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Abstract: A subset Y ⊆ V(G) in a vertex-colored graph G is termed rainbow when vertices in Y receive
distinct colors from each other. For each pair of vertices w1,w2 ∈ V(G), if there exists F ⊆ V(G)
satisfyingF rainbow and w1,w2 disconnected in G−F for nonadjacent w1,w2; F+w1 orF+w2 rainbow
and w1,w2 disconnected in (G−w1w2)−F for adjacent w1,w2, then G is rainbow vertex-disconnected.
The smallest number needed to color G so that it is rainbow vertex-disconnected is known as the
rainbow vertex-disconnection number of G, or rvd(G). The RVD-Problem aims to determine whether
G has a rainbow vertex-disconnection coloring with k colors given the graph G and a positive integer k.
In this paper, some bounds between rvd(G) and different parameters, such as diameter, independence
number, and so on, are obtained. Some results of rainbow vertex-disconnection numbers of three
graph products are then obtained. Last, we demonstrate that there is a polynomial time approach that
approximates rvd(G) of split graph G within a factor of n2/3. We show RVD-Problem is NP-complete
for induced K1,t-free split graphs for t ≥ 4 but polynomially solvable for t ≤ 3.
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1. Introduction

In this paper, we consider simple, nontrivial connected and undirected graphs. Use V(G) and E(G)
to respectively denote the vertex set and edge set of graph G. The notation n = |V(G)| represents the
order of G. For v ∈ V(G), its open neighborhood is NG(v) = {u ∈ V(G)|uv ∈ E(G)}. The degree of
v is dG(v) = |NG(v)|. NG[v] = NG(v) ∪ {v} is the closed neighborhood of v. The symbols δ(G) and
∆(G) represent the minimum and maximum degree of G, respectively. Let Pn be a path of order n. The
k-cycle is a cycle with k vertices. Considering any two vertices u and v of G, if u is adjacent to v, for
convenience, it is sometimes denoted by u ∼ v; otherwise, u / v.

Chartrand et al. [4] extended the concept of rainbow connection to rainbow disconnection. For a
graph G with edge colored, R ⊆ E(G), is an edge-cut if G − R is not connected. Additionally, R is a
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u1-u2 rainbow cut if R is rainbow and u1, u2 are disconnected in G−R. If there is a u1-u2 rainbow cut for
any u1, u2 ∈ G, then G’s edge coloring is a rainbow disconnection coloring. Its rainbow disconnection
number, represented by rd(G), means the minimum number of colors that are necessary.

Based on the perspective of vertex-cut, Bai et al. [1] presented the rainbow vertex-disconnection
coloring. It is applicable to frequency distribution and cargo circulation, in which different colors of
the rainbow vertex-cut is used to feedback different frequencies or interception locations.

Let w1 and w2 be two vertices of a vertex-colored graph G. F ⊆ V(G) is a w1-w2 vertex-cut if w1,w2

are in distinct components of G − F for w1 / w2 and in distinct components of (G − w1w2) − F for
w1 ∼ w2. Then F is called rainbow if F has no two vertices with the same color. A w1-w2 rainbow
vertex-cut of G, denoted by FG(w1,w2), is a w1-w2 vertex-cut F such that if w1 / w2, F is rainbow; if
w1 ∼ w2, F + w1 or F + w2 is rainbow.

G is rainbow vertex-disconnected when it contains a w1-w2 rainbow vertex-cut for any w1,w2 ∈

V(G). The corresponding vertex-coloring c is a rainbow vertex-disconnection coloring (RVD-
Coloring) of G. Its required minimum number of colors is called rainbow vertex-disconnection number,
represented as rvd(G). An rvd-coloring is an RVD-Coloring using rvd(G) colors.

Furthermore, based on proper coloring and monochromatic coloring, proper (vertex-)disconnection
coloring and monochromatic (vertex-)disconnection coloring were presented. For more details, refer
to [2, 6, 9, 10].

Bai et al. [1] studied the relations between rvd(G) and connected subgraph, block, connectivity,
upper connectivity, and girth, respectively. Li et al. [11] obtained δ(G) ≤ rvd(G) ≤ χi(G), where χi(G)
is the minimum number of colors needed to make the open neighborhood of each vertex rainbow in a
vertex-coloring of G. So what are the relations between other parameters and rvd(G)?

