A subset $ Y\subseteq V(G) $ in a vertex-colored graph $ G $ is termed rainbow when vertices in $ Y $ receive distinct colors from each other. For each pair of vertices $ w_1, w_2\in V(G) $, if there exists $ \mathcal{F}\subseteq V(G) $ satisfying $ \mathcal{F} $ rainbow and $ w_1, w_2 $ disconnected in $ G-\mathcal{F} $ for nonadjacent $ w_1, w_2 $; $ \mathcal{F}+w_1 $ or $ \mathcal{F}+w_2 $ rainbow and $ w_1, w_2 $ disconnected in $ (G-w_1w_2)-\mathcal{F} $ for adjacent $ w_1, w_2 $, then $ G $ is rainbow vertex-disconnected. The smallest number needed to color $ G $ so that it is rainbow vertex-disconnected is known as the rainbow vertex-disconnection number of $ G $, or $ rvd(G) $. The RVD-Problem aims to determine whether $ G $ has a rainbow vertex-disconnection coloring with $ k $ colors given the graph $ G $ and a positive integer $ k $. In this paper, some bounds between $ rvd(G) $ and different parameters, such as diameter, independence number, and so on, are obtained. Some results of rainbow vertex-disconnection numbers of three graph products are then obtained. Last, we demonstrate that there is a polynomial time approach that approximates $ rvd(G) $ of split graph $ G $ within a factor of $ n^{2/3} $. We show RVD-Problem is $ NP $-complete for induced $ K_{1, t} $-free split graphs for $ t\geq 4 $ but polynomially solvable for $ t\leq 3 $.
Citation: Yindi Weng. Bounds and complexity results of rainbow vertex-disconnection colorings[J]. AIMS Mathematics, 2025, 10(3): 5960-5970. doi: 10.3934/math.2025272
A subset $ Y\subseteq V(G) $ in a vertex-colored graph $ G $ is termed rainbow when vertices in $ Y $ receive distinct colors from each other. For each pair of vertices $ w_1, w_2\in V(G) $, if there exists $ \mathcal{F}\subseteq V(G) $ satisfying $ \mathcal{F} $ rainbow and $ w_1, w_2 $ disconnected in $ G-\mathcal{F} $ for nonadjacent $ w_1, w_2 $; $ \mathcal{F}+w_1 $ or $ \mathcal{F}+w_2 $ rainbow and $ w_1, w_2 $ disconnected in $ (G-w_1w_2)-\mathcal{F} $ for adjacent $ w_1, w_2 $, then $ G $ is rainbow vertex-disconnected. The smallest number needed to color $ G $ so that it is rainbow vertex-disconnected is known as the rainbow vertex-disconnection number of $ G $, or $ rvd(G) $. The RVD-Problem aims to determine whether $ G $ has a rainbow vertex-disconnection coloring with $ k $ colors given the graph $ G $ and a positive integer $ k $. In this paper, some bounds between $ rvd(G) $ and different parameters, such as diameter, independence number, and so on, are obtained. Some results of rainbow vertex-disconnection numbers of three graph products are then obtained. Last, we demonstrate that there is a polynomial time approach that approximates $ rvd(G) $ of split graph $ G $ within a factor of $ n^{2/3} $. We show RVD-Problem is $ NP $-complete for induced $ K_{1, t} $-free split graphs for $ t\geq 4 $ but polynomially solvable for $ t\leq 3 $.
| [1] |
X. Q. Bai, Y. Chen, P. Li, X. L. Li, Y. D. Weng, The rainbow vertex-disconnection in graphs, Acta Math. Sin., 37 (2021), 249–261. https://doi.org/10.1007/s10114-020-0083-x doi: 10.1007/s10114-020-0083-x
|
| [2] |
X. Q. Bai, Y. Chen, M. Ji, X. L. Li, Y. D. W, W. Y. Wu, Proper disconnection of graphs, Bull. Malays. Math. Sci. Soc., 44 (2021), 2465–2477. https://doi.org/10.1007/s40840-020-01069-5 doi: 10.1007/s40840-020-01069-5
|
| [3] | A. Bondy, U. S. R. Murty, Graph theory, London: Springer, 2008. |
| [4] |
G. Chartrand, S. Devereaux, T. W. Haynes, S. T. Hedetniemi, P. Zhang, Rainbow disconnection in graphs, Discuss. Math. Graph Theor., 38 (2018), 1007–1021. https://doi.org/10.7151/dmgt.2061 doi: 10.7151/dmgt.2061
|
| [5] |
Y. Chen, P. Li, X. L. Li, Y. D. Weng, Complexity results for two kinds of colored disconnections of graphs, J. Comb. Optim., 42 (2021), 40–55. https://doi.org/10.1007/s10878-021-00742-0 doi: 10.1007/s10878-021-00742-0
|
| [6] |
Y. Chen, X. L. Li, The proper vertex-disconnection of graphs, Theor. Comput. Sci., 923 (2022), 167–178. https://doi.org/10.1016/j.tcs.2022.05.004 doi: 10.1016/j.tcs.2022.05.004
|
| [7] |
G. A. Dirac, Note on the colouring of graphs, Math. Z., 54 (1951), 347–353. https://doi.org/10.1007/bf01238034 doi: 10.1007/bf01238034
|
| [8] | R. Diestel, Graph theory, 5 Eds., Heidelberg: Springer, 2017. https://doi.org/10.1007/978-3-662-53622-3 |
| [9] |
Y. H. Gao, X. L. Li, Monochromatic vertex-disconnection colorings of graphs, Bull. Malays. Math. Sci. Soc., 45 (2022), 1621–1640. https://doi.org/10.1007/s40840-022-01284-2 doi: 10.1007/s40840-022-01284-2
|
| [10] |
P. Li, X. L. Li, Monochromatic disconnection of graphs, Discrete Appl. Math., 288 (2021), 171–179. https://doi.org/10.1016/j.dam.2020.08.032 doi: 10.1016/j.dam.2020.08.032
|
| [11] |
X. L. Li, Y. D. Weng, Further results on the rainbow vertex-disconnection of graphs, Bull. Malays. Math. Sci. Soc., 44 (2021), 3445–3460. https://doi.org/10.1007/s40840-021-01125-8 doi: 10.1007/s40840-021-01125-8
|
| [12] | H. La, M. Montassier, 2-Distance $(\Delta + 2)$-coloring of sparse graphs, arXiv: 2109.11927. |
| [13] |
W. Mader, Über minimaln-fach zusammenhängende, unendliche Graphen und ein Extremalproblem, Arch. Math., 23 (1972), 553–560. https://doi.org/10.1007/bf01304933 doi: 10.1007/bf01304933
|
| [14] |
Y. D. Weng, Some results on the rainbow vertex-disconnection colorings of graphs, Graph. Combinator., 40 (2024), 42. https://doi.org/10.1007/s00373-024-02762-z doi: 10.1007/s00373-024-02762-z
|