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Abstract: A subset Y C V(G) in a vertex-colored graph G is termed rainbow when vertices in Y receive
distinct colors from each other. For each pair of vertices wy,w, € V(G), if there exists ¥ C V(G)
satisfying ¥ rainbow and wy, w, disconnected in G—¥ for nonadjacent wy, w,; ¥ +w; or F +w, rainbow
and wy, w, disconnected in (G —ww,) — F for adjacent wy, w,, then G is rainbow vertex-disconnected.
The smallest number needed to color G so that it is rainbow vertex-disconnected is known as the
rainbow vertex-disconnection number of G, or rvd(G). The RVD-Problem aims to determine whether
G has a rainbow vertex-disconnection coloring with k colors given the graph G and a positive integer k.
In this paper, some bounds between rvd(G) and different parameters, such as diameter, independence
number, and so on, are obtained. Some results of rainbow vertex-disconnection numbers of three
graph products are then obtained. Last, we demonstrate that there is a polynomial time approach that
approximates rvd(G) of split graph G within a factor of n*/>. We show RVD-Problem is N P-complete
for induced K, ,-free split graphs for # > 4 but polynomially solvable for ¢ < 3.
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1. Introduction

In this paper, we consider simple, nontrivial connected and undirected graphs. Use V(G) and E(G)
to respectively denote the vertex set and edge set of graph G. The notation n = |V(G)| represents the
order of G. For v € V(G), its open neighborhood is Ng(v) = {u € V(G)luv € E(G)}. The degree of
v is dg(v) = |Ng(v)|. Ng[v] = Ng(v) U {v} is the closed neighborhood of v. The symbols 6(G) and
A(G) represent the minimum and maximum degree of G, respectively. Let P, be a path of order n. The
k-cycle is a cycle with k vertices. Considering any two vertices u and v of G, if u is adjacent to v, for
convenience, it is sometimes denoted by u ~ v; otherwise, u » v.

Chartrand et al. [4] extended the concept of rainbow connection to rainbow disconnection. For a
graph G with edge colored, R € E(G), is an edge-cut if G — R is not connected. Additionally, R is a
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up-u, rainbow cut if R is rainbow and u;, u, are disconnected in G —R. If there is a u;-u, rainbow cut for
any uj, up € G, then G’s edge coloring is a rainbow disconnection coloring. Its rainbow disconnection
number, represented by rd(G), means the minimum number of colors that are necessary.

Based on the perspective of vertex-cut, Bai et al. [1] presented the rainbow vertex-disconnection
coloring. It is applicable to frequency distribution and cargo circulation, in which different colors of
the rainbow vertex-cut is used to feedback different frequencies or interception locations.

Let wy; and w, be two vertices of a vertex-colored graph G. ¥ C V(G) is a w-w;, vertex-cut if wy, w,
are in distinct components of G — ¥ for w; + w, and in distinct components of (G — wyw;) — F for
wy ~ wy. Then F is called rainbow if ¥ has no two vertices with the same color. A w;-w, rainbow
vertex-cut of G, denoted by F(wy, w»), is a wi-w, vertex-cut ¥ such that if w; » w,, F is rainbow; if
wi ~wa, F +wy or F + w, is rainbow.

G is rainbow vertex-disconnected when it contains a w;-w, rainbow vertex-cut for any wy,w, €
V(G). The corresponding vertex-coloring ¢ is a rainbow vertex-disconnection coloring (RVD-
Coloring) of G. Its required minimum number of colors is called rainbow vertex-disconnection number,
represented as rvd(G). An rvd-coloring is an RVD-Coloring using rvd(G) colors.

Furthermore, based on proper coloring and monochromatic coloring, proper (vertex-)disconnection
coloring and monochromatic (vertex-)disconnection coloring were presented. For more details, refer
to [2,6,9,10].

Bai et al. [1] studied the relations between rvd(G) and connected subgraph, block, connectivity,
upper connectivity, and girth, respectively. Li et al. [11] obtained 6(G) < rvd(G) < x(G), where y:(G)
is the minimum number of colors needed to make the open neighborhood of each vertex rainbow in a
vertex-coloring of G. So what are the relations between other parameters and rvd(G)?

Chen et al. [5] demonstrated that, even in graph G having A(G) = 3 or being bipartite, determining
if a given vertex-colored graph G is rainbow vertex-disconnected is NP-complete. Given a positive
integer k and a graph G, RVD-Problem aims to determine if G has an RVD-Coloring using k colors.
The current author [14] proved RVD-Problem is N P-complete for bipartite graphs and split graphs. For
every € > 0, it is impossible to approximate the rainbow vertex-disconnection number of any bipartite
graph and split graph within a factor of n3~¢ unless ZPP = NP. So in this paper, we will focus on the
approximate result of split graphs and the complexity of subclasses of split graphs.

The remainder of the paper is organized as follows. In Section 2, we investigate relations between
different parameters and rvd(G), such as diameter, edge connectivity, independence number, and so
on. In Section 3, rvd(G) of graph products such as Cartesian product, direct product, and lexicographic
product is explored. In Section 4, the approximate result of split graph is given. We prove that for
a split graph G, there exists a polynomial time algorithm that approximates rvd(G) within a factor of
n*3. We also show that RVD-Problem is N P-complete for induced K ,-free split graphs for # > 4 but
polynomially solvable for # < 3.

2. Some bounds

In this section, we will study the relation of rainbow vertex-disconnection number with various
parameters. First, we will consider the diameter.

For wy, w, € V(G), we denote the distance of w; and w, in G by dg(w;, w,). The maximum distance,

diam(G), between every two vertices of a graph G is its diameter.
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Theorem 2.1. For a graph G with diam(G) = d, rvd(G) < n—d + 2.

Proof. Suppose u,v € V(G) with dg(u,v) = d. The shortest path of u and v is denoted by P,, =
uvyv, - - - vg_1v. For convenience, let u = vy and v = v;. Next, define the following vertex-coloring ¢ of
graph G. For vertices in P,,, let c(v;) = r + 1 where i = r (mod 3). We color the remaining vertices
of G using different colors 4,5,--- ,n —d + 2. Let wy, w, be any pair of vertices of G. Then Ng(w;)
is rainbow. For if w; is adjacent to two vertices v, and v, (p < g) with the same color in P,,, then
the path vovy -+ - v,Wwivyvye1 -+ - v is a path between u and v that is shorter than P,,, a contradiction.
So if wi ~ wa, Fowi,wa) = Nogwy) \ {(wa}. If wi » wy, Fo(wy,ws) = Ng(wy). Therefore, ¢ is an
RVD-Coloring. Specifically, rvd(G) < n—d + 2. O

The edge connectivity A(G) of graph G is the minimum number of edges of G whose removal results
in a disconnected graph.

Theorem 2.2. Let R be the minimum edge-cut of graph G and G, G, be connected components of
G — R. Then rvd(G) < max{rvd(G,)|i € [2]} + 2A(G).

Proof. Let s = max{rvd(G;)|i € [2]} and c¢; be an rvd-coloring on G;, where i € [2]. Use V(R) to
denote the endpoints of minimum edge-cut R. Based on ¢; (i € [2]), we recolor V(R) using new colors
s+1,5s+2,---,5+|V(R)|. Denote the vertex-coloring of G by c. Let w,z € V(G). Assume w € G,
and z € G, where p,q € [2]. If p = g, assuming that ¥, (w,z) = §, with the vertex-coloring ¢, then
Few,2) = §, U V(R) \ {w, z} with the vertex-coloring c. If p # g, then Fg(w,2) = V(R) \ {w, z} with
the vertex-coloring c¢. So ¢ is an RVD-Coloring of G. Thus, rvd(G) < s + |[V(R)| < max{rvd(G))|i €
[2]} + 24(G). O

Lemma 2.3. [3] Every graph with average degree at least 2k, where k is a positive integer, has an
induced subgraph with minimum degree at least k + 1.

Lemma 2.4. [I] If G is a nontrivial connected graph and H is a connected subgraph of G, then
rvd(H) < rvd(G).

For wi,w, € V(G), if w; + wy, the local connectivity kg(w;, w;) represents the smallest number of
vertices to make wy, w, disconnected. If w; ~ wy, kg(W1, W2) = KG—y,w,(W1, w2) + 1. The connectivity
k(G) means the smallest number of vertices in G that, when removed, yield a trivial or disconnected
graph. The upper connectivity «*(G) satisfies " (G) = max{kg(w, w)|wi, w, € V(G)}.

Lemma 2.5. [11] For a graph G with A(G) = A, 6(G) < «"(G) < rvd(G) < xi{(G) < AA-1) + 1.
Theorem 2.6. For a graph G with order n and size m, rvd(G) > | ] + 1.

Proof. Suppose that the average degree of graph G is d. So d = 27’" > 2|%]. By Lemma 2.3, there
is an induced subgraph H with 6(H) > ] + 1. Therefore, rvd(G) > rvd(H) > 6(H) > %] + 1 by
Lemmas 2.4 and 2.5. m|

For § C V(G), if it contains no two adjacent vertices, S is referred to as an independent set of G.
Furthermore, when there is no independent set containing more vertices than S, S is maximum. The
independence number of G, indicated by a(G), is the number of vertices in a maximum independent
set of G.
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Lemma 2.7. [1] Let G be a nontrivial connected graph. Then rvd(G) = 1 if and only if G is a tree.
Theorem 2.8. For a graph G of order n, rvd(G) > [%], and the bound is sharp.

Proof. Suppose that rvd(G) = k. Denote the color classes of graph G by V,,V,,---,V,. Then each
Vi (i € [k]) induces a tree or a forest by Lemma 2.7. Assume that 7, 7T5,--- ,T, are the connected
components of V;. Since T'; (j € [£]) is bipartite, we have a(T';) > [@] (j € [€]). We obtain

T Vil
Vi) > —1>T—=]
V) z ) 512150
JEll]
Since there exists Vi with [V(| > [7] (s € [k]), we have a(G) = maxia(V;) > a(Vy) = [5]. Let
G = P,. When n is odd, we have a(P,) = % and rvd(P,) = 1. When n is even, we have a(P,) = 5
and rvd(P,) = 1. So the bound is tight. O

A vertex-coloring of G is proper if any two adjacent vertices receive different colors. The chromatic
number of G is the minimum number of colors such that G has a proper coloring, denoted by y(G). G
is k-chromatic if y(G) = k. If y(H) < x(G) for every proper subgraph H of G, G is critical. A graph is
k-critical if it is critical and y(G) = k.

Lemma 2.9. [7] A k-chromatic graph contains a k-critical subgraph.
Lemma 2.10. [7] Let G be a connected (k + 1)-critical graph. Then 6(G) > k.

Lemma 2.11. [/1] Let G be a connected graph of order n with minimum degree 6. If 6 > % then
rvd(G) = n.

Theorem 2.12. For a graph G of order n, if x(G) > 2, then rvd(G) = xi(G) = n.

= 5

Proof. Assume that y(G) = k. There exists a k-critical subgraph H by Lemma 2.9. Then 6(G) > 6(H) >
k—1> % -1= % by Lemma 2.10. According to Lemma 2.11 and 2.5, rvd(G) = x:(G) = n. O

Next, we get Theorem 2.15 to show the gap of rvd(G) and y;(G) arbitrarily large.
A block of a graph G is a maximal 2-connected subgraph of G.

Lemma 2.13. [1] Let G be a nontrivial connected graph, and let B be a block of G such that rvd(B)
is maximum among all blocks of G. Then rvd(G) = rvd(B).

Lemma 2.14. [I] Let G = K,,, .. n, be a complete k-partite graph of order n, where k > 2, 1 < n; <
ny <---<ngandn, > 2. Then

n, ifk>4o0rk=3,n3>n,>n; =2,
Vd(Kyy o) =4 D=y, ifk=3, nm=1lork=2,n>n >2,
1, if k=2andn, = 1.

Theorem 2.15. For any positive integers a and b with a < b, there exists a connected graph such that
mvd(G) = a and y;(G) = b.
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Proof. If a = b = 1, rvd(K;) = xi(K;) = 1. Consider that b > a = 1 or b > a > 2. Assume that
K, ., is a complete bipartite graph with bipartition (Vy, V), where V| = {x,y} and V, = {v{, v, -+ ,v,}.
Add b — a pendant edges to x. The new graph from K, , is denoted by G, where the set of new b — a
vertices is V3 = {V441, Var2, -+, Vp}. Then rvd(G) = rvd(K,,) = a by Lemmas 2.13 and 2.14. Since
A(G) = b, we have y;(G) > b. Now give a vertex-coloring ¢ on G. Assume c(x) = 1, c¢(y) = 2, and
c(v;) = ifori € [b]. Then for any vertex v of G, Ng(v) is rainbow. So c is an injective coloring of G
and y;(G) < b. |

A graph is minimally k-connected if it is k-connected, but omitting any of the edges, the resulting
graph is no longer k-connected.

Lemma 2.16. [13] Let G be a minimally k-connected graph of order n. If n > 3k — 2, then |E(G)| <
k(n — k). Furthermore, if n > 3k — 1, equality holds if and only if G = K; .

Lemma 2.17. [1] For integers k and n with 1 < k < n, the minimum size of a connected graph G of
order n > 4 with vd(G) = k is

n+k-2, I1<k<n-1,

E(G)lmin =
EG) {2n—4+[§'|, k =n.

Theorem 2.18. Let G be a minimally 2-connected graph with order n. If n > 4, rvd(G) < n — 2.
Furthermore, rvd(G) = n— 2 if and only if G = K;,,».

Proof. By Lemma 2.16, we have |E(G)| < 2n—4. By Lemma 2.17, rvd(G) < n—-2.If n = 4, G 1s K, ,,
and rvd(G) = 2. If n > 5, by Lemma 2.16, rvd(G) = n — 2 if and only if G = K;,,,. O

A graph G is outerplanar if it has a planar embedding G in which all vertices lie on the boundary of
its outer face.

Lemma 2.19. [3] Every simple 2-connected outerplanar graph other than K, has a vertex of degree
two.

Theorem 2.20. For an outerplanar graph G, rvd(G) < 4.

Proof. By Lemma 2.7, consider that G is not a tree. If G is a triangle, then rvd(G) = 2. So consider
graph G with order n > 4. If there is a cut vertex in G, assuming that the 2-connected subgraph
of G with maximum rainbow vertex-disconnection number is G’, we obtain rvd(G) = rvd(G’) by
Lemma 2.13. So suppose that G is 2-connected. If there is an interior face with length more than 3,
then we add some edges to make each interior face a 3-cycle. The resulting graph is denoted by H.

Next, we prove there exists an RVD-Coloring cy of graph H: V(H) — [4], satisfying the vertex set
of each 4-cycle is rainbow. For simplicity, we say that each 4-cycle is rainbow.

Forn = 4, we have H = K, — e and it suffices to color each vertex using different color. Assume that
for graphs of order n, the assertion is true. Then consider graph H with order n + 1. By Lemma 2.19,
select a vertex v with dy(v) = 2. Let Ny(v) = {vi,v,}. Since H is an outerplanar graph, H is K;3
minor-free. So let Ny(vi) N Ny(v,) = {v,v3}. Since H — v is 2-connected, there is an RVD-Coloring
cy—y: V(H —v) — [4] such that each 4-cycle is rainbow. By coloring the vertex v using the color
different from cy_,(vy), cy—,(v2), cy—,(v3), we obtain a vertex-coloring cy of graph H. Obviously, the
4-cycle vvyv3v, is rainbow.
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Letw,z € V(H). If w =vorz=v,then Fy(w,z2) = {vi,v2} \ {2} or {vi,vo} \ {w}. If {w, 2} = {v1, v},
then Fy(w, z) = {v, v3}. Except for them, Fy(w, z) = Fy_,(W, z). So cy is an RVD-Coloring of H such
that each 4-cycle is rainbow. Thus, rvd(G) < 4 by Lemma 2.4. O

3. Results of graph products

Next, we study rainbow vertex-disconnection numbers of three kinds of graph products. First, we
give the definitions of three kinds of graph products as follows.

Give two internal disjoint graphs G, H. The graph with vertex set V(G) X V(H) is Cartesian product
GOH, where (u, x) ~ (v,y) in GOH if and only if either u = v and xy € E(H) or uv € E(G) and x = y.

The direct product G X H is the graph with vertex set V(G) X V(H), where (u, x) ~ (v, y) if and only
if both uv € E(G) and xy € E(H).

The lexicographic product G o H is the graph with vertex set V(G) x V(H), where (u, x) ~ (v,y) if
and only if uv € E(G), or u = v and xy € E(H).

The stacked book graph is defined as B,,,, = §,0P,, where S, is a star with order m + 1, m > 2,
andn > 2.

Theorem 3.1. rvd(B,,,) = m+ 1.

Proof. Let V(S ,,) = {sili € [m + 1]}, where ds, (s;) = m. Let V(P,) = {p;lj € [n]}. For convenience,
denote vertex (s;, p;) in B,,, by v;;. Since kg, ,(vi1,vi2) = m + 1, rvd(B,,,) > m + 1. Give a vertex-
coloring ¢ of B,,, using m+ 1 colors as follows. Let c(v,;) = m for j € [n]. Let c(v;;) = [%] +i—1 (mod
m)fori>2andi € [m+1]and j € [n]. Except for v;, the open neighborhood of each vertex of B,, , is
rainbow. Consider any two vertices vy, and vyj,, where j; < j,. If j; = 1, then Ng, , (vy},) is rainbow;
otherwise, Ng, ,(vi;,) \ {vij-1} is rainbow. Thus, there exists Fp  (vij,Vi},). So rvd(B,,,) <m+1. O

Lemma 3.2. []] Let G be a nontrivial connected graph, and let u and v be two vertices of G having
at least two common neighbors. Then u and v receive different colors in any rvd-coloring of G.

Lemma 3.3. [1] Let G be a nontrivial connected graph of order n. Then rvd(G) = n if and only if any
two vertices of G have at least two common neighbors.

Theorem 3.4. For nontrivial connected graphs G and H, max{k*(G) + A(H),k"(H) + A(G)} <
rvd(GOH) < |V(G)| - |V(H)|. Moreover, the upper and lower bounds are sharp.

Proof. The upper bound is obtained from rvd(GOH) < |GOH| = |V(G)| - |V(H)|. According to
Lemma 3.3, we have rvd(K,0K,) = pq, where p > 4 and ¢ > 4. So the upper bound is
sharp. Select row i where each vertex has the maximum degree in the corresponding graph G. In
the same row i, we select two vertices x;, and x;, satisfying ky(x;,, x;5) = «"(H). Assume that
Ng(xie) = {xj,6,Xj,6,++ Xj,¢}. Consider the number of internally disjoint paths between x;, and
X;s. Since H is connected, there is a path between x;, and x; ; for t € {1,2,---,A}, say P;,
only through the vertices in row j;. So paths x; P xis, Xi¢Pj,Xis, -+ , XiePj, Xi s are A(G) internally
disjoint paths between x;, and x; ;. There exist at least *(H) internally disjoint paths in row i. Thus,
Keon(Xig, Xis) = A(G) + k" (H). According to Lemma 2.5, rvd(GOH) > A(G) + «*(H). By symmetry,
the lower bound is obtained. For a stacked book graph B,,,, since A(S,) = m, «*(P,) = 1, and
rvd(B,,,) = m + 1 by Theorem 3.1, the lower bound is sharp. O
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Theorem 3.5. For graphs G, H with A(G) > 2 and A(H) > 2, max{A(G),A(H)} < rvd(G x H) <
VIEDIIV(G)I.

Proof. Denote each vertex of G X H by (u,v), where u € V(G) and v € V(H). Let uy € V(G) with
dg(up) = A(G) and Ng(ug) = {uy,ua, -+ ,upnc)). Let vg € V(H) with dy(vo) = A(H) and Ny(vy) =
{vi,va, -+ ,vaan). Then (u, vo), (U2, vo), (U3, vo), -+ , (Ua@)> Vo) are the common neighbors of (u, vi)
and (up, v2). So rvd(G x H) > A(G). Since (ug, v1), (4o, v2), - - - , (4o, Vam) are the neighbors that (ug, vi)
and (u, v;) have in common, we have rvd(G X H) > A(H). Since rvd(P; X K ,-1) = A(K;,-1), the
lower bound is sharp. Obviously, rvd(G x H) < |[V(H)||V(G)|. Since rvd(K, X K;) = pg, where p > 4
and g > 4, the upper bound is sharp. O

Corollary 3.6. For nontrivial connected graphs G and H, rvd(Gx H) = 1 ifand only if GXH = K, XT
orT X K,, where T is a tree.

Proof. Assume that rvd(GxH) = 1. Then A(G) = 1 or A(H) = 1 by Theorem 3.5. Suppose that A(G) =
1 by symmetry. Then G is K. Let V(G) = {x, y}. Suppose that H contains a cycle C; = viv, - - - vjv;. If
[ is even, there exists a cycle (x, vi)(y, v2)(x, v3)(y, v4) - - - (v, v)(x, 1) in G X H. If [ is odd, there exists a
cycle (x,v)(y, va)(x,v3) - - - (x, v)(y, vi)(x, v2) (Y, v3) - - - (v, v)(x,v1) iIn G X H. So rvd(G x H) > 2. Itis
a contradiction. Thus, H is a tree.

For the converse, we prove rvd(K, X T) = 1 by contradiction. Suppose that there is a tree T
satisfying rvd(K, X Ty) > 2. Then there is a cycle C in K, X Ty. By symmetry, assume that C =
(X, Vi), vi (X, vi) - - (v, vi )(x, v;,). If the cycle C passes (y,v;,) = (y,V;,), then there exists a cycle
Vi, Vi, -+ Vi, Vi, In T; otherwise, there exists a cycle v;,v;, - - - v; v;, in Ty. It is a contradiction.

O

The subsequent corollary is obtained by Corollary 3.6 and Lemma 2.14. For K, x C,, where C, is
a cycle with n vertices, the lower bound is sharp. The upper bound is sharp for K, X K,, where p > 4.

Corollary 3.7. For a 2-connected graph G: 2 < rvd(K, X G) < |[V(G))|.

Any pair of vertices at a distance < 2 receives different colors in a 2-distance coloring of a graph G.
The smallest number of colors required in a 2-distance coloring of G is 2-distance chromatic number,
represented by y*(G). For any graph G, A + 1 < x*(G) < A? + 1, where A = A(G). As shown in [12],
the upper bound is sharp for Moore graphs of type (A, 2), which are graphs where all vertices have
degree A, are at distance at most two from each other, and the total number of vertices is A% + 1.

Theorem 3.8. For nontrivial connected graphs G, H with A(G) = A, nvd(G o H) < y*(G)|V(H)| <
(A% + D|V(H)|.

Proof. Let V(G) = {ug,u1, - ,u,} and V(H) = {vg,vi,---,v,}, where ug is the vertex with the
maximum degree of G. Let S; = {(4;,vj)|j =0,1,2,---,g}. Since (u;,vo) and (u;, v;) are two common
neighbors for any pair of vertices in §;, where u; is adjacent to u; in G, §; is rainbow under any
rvd-coloring by Lemma 3.2.
Assume that Ng(uo) = {ui,ua,--- ,ua}. For (u;,v;) € S; and (u;,,v;,) € S;,, where iy,i, € [A],
A

they have at least two common neighbors (i, vo) and (g, v). So U S'; is rainbow. For (uy,v;) € Sy

i=1
and (u;,v;) € S;, where i € [A], they have at least two common neighbors (1, v») and (u;,v;), where
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A Pd
v, ~vyand v; ~ vy in H. So | J §; is rainbow. Thus, rvd(G) > (A + 1)|V(H)|. Similarly, §; (J(U S,) is
i=0 =p1
rainbow for any u; € V(G), where Ng(u;) = {up,, up,, -+, up,}.

For a 2-distance coloring ¢’ of G: V(G) — [x¥*(G)], we expand each color k to a color set ¢, =
{(k—DIVIH)|+ 1,(k— DIV(H)| + 2,--- ,klV(H)|}. If ¢’(u;) = k, then color §; using ¢;. The resulting
coloring of G o H is an RVD-Coloring of G o H. So x*(G)|V(H)| > rvd(G o H).

O

4. Complexity results

In this section, the complexity of computing rvd number of split graphs is studied. If a split graph
G is partitioned into a clique C and an independent set /, then define (C, I) as a split partition of G. If
|C| =1, Gis atree and rvd(G) = 1. If |C| = 2, rvd(G) = t + 1, where ¢ is the number of vertices in /
that have degree two. So in the rest of this section, we consider |C| > 3.

Lemma 4.1. [/] For an integer n > 2,

n—1, ifn=273,

Lemma 4.2. Let G be a graph from K, (n > 3) by adding a vertex v with degree > 3 to K,. Then
mvd(G) =n+ 1.

Proof. When n = 3, G is K4, and rvd(G) = 4 by Lemma 4.1. When n > 4, assume that x;, x;, x3 €
Ng(v). Since there exist x;-x;, X1-X3, Xp-X3 rainbow vertex-cuts under any rvd-coloring of G, v’s color
differs from K,,. So rvd(G) = n + 1. O

Theorem 4.3. For a split graph G, there exists a polynomial time algorithm that approximates rvd(G)
within a factor of n.

Proof. Let G be a connected graph with a clique X and an independent set Y. Consider that G is 2-
connected by Lemma 2.13. So 6(G) > 2. Let p = |X| — 1 for |X| = 3 and p = |X] for |X| > 4. Construct
a new graph H using Y. If u,v € Y and u, v have at least two common neighbors in X, then u ~ v;
otherwise, u + v.

Now we claim p + y(H) — 1 < rvd(G) < |X| + x(H). First, provide a vertex-coloring ¢ on G. Color
X rainbow using |X| colors. Color Y using new y(H) colors according to the proper coloring of H. Let
w,z € V(G). If w,z € X, then Fg(w, 2) = XUMy(w, 2)\{w, z}, where My(w, z) = Ny(W)NNy(2). Ifwe Y
orzeY, Fecw,z) = X\ {w,z}. So nd(G) < |X|+ x(H). We prove the lower bound by contradiction.
Assume that rvd(G) < p + y(H) — 2. Denote an RVD-Coloring of G by ¢( using p + y(H) — 2 colors.
Since X is a complete graph, rvd(X) = p. Then Y has at most y(H) —2 colors different from X, denoted
by [¥(H)—2]. Let S = {v|]v € Y and c((v) € co(X)}. Forv € §, by Lemma 4.2, we have ds(v) = 2. Now
recolor S to get a vertex-coloring ¢’ on G. Assume that Ng(v) = {uy, u}. If My(uy, uy) = {v}, recolor v
such that ¢’(v) € [y(H) — 2]; otherwise, recolor v using a new color. So Y uses at most y(H) — 1 colors
in ¢’ and has no color appearing in X. Color H as Y. Then we obtain a proper coloring of H using at
most y(H) — 1 colors, which is a contradiction. So rvd(G) > p + y(H) — 1.
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Consider color classes Vi, V5, - -+, V ) of H. Since 6(G) > 2 and any two vertices in V; (i € [y(H)])
have at most one common neighbor in X, we have (')2(') > |V;| for any i € [y(H)]. Thus, ("2(') > WD e

— Xx(H)
obtain y(H) > 2||\;(|IZJ 1 Any graph with r edges can be colored properly with at most % + 4f21 + ‘1—‘ colors

in chapter 5 [8]. We can obtain an RVD-Coloring ¢, of G using at most |X| + 1 + 2|E(H)| colors. So
we obtain the following inequalities for n > 22:

IX| + 1 + V2[ECH)| X+ \V2IE(H)] . n+l

- - 2n 8
rvd(G) p—1+3 IX|+ 2% -3

Wity

<n3.

. 2 . .
Hence, ¢ is an n3-approximation of rvd(G).
O

Next, we consider RVD-Problem, which aims to determine whether G has an RVD-Coloring with &
colors given the graph G and a positive integer k.

We have proved Lemma 4.4 in [14]. The main idea of Lemma 4.4 is to construct a split graph H
from any graph G satisfying rvd(H) < k + 3|E(G)| if and only if x(G) < k. A graph is induced K, ,-free
if it does not contain K, as an induced subgraph. In fact, H is an induced K ;-free split graph for ¢ > 4.
So we easily obtain Theorem 4.5.