Chen et al. [5] demonstrated that, even in graph G having ∆(G) = 3 or being bipartite, determining
if a given vertex-colored graph G is rainbow vertex-disconnected is NP-complete. Given a positive
integer k and a graph G, RVD-Problem aims to determine if G has an RVD-Coloring using k colors.
The current author [14] proved RVD-Problem is NP-complete for bipartite graphs and split graphs. For
every ϵ > 0, it is impossible to approximate the rainbow vertex-disconnection number of any bipartite
graph and split graph within a factor of n

1
3−ϵ unless ZPP = NP. So in this paper, we will focus on the

approximate result of split graphs and the complexity of subclasses of split graphs.
The remainder of the paper is organized as follows. In Section 2, we investigate relations between

different parameters and rvd(G), such as diameter, edge connectivity, independence number, and so
on. In Section 3, rvd(G) of graph products such as Cartesian product, direct product, and lexicographic
product is explored. In Section 4, the approximate result of split graph is given. We prove that for
a split graph G, there exists a polynomial time algorithm that approximates rvd(G) within a factor of
n2/3. We also show that RVD-Problem is NP-complete for induced K1,t-free split graphs for t ≥ 4 but
polynomially solvable for t ≤ 3.

2. Some bounds

In this section, we will study the relation of rainbow vertex-disconnection number with various
parameters. First, we will consider the diameter.

For w1,w2 ∈ V(G), we denote the distance of w1 and w2 in G by dG(w1,w2). The maximum distance,
diam(G), between every two vertices of a graph G is its diameter.
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Theorem 2.1. For a graph G with diam(G) = d, rvd(G) ≤ n − d + 2.

Proof. Suppose u, v ∈ V(G) with dG(u, v) = d. The shortest path of u and v is denoted by Puv =

uv1v2 · · · vd−1v. For convenience, let u = v0 and v = vd. Next, define the following vertex-coloring c of
graph G. For vertices in Puv, let c(vi) = r + 1 where i ≡ r (mod 3). We color the remaining vertices
of G using different colors 4, 5, · · · , n − d + 2. Let w1,w2 be any pair of vertices of G. Then NG(w1)
is rainbow. For if w1 is adjacent to two vertices vp and vq (p < q) with the same color in Puv, then
the path v0v1 · · · vpw1vqvq+1 · · · vd is a path between u and v that is shorter than Puv, a contradiction.
So if w1 ∼ w2, FG(w1,w2) = NG(w1) \ {w2}. If w1 / w2, FG(w1,w2) = NG(w1). Therefore, c is an
RVD-Coloring. Specifically, rvd(G) ≤ n − d + 2. □

The edge connectivity λ(G) of graph G is the minimum number of edges of G whose removal results
in a disconnected graph.

Theorem 2.2. Let R be the minimum edge-cut of graph G and G1,G2 be connected components of
G − R. Then rvd(G) ≤ max{rvd(Gi)|i ∈ [2]} + 2λ(G).

Proof. Let s = max{rvd(Gi)|i ∈ [2]} and ci be an rvd-coloring on Gi, where i ∈ [2]. Use V(R) to
denote the endpoints of minimum edge-cut R. Based on ci (i ∈ [2]), we recolor V(R) using new colors
s + 1, s + 2, · · · , s + |V(R)|. Denote the vertex-coloring of G by c. Let w, z ∈ V(G). Assume w ∈ Gp

and z ∈ Gq, where p, q ∈ [2]. If p = q, assuming that FGp(w, z) = S p with the vertex-coloring cp, then
FG(w, z) = S p ∪ V(R) \ {w, z} with the vertex-coloring c. If p , q, then FG(w, z) = V(R) \ {w, z} with
the vertex-coloring c. So c is an RVD-Coloring of G. Thus, rvd(G) ≤ s + |V(R)| ≤ max{rvd(Gi)|i ∈
[2]} + 2λ(G). □

Lemma 2.3. [3] Every graph with average degree at least 2k, where k is a positive integer, has an
induced subgraph with minimum degree at least k + 1.

Lemma 2.4. [1] If G is a nontrivial connected graph and H is a connected subgraph of G, then
rvd(H) ≤ rvd(G).

For w1,w2 ∈ V(G), if w1 / w2, the local connectivity κG(w1,w2) represents the smallest number of
vertices to make w1,w2 disconnected. If w1 ∼ w2, κG(w1,w2) = κG−w1w2(w1,w2) + 1. The connectivity
κ(G) means the smallest number of vertices in G that, when removed, yield a trivial or disconnected
graph. The upper connectivity κ+(G) satisfies κ+(G) = max{κG(w1,w2)|w1,w2 ∈ V(G)}.

Lemma 2.5. [11] For a graph G with ∆(G) = ∆, δ(G) ≤ κ+(G) ≤ rvd(G) ≤ χi(G) ≤ ∆(∆ − 1) + 1.

