Furthermore, the study derives common fixed point theorems for rational contractions with control functions of a single variable under the same framework. As a practical application, the findings are applied to study the solution of a nonlinear mixed Volterra–Fredholm integral equation within the context of predator-prey dynamics.



    加载中


    [1] M. M. Frechet, Sur quelques points du calcul fonctionnel, Rend. Circ. Matem. Palermo, 22 (1906), 1–72. https://doi.org/10.1007/BF03018603 doi: 10.1007/BF03018603
    [2] S. G. Matthews, Partial metric topology, Ann. NY. Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x
    [3] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11
    [4] A. Branciari, A fixed point theorem of Banach–Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31–37. https://doi.org/10.5486/PMD.2000.2133 doi: 10.5486/PMD.2000.2133
    [5] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087
    [6] M. Berzig, First results in suprametric spaces with applications, Mediterr. J. Math., 19 (2022), 226. https://doi.org/10.1007/s00009-022-02148-6 doi: 10.1007/s00009-022-02148-6
    [7] M. Berzig, Fixed point results in generalized suprametric spaces, Topological Algebra and its Applications, 11 (2023), 20230105. https://doi.org/10.1515/taa-2023-0105 doi: 10.1515/taa-2023-0105
    [8] M. Berzig, Nonlinear contraction in $b$-suprametric spaces, J. Anal., 32 (2024), 2401–2414. https://doi.org/10.1007/s41478-024-00732-5 doi: 10.1007/s41478-024-00732-5
    [9] M. Berzig, Strong $b$-suprametric spaces and fixed point principles, Complex Anal. Oper. Theory, 18 (2024), 148. https://doi.org/10.1007/s11785-024-01594-2 doi: 10.1007/s11785-024-01594-2
    [10] A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Func. Anal. Opt., 32 (2011), 243–253. https://doi.org/10.1080/01630563.2011.533046 doi: 10.1080/01630563.2011.533046
    [11] F. Rouzkard, M. Imdad, Some common fixed point theorems on complex valued metric spaces, Comp. Math. Appl., 64 (2012), 1866–1874. https://doi.org/10.1016/j.camwa.2012.02.063 doi: 10.1016/j.camwa.2012.02.063
    [12] W. Sintunavarat, P. Kumam, Generalized common fixed point theorems in complex valued metric spaces and applications, J. Inequal. Appl., 2012 (2012), 84. https://doi.org/10.1186/1029-242X-2012-84 doi: 10.1186/1029-242X-2012-84
    [13] K. Sitthikul, S. Saejung, Some fixed point theorems in complex valued metric spaces, Fixed Point Theory Appl., 2012 (2012), 189. https://doi.org/10.1186/1687-1812-2012-189 doi: 10.1186/1687-1812-2012-189
    [14] S. K. Panda, V. Vijayakumar, R. P. Agarwal, Complex-valued suprametric spaces, related fixed point results, and their applications to Barnsley Fern fractal generation and mixed Volterra–Fredholm integral equations, Fractal Fract., 8 (2024), 410. https://doi.org/10.3390/fractalfract8070410 doi: 10.3390/fractalfract8070410
    [15] S. T. Zubair, M. Aphane, A. Mukheimer, T. Abdeljawad, A fixed point technique for solving boundary value problems in branciari suprametric spaces, Results in Nonlinear Analysis, 7 (2024), 80–93. https://doi.org/10.31838/rna/2024.07.03.008 doi: 10.31838/rna/2024.07.03.008
    [16] Y. Hao, J. Gou, H. Guan, The uniqueness of fixed points for two new classes of contractive mappings of integral type in $b$-metric spaces, J. Nonlinear Funct. Anal., 2024 (2024), 30. https://doi.org/10.23952/jnfa.2024.30 doi: 10.23952/jnfa.2024.30
    [17] J. Appell, N. Merentes, S. Reinwand, G. Vinti, How to reduce some fixed point theorems, Appl. Set-Valued Anal. Optim., 6 (2024), 1–11.
    [18] A. Latif, A. H. Alotaibi, M. Noorwali, Fixed point results via multivalued contractive type mappings involving a generalized distance on metric type spaces, J. Nonlinear Var. Anal., 8 (2024), 787–798. https://doi.org/10.23952/jnva.8.2024.5.06 doi: 10.23952/jnva.8.2024.5.06
    [19] M. Bohner, M. Fan, J. M. Zhang, Existence of periodic solutions in predator-prey and competition dynamic systems, Nonlinear Anal.-Real, 7 (2006) 1193–1204. https://doi.org/10.1016/j.nonrwa.2005.11.002 doi: 10.1016/j.nonrwa.2005.11.002
    [20] M. S. Boyce, Modeling predator-prey dynamics, In: Research techniques in animal ecology: controversies and consequences, New York: Columbia University Press, 2000,253–287.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1321) PDF downloads(73) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog