Let $ \mu $ and $ \nu $ be two compactly supported Borel probability measures on $ \mathbb R^d $ and $ \mathbb R^l $, respectively, and let $ q\in \mathbb R $ and $ h, g $ be two Hausdorff functions. In this paper, we are concerned with evaluation of the lower and upper Hewitt-Stromberg measure of Cartesian product sets, denoted, respectively, by $ {\mathsf H}^{q, g}_{\mu} $ and $ {\mathsf P}^{q, h}_{\nu} $, by means of the measure of their components. This is done by the construction of new multifractal measures in a similar manner to Hewitt-Stomberg measures but using the class of all (semi-) half-open binary cubes of covering sets in the definition rather than the class of all balls. Our derived product formula excludes the $ 0 $–$ \infty $ case, and our approach is uniquely applied within an Euclidean space, distinguishing it from those previously utilized in metric spaces. Furthermore, by examining the measures of symmetric generalized Cantor sets, we establish that the exclusion of the $ 0 $–$ \infty $ condition is essential and cannot be omitted.
Citation: Najmeddine Attia. Advances on fractal measures of Cartesian product sets in Euclidean space[J]. AIMS Mathematics, 2025, 10(3): 5971-6001. doi: 10.3934/math.2025273
Let $ \mu $ and $ \nu $ be two compactly supported Borel probability measures on $ \mathbb R^d $ and $ \mathbb R^l $, respectively, and let $ q\in \mathbb R $ and $ h, g $ be two Hausdorff functions. In this paper, we are concerned with evaluation of the lower and upper Hewitt-Stromberg measure of Cartesian product sets, denoted, respectively, by $ {\mathsf H}^{q, g}_{\mu} $ and $ {\mathsf P}^{q, h}_{\nu} $, by means of the measure of their components. This is done by the construction of new multifractal measures in a similar manner to Hewitt-Stomberg measures but using the class of all (semi-) half-open binary cubes of covering sets in the definition rather than the class of all balls. Our derived product formula excludes the $ 0 $–$ \infty $ case, and our approach is uniquely applied within an Euclidean space, distinguishing it from those previously utilized in metric spaces. Furthermore, by examining the measures of symmetric generalized Cantor sets, we establish that the exclusion of the $ 0 $–$ \infty $ condition is essential and cannot be omitted.
| [1] |
L. Olsen, A multifractal formalism, Adv. Math., 116 (1995), 82–196. https://doi.org/10.1006/aima.1995.1066 doi: 10.1006/aima.1995.1066
|
| [2] | B. Mandelbrot, Les objects fractales: forme, hasard et dimension, Flammarion, 1975. |
| [3] |
B. Mandelbrot, The fractal geometry of nature, Amer. J. Phys., 51 (1983), 286–287. https://doi.org/10.1119/1.13295 doi: 10.1119/1.13295
|
| [4] |
N. Attia, B. Selmi, A multifractal formalism for Hewitt-Stromberg measures, J. Geom. Anal., 31 (2021), 825–862. https://doi.org/10.1007/s12220-019-00302-3 doi: 10.1007/s12220-019-00302-3
|
| [5] |
L. Olsen, Multifractal dimensions of product measures, Math. Proc. Camb. Philos. Soc., 120 (1996), 709–734. https://doi.org/10.1017/S0305004100001675 doi: 10.1017/S0305004100001675
|
| [6] |
J. M. Marstrand, The dimension of Cartesian product sets, Proc. Cambridge Philos. Soc., 50 (1954), 198–202. https://doi.org/10.1017/S0305004100029236 doi: 10.1017/S0305004100029236
|
| [7] |
C. Tricot, Two definitions of fractional dimension, Math. Proc. Camb. Philos. Soc., 91 (1982), 57–74. https://doi.org/10.1017/S0305004100059119 doi: 10.1017/S0305004100059119
|
| [8] |
J. D. Howroyd, On Hausdorff and packing dimension of product spaces, Math. Proc. Camb. Philos. Soc., 119 (1996), 715–727. https://doi.org/10.1017/S0305004100074545 doi: 10.1017/S0305004100074545
|
| [9] |
X. Jiang, Q. Liu, Z. Wen, An intermediate value property of fractal dimensions of Cartesian product, Fractals, 25 (2017), 1750052. https://doi.org/10.1142/S0218348X17500529 doi: 10.1142/S0218348X17500529
|
| [10] |
C. Wei, S. Wen, Z. Wen, Remark on dimension of cartesian product sets, Fractals, 24 (2016), 1650031. https://doi.org/10.1142/S0218348X16500316 doi: 10.1142/S0218348X16500316
|
| [11] | H. Haase, Dimension of measures, Ada Univ. Carolinae Math. Phys., 31 (1990), 29–34. |
| [12] |
H. Haase, On the dimension of product measures, Mathematika, 37 (1990), 316–323. https://doi.org/10.1112/S0025579300013024 doi: 10.1112/S0025579300013024
|
| [13] |
X. Hu, S. J. Taylor, Fractal properties of products and projections of measures in R$^d$, Math. Proc. Camb. Philos. Soc., 115 (1994), 527–544. https://doi.org/10.1017/S0305004100072285 doi: 10.1017/S0305004100072285
|
| [14] |
D. J. Feng, S. Hua, Z. Y. Wen, The pointwise densities of the Cantor measure, J. Math. Anal. Appl., 250 (2000), 692–705. https://doi.org/10.1006/jmaa.2000.7137 doi: 10.1006/jmaa.2000.7137
|
| [15] |
B. Jia, Z. Zhou, Z. Zhu, J. Luo, The packing measure of the Cartesian product of the middle third Cantor set with itself, J. Math. Anal. Appl., 288 (2003), 424–441. https://doi.org/10.1016/j.jmaa.2003.09.001 doi: 10.1016/j.jmaa.2003.09.001
|
| [16] |
R. Guedri, N. Attia, A note on the generalized Hausdorff and packing measures of product sets in metric space, Math. Inequal. Appl., 25 (2022), 335–358. https://doi.org/10.7153/mia-2022-25-20 doi: 10.7153/mia-2022-25-20
|
| [17] | E. Hewitt, K. Stromberg, Real and abstract analysis: a modern treatment of the theory of functions of a real variable, Springer-Verlag, 1965. https://doi.org/10.1007/978-3-642-88044-5 |
| [18] | Y. Pesin, Dimension theory in dynamical systems, contemporary views and applications, University of Chicago Press, 1997. |
| [19] | P. Mattila, Geometry of sets and measures in Euclidian spaces: fractals and rectifiability, Cambridge University Press, 1995. https://doi.org/10.1017/CBO9780511623813 |
| [20] |
O. Guizani, M. Amal, N. Attia, Some relations between Hewitt-Stromberg premeasure and Hewitt-Stromberg measure, Filomat, 37 (2023), 13–20. https://doi.org/10.2298/FIL2301013A doi: 10.2298/FIL2301013A
|
| [21] |
O. Guizani, N. Attia, A note on scaling properties of Hewitt Stromberg measure, Filomat, 36 (2022), 3551–3559. https://doi.org/10.2298/FIL2210551A doi: 10.2298/FIL2210551A
|
| [22] |
L. Olsen, On the average Hewitt-Stromberg measures of typical compact spaces, Math. Z., 293 (2019), 1201–1225. https://doi.org/10.1007/s00209-019-02239-3 doi: 10.1007/s00209-019-02239-3
|
| [23] |
H. Haase, A contribution to measure and dimension of metric spaces, Math. Nachr., 124 (1985), 45–55. https://doi.org/10.1002/mana.19851240104 doi: 10.1002/mana.19851240104
|
| [24] |
H. Haase, Open-invariant measures and the covering number of sets, Math. Nachr., 134 (1987), 295–307. https://doi.org/10.1002/mana.19871340121 doi: 10.1002/mana.19871340121
|
| [25] |
S. Jurina, N. MacGregor, A. Mitchell, L. Olsen, A. Stylianou, On the Hausdorff and packing measures of typical compact metric spaces, Aequationes Math., 92 (2018), 709–735. https://doi.org/10.1007/s00010-018-0548-5 doi: 10.1007/s00010-018-0548-5
|
| [26] | O. Zindulka, Packing measures and dimensions on Cartesian products, arXiv, 2012. https://doi.org/10.48550/arXiv.1208.5522 |
| [27] | G. A. Edgar, Integral, probability, and fractal measures, Springer-Verlag, 1998. https://doi.org/10.1007/978-1-4757-2958-0 |
| [28] |
N. Attia, H. Jebali, M. H. Khalifa, A note on fractal measures of cartesian product sets, Bull. Malays. Math. Sci. Soc., 44 (2021), 4383–4404. https://doi.org/10.1007/s40840-021-01172-1 doi: 10.1007/s40840-021-01172-1
|
| [29] |
S. J. Taylor, C. Tricot, Packing measure and its evaluation for a brownian path, Trans. Amer. Math. Soc., 288 (1985), 679–699. https://doi.org/10.1090/S0002-9947-1985-0776398-8 doi: 10.1090/S0002-9947-1985-0776398-8
|
| [30] |
N. Attia, R. Guedri, O. Guizani, Note on the multifractal measures of cartesian product sets, Commun. Korean Math. Soc., 37 (2022), 1073–1097. https://doi.org/10.4134/CKMS.c210350 doi: 10.4134/CKMS.c210350
|
| [31] | K. J. Falconer, Fractal geometry: mathematical foundations and applications, Wiley, 1990. |
| [32] | J. Mullins, N. Mullins, Derivation bases, interval functions, and fractal measures, The Ohio State University, 1996. |
| [33] |
O. Guizani, M. Amal, N. Attia, On the Hewitt-Stromberg measure of product sets, Ann. Mat. Pura Appl., 200 (2020), 867–879. https://doi.org/10.1007/s10231-022-01248-0 doi: 10.1007/s10231-022-01248-0
|
| [34] |
P. A. P. Mohan, A. S. Besicovitch, The measure of product and cylinder sets, J. London Math. Soc., 20 (1945), 110–120. https://doi.org/10.1112/jlms/s1-20.2.110 doi: 10.1112/jlms/s1-20.2.110
|
| [35] |
C. Tricot, Two definitions of fractional dimension, Math. Proc. Camb. Philos. Soc., 91 (1982), 57–74. https://doi.org/10.1017/S0305004100059119 doi: 10.1017/S0305004100059119
|
| [36] |
M. Ohtsuka, Capacite des ensembles produits, Nagoya Math. J., 12 (1957), 95–130. https://doi.org/10.1017/S0027763000021966 doi: 10.1017/S0027763000021966
|
| [37] |
Y. M. Xiao, Packing dimension, Hausdorff dimension and Cartesian product sets, Math. Proc. Camb. Philos. Soc., 120 (1996), 535–546. https://doi.org/10.1017/S030500410007506X doi: 10.1017/S030500410007506X
|
| [38] |
S. J. Taylor, C. Tricot, The packing measure of rectifiable subsets of the plane, Math. Proc. Camb. Philos. Soc., 99 (1986), 285–296. https://doi.org/10.1017/S0305004100064203 doi: 10.1017/S0305004100064203
|
| [39] |
C. Cutler, The density theorem and Hausdorff inequality for packing measure in general metric spaces, Illinois J. Math., 39 (1995), 676–694. https://doi.org/10.1215/ijm/1255986272 doi: 10.1215/ijm/1255986272
|
| [40] | G. A. Edgar, Centered densities and fractal measures, New York J. Math., 13 (2007), 33–87. |
| [41] |
P. Mattila, R. D. Mauldin, Measure and dimension functions: measurablility and densities, Math. Proc. Camb. Philos. Soc., 121 (1997), 81–100. https://doi.org/10.1090/S0002-9947-1944-0009975-6 doi: 10.1090/S0002-9947-1944-0009975-6
|
| [42] |
A. P. Morse, J. F. Randolph, The $\phi$-rectifiable subsets of the plane, Amer. Math. Soc. Trans., 55 (1944), 236–305. https://doi.org/10.2307/1990191 doi: 10.2307/1990191
|
| [43] | H. H. Lee, I. S. Beak, The relations of Hausdorff, *-Hausdorff, and packing measures, Real Anal. Exch., 16 (1990/1991), 497–507. https://doi.org/10.2307/44153728 |
| [44] |
H. H. Lee, I. S. Baek, On $d$-measure and $d$-dimension, Real Anal. Exch., 17 (1992), 590–596. https://doi.org/10.2307/44153752 doi: 10.2307/44153752
|
| [45] | H. H. Lee, I. S. Baek, The comparison of $d$-meuasure with packing and Hausdorff measures, Kyungpook Math. J., 32 (1992), 523–531. |
| [46] |
X. S. Raymond, C. Tricot, Packing regularity of sets in $n$-space, Math. Proc. Camb. Philos. Soc., 103 (1988), 133–145. https://doi.org/10.1017/S0305004100064690 doi: 10.1017/S0305004100064690
|
| [47] |
H. Joyce, D. Preiss, On the existence of subsets of positive finite packing measure, Mathematika, 42 (1995), 14–24. https://doi.org/10.1112/S002557930001130X doi: 10.1112/S002557930001130X
|
| [48] |
N. Attia, B. Selmi, Regularities of multifractal Hewitt-Stromberg measures, Commun. Korean Math. Soc., 34 (2019), 213–230. https://doi.org/10.4134/CKMS.c180030 doi: 10.4134/CKMS.c180030
|
| [49] |
M. Dai, The equivalence of measures on Moran set in general metric space, Chaos Solitons Fract., 29 (2006), 55–64. https://doi.org/10.1016/j.chaos.2005.10.016 doi: 10.1016/j.chaos.2005.10.016
|
| [50] |
J. D. Kelly, A method for constructing measures appropriate for the study of Cartesian products, Proc. London Math. Soc., s3-26 (1973), 521–546. https://doi.org/10.1112/plms/s3-26.3.521 doi: 10.1112/plms/s3-26.3.521
|
| [51] |
N. Attia, H. Jebali, R. Guedri, On a class of Hausdorff measure of cartesian product sets in metric spaces, Topol. Methods Nonlinear Anal., 62 (2023), 601–623. https://doi.org/10.12775/TMNA.2023.016 doi: 10.12775/TMNA.2023.016
|
| [52] |
N. Attia, Relative multifractal spectrum, Commun. Korean Math. Soc., 33 (2018), 459–471. https://doi.org/10.4134/CKMS.c170143 doi: 10.4134/CKMS.c170143
|