Theorem 2.6. For a graph G with order n and size m, rvd(G) ≥ ⌊m
n ⌋ + 1.

Proof. Suppose that the average degree of graph G is d̄. So d̄ = 2m
n ≥ 2⌊m

n ⌋. By Lemma 2.3, there
is an induced subgraph H with δ(H) ≥ ⌊m

n ⌋ + 1. Therefore, rvd(G) ≥ rvd(H) ≥ δ(H) ≥ ⌊m
n ⌋ + 1 by

Lemmas 2.4 and 2.5. □

For S ⊆ V(G), if it contains no two adjacent vertices, S is referred to as an independent set of G.
Furthermore, when there is no independent set containing more vertices than S , S is maximum. The
independence number of G, indicated by α(G), is the number of vertices in a maximum independent
set of G.
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Lemma 2.7. [1] Let G be a nontrivial connected graph. Then rvd(G) = 1 if and only if G is a tree.

Theorem 2.8. For a graph G of order n, rvd(G) ≥ ⌈ n
2α(G)⌉, and the bound is sharp.

Proof. Suppose that rvd(G) = k. Denote the color classes of graph G by V1,V2, · · · ,Vk. Then each
Vi (i ∈ [k]) induces a tree or a forest by Lemma 2.7. Assume that T1,T2, · · · ,Tℓ are the connected
components of Vi. Since T j ( j ∈ [ℓ]) is bipartite, we have α(T j) ≥ ⌈

|T j |

2 ⌉ ( j ∈ [ℓ]). We obtain

α(Vi) ≥
∑
j∈[ℓ]

⌈
|T j|

2
⌉ ≥ ⌈

|Vi|

2
⌉.

Since there exists Vs with |Vs| ≥ ⌈
n
k ⌉ (s ∈ [k]), we have α(G) ≥ maxi∈[k]α(Vi) ≥ α(Vs) ≥ ⌈ n

2k ⌉. Let
G = Pn. When n is odd, we have α(Pn) = n+1

2 and rvd(Pn) = 1. When n is even, we have α(Pn) = n
2

and rvd(Pn) = 1. So the bound is tight. □

A vertex-coloring of G is proper if any two adjacent vertices receive different colors. The chromatic
number of G is the minimum number of colors such that G has a proper coloring, denoted by χ(G). G
is k-chromatic if χ(G) = k. If χ(H) < χ(G) for every proper subgraph H of G, G is critical. A graph is
k-critical if it is critical and χ(G) = k.

Lemma 2.9. [7] A k-chromatic graph contains a k-critical subgraph.

Lemma 2.10. [7] Let G be a connected (k + 1)-critical graph. Then δ(G) ≥ k.

Lemma 2.11. [11] Let G be a connected graph of order n with minimum degree δ. If δ ≥ n+2
2 , then

rvd(G) = n.

Theorem 2.12. For a graph G of order n, if χ(G) ≥ n+4
2 , then rvd(G) = χi(G) = n.

Proof. Assume that χ(G) = k. There exists a k-critical subgraph H by Lemma 2.9. Then δ(G) ≥ δ(H) ≥
k − 1 ≥ n+4

2 − 1 = n+2
2 by Lemma 2.10. According to Lemma 2.11 and 2.5, rvd(G) = χi(G) = n. □

Next, we get Theorem 2.15 to show the gap of rvd(G) and χi(G) arbitrarily large.
A block of a graph G is a maximal 2-connected subgraph of G.

Lemma 2.13. [1] Let G be a nontrivial connected graph, and let B be a block of G such that rvd(B)
is maximum among all blocks of G. Then rvd(G) = rvd(B).

Lemma 2.14. [1] Let G = Kn1,n2,...,nk be a complete k-partite graph of order n, where k ≥ 2, 1 ≤ n1 ≤

n2 ≤ · · · ≤ nk and nk ≥ 2. Then

rvd(Kn1,n2,...,nk) =


n, i f k ≥ 4 or k = 3, n3 ≥ n2 ≥ n1 ≥ 2,
n − nk−1, i f k = 3, n1 = 1 or k = 2, n2 ≥ n1 ≥ 2,
1, i f k = 2 and n1 = 1.

Theorem 2.15. For any positive integers a and b with a ≤ b, there exists a connected graph such that
rvd(G) = a and χi(G) = b.

AIMS Mathematics Volume 10, Issue 3, 5960–5970.



5964

Proof. If a = b = 1, rvd(K2) = χi(K2) = 1. Consider that b > a = 1 or b ≥ a ≥ 2. Assume that
K2,a is a complete bipartite graph with bipartition (V1,V2), where V1 = {x, y} and V2 = {v1, v2, · · · , va}.
Add b − a pendant edges to x. The new graph from K2,a is denoted by G, where the set of new b − a
vertices is V3 = {va+1, va+2, · · · , vb}. Then rvd(G) = rvd(K2,a) = a by Lemmas 2.13 and 2.14. Since
∆(G) = b, we have χi(G) ≥ b. Now give a vertex-coloring c on G. Assume c(x) = 1, c(y) = 2, and
c(vi) = i for i ∈ [b]. Then for any vertex v of G, NG(v) is rainbow. So c is an injective coloring of G
and χi(G) ≤ b. □

A graph is minimally k-connected if it is k-connected, but omitting any of the edges, the resulting
graph is no longer k-connected.

Lemma 2.16. [13] Let G be a minimally k-connected graph of order n. If n ≥ 3k − 2, then |E(G)| ≤
k(n − k). Furthermore, if n ≥ 3k − 1, equality holds if and only if G = Kk,n−k.

Lemma 2.17. [1] For integers k and n with 1 ≤ k ≤ n, the minimum size of a connected graph G of
order n ≥ 4 with rvd(G) = k is

|E(G)|min =

n + k − 2, 1 ≤ k ≤ n − 1,
2n − 4 + ⌈ n

2⌉, k = n.

Theorem 2.18. Let G be a minimally 2-connected graph with order n. If n ≥ 4, rvd(G) ≤ n − 2.
Furthermore, rvd(G) = n − 2 if and only if G = K2,n−2.

Proof. By Lemma 2.16, we have |E(G)| ≤ 2n− 4. By Lemma 2.17, rvd(G) ≤ n− 2. If n = 4, G is K2,2,
and rvd(G) = 2. If n ≥ 5, by Lemma 2.16, rvd(G) = n − 2 if and only if G = K2,n−2. □

A graph G is outerplanar if it has a planar embedding G̃ in which all vertices lie on the boundary of
its outer face.

Lemma 2.19. [3] Every simple 2-connected outerplanar graph other than K2 has a vertex of degree
two.

Theorem 2.20. For an outerplanar graph G, rvd(G) ≤ 4.

Proof. By Lemma 2.7, consider that G is not a tree. If G is a triangle, then rvd(G) = 2. So consider
graph G with order n ≥ 4. If there is a cut vertex in G, assuming that the 2-connected subgraph
of G with maximum rainbow vertex-disconnection number is G′, we obtain rvd(G) = rvd(G′) by
Lemma 2.13. So suppose that G is 2-connected. If there is an interior face with length more than 3,
then we add some edges to make each interior face a 3-cycle. The resulting graph is denoted by H.

Next, we prove there exists an RVD-Coloring cH of graph H: V(H)→ [4], satisfying the vertex set
of each 4-cycle is rainbow. For simplicity, we say that each 4-cycle is rainbow.

For n = 4, we have H = K4−e and it suffices to color each vertex using different color. Assume that
for graphs of order n, the assertion is true. Then consider graph H with order n + 1. By Lemma 2.19,
select a vertex v with dH(v) = 2. Let NH(v) = {v1, v2}. Since H is an outerplanar graph, H is K2,3

minor-free. So let NH(v1) ∩ NH(v2) = {v, v3}. Since H − v is 2-connected, there is an RVD-Coloring
cH−v: V(H − v) → [4] such that each 4-cycle is rainbow. By coloring the vertex v using the color
different from cH−v(v1), cH−v(v2), cH−v(v3), we obtain a vertex-coloring cH of graph H. Obviously, the
4-cycle vv1v3v2 is rainbow.
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Let w, z ∈ V(H). If w = v or z = v, then FH(w, z) = {v1, v2} \ {z} or {v1, v2} \ {w}. If {w, z} = {v1, v2},
then FH(w, z) = {v, v3}. Except for them, FH(w, z) = FH−v(w, z). So cH is an RVD-Coloring of H such
that each 4-cycle is rainbow. Thus, rvd(G) ≤ 4 by Lemma 2.4. □

3. Results of graph products

Next, we study rainbow vertex-disconnection numbers of three kinds of graph products. First, we
give the definitions of three kinds of graph products as follows.

Give two internal disjoint graphs G,H. The graph with vertex set V(G)×V(H) is Cartesian product
G□H, where (u, x) ∼ (v, y) in G□H if and only if either u = v and xy ∈ E(H) or uv ∈ E(G) and x = y.

The direct product G ×H is the graph with vertex set V(G)× V(H), where (u, x) ∼ (v, y) if and only
if both uv ∈ E(G) and xy ∈ E(H).

The lexicographic product G ◦ H is the graph with vertex set V(G) × V(H), where (u, x) ∼ (v, y) if
and only if uv ∈ E(G), or u = v and xy ∈ E(H).

The stacked book graph is defined as Bm,n � S m□Pn, where S m is a star with order m + 1, m ≥ 2,
and n ≥ 2.

Theorem 3.1. rvd(Bm,n) = m + 1.

Proof. Let V(S m) = {si|i ∈ [m + 1]}, where dS m(s1) = m. Let V(Pn) = {p j| j ∈ [n]}. For convenience,
denote vertex (si, p j) in Bm,n by vi j. Since κBm,n(v11, v12) = m + 1, rvd(Bm,n) ≥ m + 1. Give a vertex-
coloring c of Bm,n using m+1 colors as follows. Let c(v1 j) = m for j ∈ [n]. Let c(vi j) = ⌈

j
2⌉+ i−1 (mod

m) for i ≥ 2 and i ∈ [m+ 1] and j ∈ [n]. Except for v1 j, the open neighborhood of each vertex of Bm,n is
rainbow. Consider any two vertices v1 j1 and v1 j2 , where j1 < j2. If j1 = 1, then NBm,n(v1 j1) is rainbow;
otherwise, NBm,n(v1 j1) \ {v1 j1−1} is rainbow. Thus, there exists FBm,n(v1 j1 , v1 j2). So rvd(Bm,n) ≤ m+ 1. □

Lemma 3.2. [1] Let G be a nontrivial connected graph, and let u and v be two vertices of G having
at least two common neighbors. Then u and v receive different colors in any rvd-coloring of G.

Lemma 3.3. [1] Let G be a nontrivial connected graph of order n. Then rvd(G) = n if and only if any
two vertices of G have at least two common neighbors.

Theorem 3.4. For nontrivial connected graphs G and H, max{κ+(G) + ∆(H), κ+(H) + ∆(G)} ≤
rvd(G□H) ≤ |V(G)| · |V(H)|. Moreover, the upper and lower bounds are sharp.

Proof. The upper bound is obtained from rvd(G□H) ≤ |G□H| = |V(G)| · |V(H)|. According to
Lemma 3.3, we have rvd(Kp□Kq) = pq, where p ≥ 4 and q ≥ 4. So the upper bound is
sharp. Select row i where each vertex has the maximum degree in the corresponding graph G. In
the same row i, we select two vertices xi,ℓ and xi,s satisfying κH(xi,ℓ, xi,s) = κ+(H). Assume that
NG(xi,ℓ) = {x j1,ℓ, x j2,ℓ, · · · , x j∆,ℓ}. Consider the number of internally disjoint paths between xi,ℓ and
xi,s. Since H is connected, there is a path between x jt ,ℓ and x jt ,s for t ∈ {1, 2, · · · ,∆}, say P jt ,
only through the vertices in row jt. So paths xi,ℓP j1 xi,s, xi,ℓP j2 xi,s, · · · , xi,ℓP j∆ xi,s are ∆(G) internally
disjoint paths between xi,ℓ and xi,s. There exist at least κ+(H) internally disjoint paths in row i. Thus,
κG□H(xi,ℓ, xi,s) ≥ ∆(G) + κ+(H). According to Lemma 2.5, rvd(G□H) ≥ ∆(G) + κ+(H). By symmetry,
the lower bound is obtained. For a stacked book graph Bm,n, since ∆(S m) = m, κ+(Pn) = 1, and
rvd(Bm,n) = m + 1 by Theorem 3.1, the lower bound is sharp. □
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Theorem 3.5. For graphs G,H with ∆(G) ≥ 2 and ∆(H) ≥ 2, max{∆(G),∆(H)} ≤ rvd(G × H) ≤
|V(H)||V(G)|.

Proof. Denote each vertex of G × H by (u, v), where u ∈ V(G) and v ∈ V(H). Let u0 ∈ V(G) with
dG(u0) = ∆(G) and NG(u0) = {u1, u2, · · · , u∆(G)}. Let v0 ∈ V(H) with dH(v0) = ∆(H) and NH(v0) =
{v1, v2, · · · , v∆(H)}. Then (u1, v0), (u2, v0), (u3, v0), · · · , (u∆(G), v0) are the common neighbors of (u0, v1)
and (u0, v2). So rvd(G×H) ≥ ∆(G). Since (u0, v1), (u0, v2), · · · , (u0, v∆(H)) are the neighbors that (u0, v1)
and (u0, v2) have in common, we have rvd(G × H) ≥ ∆(H). Since rvd(P3 × K1,n−1) = ∆(K1,n−1), the
lower bound is sharp. Obviously, rvd(G × H) ≤ |V(H)||V(G)|. Since rvd(Kp × Kq) = pq, where p ≥ 4
and q ≥ 4, the upper bound is sharp. □

Corollary 3.6. For nontrivial connected graphs G and H, rvd(G×H) = 1 if and only if G×H = K2×T
or T × K2, where T is a tree.

Proof. Assume that rvd(G×H) = 1. Then ∆(G) = 1 or ∆(H) = 1 by Theorem 3.5. Suppose that ∆(G) =
1 by symmetry. Then G is K2. Let V(G) = {x, y}. Suppose that H contains a cycle Cl = v1v2 · · · vlv1. If
l is even, there exists a cycle (x, v1)(y, v2)(x, v3)(y, v4) · · · (y, vl)(x, v1) in G ×H. If l is odd, there exists a
cycle (x, v1)(y, v2)(x, v3) · · · (x, vl)(y, v1)(x, v2)(y, v3) · · · (y, vl)(x, v1) in G × H. So rvd(G × H) ≥ 2. It is
a contradiction. Thus, H is a tree.

For the converse, we prove rvd(K2 × T ) = 1 by contradiction. Suppose that there is a tree T0

satisfying rvd(K2 × T0) ≥ 2. Then there is a cycle C in K2 × T0. By symmetry, assume that C =
(x, vi1)(y, vi2)(x, vi3) · · · (y, vit)(x, vi1). If the cycle C passes (y, vik) = (y, vi1), then there exists a cycle
vi1vi2 · · · vik−1vi1 in T0; otherwise, there exists a cycle vi1vi2 · · · vitvi1 in T0. It is a contradiction.

□

The subsequent corollary is obtained by Corollary 3.6 and Lemma 2.14. For K2 × Cn, where Cn is
a cycle with n vertices, the lower bound is sharp. The upper bound is sharp for K2 × Kp, where p ≥ 4.

Corollary 3.7. For a 2-connected graph G: 2 ≤ rvd(K2 ×G) ≤ |V(G)|.

Any pair of vertices at a distance ≤ 2 receives different colors in a 2-distance coloring of a graph G.
The smallest number of colors required in a 2-distance coloring of G is 2-distance chromatic number,
represented by χ2(G). For any graph G, ∆ + 1 ≤ χ2(G) ≤ ∆2 + 1, where ∆ = ∆(G). As shown in [12],
the upper bound is sharp for Moore graphs of type (∆, 2), which are graphs where all vertices have
degree ∆, are at distance at most two from each other, and the total number of vertices is ∆2 + 1.

Theorem 3.8. For nontrivial connected graphs G,H with ∆(G) = ∆, rvd(G ◦ H) ≤ χ2(G)|V(H)| ≤
(∆2 + 1)|V(H)|.

Proof. Let V(G) = {u0, u1, · · · , up} and V(H) = {v0, v1, · · · , vq}, where u0 is the vertex with the
maximum degree of G. Let S i = {(ui, v j)| j = 0, 1, 2, · · · , q}. Since (ui′ , v0) and (ui′ , v1) are two common
neighbors for any pair of vertices in S i, where ui is adjacent to ui′ in G, S i is rainbow under any
rvd-coloring by Lemma 3.2.

Assume that NG(u0) = {u1, u2, · · · , u∆}. For (ui1 , v j1) ∈ S i1 and (ui2 , v j2) ∈ S i2 , where i1, i2 ∈ [∆],

they have at least two common neighbors (u0, v0) and (u0, v1). So
∆⋃

i=1
S i is rainbow. For (u0, vt) ∈ S 0

and (ui, v j) ∈ S i, where i ∈ [∆], they have at least two common neighbors (u0, vt′) and (ui, v j′), where
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vt ∼ vt′ and v j ∼ v j′ in H. So
∆⋃

i=0
S i is rainbow. Thus, rvd(G) ≥ (∆+ 1)|V(H)|. Similarly, S i

⋃
(

pd⋃
t=p1

S t) is

rainbow for any ui ∈ V(G), where NG(ui) = {up1 , up2 , · · · , upd}.
For a 2-distance coloring c′ of G: V(G) 7→ [χ2(G)], we expand each color k to a color set ck =

{(k − 1)|V(H)| + 1, (k − 1)|V(H)| + 2, · · · , k|V(H)|}. If c′(ui) = k, then color S i using ck. The resulting
coloring of G ◦ H is an RVD-Coloring of G ◦ H. So χ2(G)|V(H)| ≥ rvd(G ◦ H).

□

4. Complexity results

In this section, the complexity of computing rvd number of split graphs is studied. If a split graph
G is partitioned into a clique C and an independent set I, then define (C, I) as a split partition of G. If
|C| = 1, G is a tree and rvd(G) = 1. If |C| = 2, rvd(G) = t + 1, where t is the number of vertices in I
that have degree two. So in the rest of this section, we consider |C| ≥ 3.

Lemma 4.1. [1] For an integer n ≥ 2,

rvd(Kn) =
{

n − 1, i f n = 2, 3,
n, i f n ≥ 4.

Lemma 4.2. Let G be a graph from Kn (n ≥ 3) by adding a vertex v with degree ≥ 3 to Kn. Then
rvd(G) = n + 1.

Proof. When n = 3, G is K4, and rvd(G) = 4 by Lemma 4.1. When n ≥ 4, assume that x1, x2, x3 ∈

NG(v). Since there exist x1-x2, x1-x3, x2-x3 rainbow vertex-cuts under any rvd-coloring of G, v’s color
differs from Kn. So rvd(G) = n + 1. □

Theorem 4.3. For a split graph G, there exists a polynomial time algorithm that approximates rvd(G)
within a factor of n

2
3 .

Proof. Let G be a connected graph with a clique X and an independent set Y . Consider that G is 2-
connected by Lemma 2.13. So δ(G) ≥ 2. Let p = |X| − 1 for |X| = 3 and p = |X| for |X| ≥ 4. Construct
a new graph H using Y . If u, v ∈ Y and u, v have at least two common neighbors in X, then u ∼ v;
otherwise, u / v.

Now we claim p + χ(H) − 1 ≤ rvd(G) ≤ |X| + χ(H). First, provide a vertex-coloring c on G. Color
X rainbow using |X| colors. Color Y using new χ(H) colors according to the proper coloring of H. Let
w, z ∈ V(G). If w, z ∈ X, then FG(w, z) = X∪MY(w, z)\{w, z}, where MY(w, z) = NY(w)∩NY(z). If w ∈ Y
or z ∈ Y , FG(w, z) = X \ {w, z}. So rvd(G) ≤ |X| + χ(H). We prove the lower bound by contradiction.
Assume that rvd(G) ≤ p + χ(H) − 2. Denote an RVD-Coloring of G by c0 using p + χ(H) − 2 colors.
Since X is a complete graph, rvd(X) = p. Then Y has at most χ(H)−2 colors different from X, denoted
by [χ(H)− 2]. Let S = {v|v ∈ Y and c0(v) ∈ c0(X)}. For v ∈ S , by Lemma 4.2, we have dG(v) = 2. Now
recolor S to get a vertex-coloring c′ on G. Assume that NG(v) = {u1, u2}. If MY(u1, u2) = {v}, recolor v
such that c′(v) ∈ [χ(H) − 2]; otherwise, recolor v using a new color. So Y uses at most χ(H) − 1 colors
in c′ and has no color appearing in X. Color H as Y . Then we obtain a proper coloring of H using at
most χ(H) − 1 colors, which is a contradiction. So rvd(G) ≥ p + χ(H) − 1.
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Consider color classes V1,V2, · · · ,Vχ(H) of H. Since δ(G) ≥ 2 and any two vertices in Vi (i ∈ [χ(H)])
have at most one common neighbor in X, we have

(
|X|
2

)
≥ |Vi| for any i ∈ [χ(H)]. Thus,

(
|X|
2

)
≥
|V(H)|
χ(H) . We

obtain χ(H) ≥ 2|V(H)|
|X|2 . Any graph with t edges can be colored properly with at most 1

2 +

√
2t + 1

4 colors

in chapter 5 [8]. We can obtain an RVD-Coloring c0 of G using at most |X| + 1 +
√

2|E(H)| colors. So
we obtain the following inequalities for n ≥ 22:

|X| + 1 +
√

2|E(H)|
rvd(G)

≤
|X| + 1 +

√
2|E(H)|

p − 1 + 2|V(H)|
|X|2

≤
n + 1

|X| + 2n
|X|2 −

8
3

≤ n
2
3 .

Hence, c0 is an n
2
3 -approximation of rvd(G).

□

Next, we consider RVD-Problem, which aims to determine whether G has an RVD-Coloring with k
colors given the graph G and a positive integer k.

We have proved Lemma 4.4 in [14]. The main idea of Lemma 4.4 is to construct a split graph H
from any graph G satisfying rvd(H) ≤ k + 3|E(G)| if and only if χ(G) ≤ k. A graph is induced K1,t-free
if it does not contain K1,t as an induced subgraph. In fact, H is an induced K1,t-free split graph for t ≥ 4.
So we easily obtain Theorem 4.5.

Lemma 4.4. [14] RVD-Problem is NP-complete for split graphs.

Theorem 4.5. RVD-Problem is NP-complete for induced K1,t-free split graphs for t ≥ 4.

Furthermore, we consider induced K1,t-free split graphs with t ≤ 3.

Lemma 4.6. If G is an induced K1,2-free connected graph, then G is a complete graph.

Proof. Assume that G is not complete. Then there exist two vertices, u and v, such that uv < E(G).
Since G is connected, there is a path from u to v, denoted by Puv = uw1w2 · · ·wkv. Since G is
induced K1,2-free, we have uw2 ∈ E(G) and get a shorter path uw2 · · ·wkv. Similarly, we have
uw3, uw4 · · · uwk, uv ∈ E(G), which is a contradiction. □

According to Lemmas 4.1 and 4.6, we get the following result.

Theorem 4.7. For an induced K1,2-free split graph G with order n,

rvd(G) =
{

n − 1, i f n = 2, 3,
n, i f n ≥ 4.

.

Theorem 4.8. For an induced K1,3-free split graph G, rvd(G) can be determined in polynomial time.

Proof. Let G be an induced K1,3-free split graph with split partition (C, I). Since G is induced K1,3-
free, each vertex in C has at most two neighbors in I (Rule1). For u, v ∈ I, if NG(u) ∩ NG(v) , ∅, then
NG(u) ∪ NG(v) = C (Rule2). Otherwise, there exists a vertex v0 ∈ C satisfying v0 / u and v0 / v. Let
v′ ∈ NG(u) ∩ NG(v). The vertices v′, u, v, v0 form a K1,3, which is a contradiction.

For |C| = 3, if there is no vertex in I with degree≥ 2, then rvd(G) = 2; if there is a vertex with
degree two but no vertex with degree three in I, then rvd(G) = 3; if there is a vertex with degree three
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in I, then C is rainbow under any rvd-coloring of G. So we only need to consider the last case for
|C| = 3 and |C| ≥ 4.

Let S = {(u, v)||NG(u) ∩ NG(v)| ≥ 2 and dG(u) ≥ 3, dG(v) ≥ 3, and u, v ∈ I}. If (u, v) ∈ S and
(x, y) ∈ S , let vs ∈ NG(u) ∩ NG(v); then vs ∼ x or vs ∼ y by Rule 2. We obtain dI(vs) ≥ 3, which is a
contradiction to Rule 1. So S has no two disjoint pairs of vertices. Here are two cases.
Case 1. Assume that (u, v), (u, x), (v, x) ∈ S .

By Rule 2, each vertex in C has two edges to {u, v, x}. So by Rule 1, |I| = 3 and I = {u, v, x}. Thus,
S = {(u, v), (u, x), (v, x)}.
Case 2. |S | = 1 or every pair of vertices in S contains the same vertex.

Assume that the same vertex is u. Then let S = {(u, u1), (u, u2) · · · }.
Next, we give a vertex-coloring c of the induced K1,3-free split graph G with split partition (C, I) as

follows.

Algorithm 1 rvd-coloring of G
Input: An induced K1,3-free split graph G with split partition (C, I)
Output: An rvd-coloring c of G
1: Color C rainbow using colors [|C|].
2: Set Q1 = Q2 = Q3 = ∅.
3: for each v ∈ I do
4: if dG(v) ≤ 2 then
5: color v with the same color as one of its neighbors
6: continue;
7: if dG(v) ≥ 3 and |Q1| = |Q2| = 1 and v and every vertex in Q1 ∪ Q2 have at least two common

neighbors then
8: color v using color |C| + 3 and Q3 = Q3 ∪ {v}.
9: break;

10: if dG(v) ≥ 3 and there exists u ∈ Q1 such that u and v have at least two common neighbors
then

11: color v using color |C| + 2 and Q2 = Q2 ∪ {v}.
12: else
13: color v using color |C| + 1 and Q1 = Q1 ∪ {v}.

We now assert that c is G’s rvd-coloring. By Lemmas 4.2 and 3.2, the number of colors used in
vertex-coloring c is the lower bound of rvd(G). Let q, q′ ∈ V(G). For q, q′ ∈ C, since G is induced
K1,3-free, there is at most one common neighbor with degree two in I. Let NI(q, q′) be the common
neighbors of q and q′ in I. Then FG(q, q′) = C ∪ NI(q, q′) \ {q, q′}. For q, q′ ∈ I, FG(q, q′) = C. For
q ∈ C and q′ ∈ I, FG(q, q′) = C \ {q}.

□
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