Lemma 4.4. [14] RVD-Problem is NP-complete for split graphs.

Theorem 4.5. RVD-Problem is NP-complete for induced K ;-free split graphs for t > 4.
Furthermore, we consider induced K ,-free split graphs with ¢ < 3.

Lemma 4.6. If G is an induced K, »-free connected graph, then G is a complete graph.

Proof. Assume that G is not complete. Then there exist two vertices, # and v, such that uv ¢ E(G).
Since G is connected, there is a path from u to v, denoted by P,, = uw;w,---wiv. Since G is
induced K, ,-free, we have uw, € E(G) and get a shorter path uw;---wyv. Similarly, we have
uws, uwy - - - uwy, uv € E(G), which is a contradiction. O

According to Lemmas 4.1 and 4.6, we get the following result.

Theorem 4.7. For an induced K, »-free split graph G with order n,

n-—1, ifn=23,

Theorem 4.8. For an induced K, 3-free split graph G, rvd(G) can be determined in polynomial time.

Proof. Let G be an induced K 3-free split graph with split partition (C, ). Since G is induced K] 3-
free, each vertex in C has at most two neighbors in / (Rulel). For u,v € I, if Ng(u) N Ng(v) # 0, then
Ng(u) U Ng(v) = C (Rule2). Otherwise, there exists a vertex vy € C satisfying vy + u and vy + v. Let
V' € Ng(u) N Ng(v). The vertices V', u, v, vy form a K 3, which is a contradiction.

For |C| = 3, if there is no vertex in / with degree> 2, then rvd(G) = 2; if there is a vertex with
degree two but no vertex with degree three in I, then rvd(G) = 3; if there is a vertex with degree three
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in /, then C is rainbow under any rvd-coloring of G. So we only need to consider the last case for
|C| =3 and |C| > 4.

Let S = {(u,V)IINg(u) N Ng(v)] > 2and dg(u) > 3,dc(v) > 3, andu,v € I}. If (u,v) € § and
(x,y) € S, let vy € Ng(u) N Ng(v); then vy ~ x or vy ~ y by Rule 2. We obtain d;(vy) > 3, which is a
contradiction to Rule 1. So S has no two disjoint pairs of vertices. Here are two cases.

Case 1. Assume that (i, v), (u, x), (v,x) € S.

By Rule 2, each vertex in C has two edges to {u, v, x}. So by Rule 1, |I| = 3 and I = {u, v, x}. Thus,
S = {@u,v), (u, x), (v, x)}.

Case 2. |S| =1 or every pair of vertices in § contains the same vertex.

Assume that the same vertex is u. Then let S = {(u, uy), (1, uz) - - - }.

Next, we give a vertex-coloring ¢ of the induced K| 3-free split graph G with split partition (C, /) as
follows.

Algorithm 1 rvd-coloring of G
Input: An induced K 3-free split graph G with split partition (C, I)
Output: An rvd-coloring c of G

1: Color C rainbow using colors [|C]].

2: SetQ1:Q2:Q3:(Z).
3. for eachv € I do
4: if dg(v) < 2 then

5 color v with the same color as one of its neighbors

6: continue;

7 if ds(v) > 3 and |Q| = |Q,| = 1 and v and every vertex in Q; U Q, have at least two common
neighbors then

8: color v using color |C| + 3 and Q3 = Q3 U {v}.

9: break;

10: if dg(v) > 3 and there exists u € Q; such that # and v have at least two common neighbors
then

11: color v using color |C| + 2 and O, = Q, U {v}.

12: else

13: color v using color |C| + 1 and Q; = Q; U {v}.

We now assert that ¢ is G’s rvd-coloring. By Lemmas 4.2 and 3.2, the number of colors used in
vertex-coloring ¢ is the lower bound of rvd(G). Let ¢q,q' € V(G). For q,q" € C, since G is induced
K, s-free, there is at most one common neighbor with degree two in /. Let N;(g,q’) be the common
neighbors of g and ¢’ in I. Then F5(q,q") = C U N;(q,9') \ {g,q'}. For q,q' € I, F5(q.q") = C. For
geCandq €1,%5(q.9) =C\{q}).

O
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