Loading [MathJax]/jax/output/SVG/jax.js
Editorial

Debating New Theory in Neuroscience

  • Received: 15 April 2014 Accepted: 17 April 2014 Published: 20 April 2014
  • Citation: Robert A Moss, Joseph V Martin. Debating New Theory in Neuroscience[J]. AIMS Neuroscience, 2014, 1(1): 1-3. doi: 10.3934/Neuroscience.2014.1.1

    Related Papers:

    [1] Ali H. Tedjani, Sharifah E. Alhazmi, Samer S. Ezz-Eldien . An operational approach for one- and two-dimension high-order multi-pantograph Volterra integro-differential equation. AIMS Mathematics, 2025, 10(4): 9274-9294. doi: 10.3934/math.2025426
    [2] Ahmed M. Rajab, Saeed Pishbin, Javad Shokri . Analyzing the structure of solutions for weakly singular integro-differential equations with partial derivatives. AIMS Mathematics, 2024, 9(9): 23182-23196. doi: 10.3934/math.20241127
    [3] Obaid Algahtani, M. A. Abdelkawy, António M. Lopes . A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations. AIMS Mathematics, 2022, 7(8): 15453-15470. doi: 10.3934/math.2022846
    [4] A. H. Tedjani, A. Z. Amin, Abdel-Haleem Abdel-Aty, M. A. Abdelkawy, Mona Mahmoud . Legendre spectral collocation method for solving nonlinear fractional Fredholm integro-differential equations with convergence analysis. AIMS Mathematics, 2024, 9(4): 7973-8000. doi: 10.3934/math.2024388
    [5] Chuanli Wang, Biyun Chen . An $ hp $-version spectral collocation method for fractional Volterra integro-differential equations with weakly singular kernels. AIMS Mathematics, 2023, 8(8): 19816-19841. doi: 10.3934/math.20231010
    [6] Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad . Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876
    [7] Chuanhua Wu, Ziqiang Wang . The spectral collocation method for solving a fractional integro-differential equation. AIMS Mathematics, 2022, 7(6): 9577-9587. doi: 10.3934/math.2022532
    [8] Khadijeh Sadri, David Amilo, Kamyar Hosseini, Evren Hinçal, Aly R. Seadawy . A tau-Gegenbauer spectral approach for systems of fractional integro-differential equations with the error analysis. AIMS Mathematics, 2024, 9(2): 3850-3880. doi: 10.3934/math.2024190
    [9] Mian Bahadur Zada, Muhammad Sarwar, Reny George, Zoran D. Mitrović . Darbo-Type $ \mathcal{Z}_{\rm{m}} $ and $ \mathcal{L}_{\rm{m}} $ contractions and its applications to Caputo fractional integro-differential equations. AIMS Mathematics, 2021, 6(6): 6340-6355. doi: 10.3934/math.2021372
    [10] Hawsar Ali Hama Rashid, Mudhafar Fattah Hama . Approximate solutions for a class of nonlinear Volterra-Fredholm integro-differential equations under Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 463-483. doi: 10.3934/math.2023022


  • The goal of this paper is to develop Legendre spectral tau approaches for the following high-order Pantograph Volterra-Fredholm integro-differential equations (P-VF-IDEs):

    ● One-dimensional case:

    $ nk=0bky(k)(x)=g(x)+nk=0cky(k)(pkx)+nk=0pkx0dky(k)(s)ds+x0ey(s)ds+σ0fy(s)ds, $ (1.1)

    subject to

    $ dky(0)dxk=ϱk,k=0,1,,n1. $

    ● Two-dimensional case:

    $ n1k1=0n2k2=0bk1,k2k1+k2y(x1,x2)xk11xk22=g(x1,x2)+σ20σ10cy(s1,s2)ds1ds2+x20x10dy(s1,s2)ds1ds2+n1k1=0n2k2=0p1x10p2x20ek1,k2k1+k2y(s1,s2)xk11xk22ds1ds2+n1k1=0n2k2=0fk1,k2k1+k2y(p1x1,p2x2)xk11xk22, $ (1.2)

    subject to

    $ k1y(0,x2)xk11=ϱ1,k1(x2),k1=0,1,,n11,0x2σ2,k2y(x1,0)xk22=ϱ2,k2(x1),k2=0,1,,n21,0x1σ1. $

    The problem under consideration involves several key parameters: the coefficients $ b_k, c_k, d_k, e, f $ (1D case) and $ b_{k_1, k_2}, e_{k_1, k_2}, f_{k_1, k_2}, c, d $ (2D case), which weight the contributions of derivatives, delay terms, and integral operators; the pantograph-type proportional delays $ p_k \in (0, 1) $ (1D) and $ p_1, p_2 \in (0, 1) $ (2D), introducing proportional delays such as $ y(p_k x) $; the fixed integration limits $ \sigma, \sigma_1, \sigma_2 > 0 $, defining the domains of Fredholm integrals; and the initial conditions $ \varrho_k $ (1D) and $ \varrho_{1, k_1}(x_2), \varrho_{2, k_2}(x_1) $ (2D), which prescribe initial values for $ y $ and its derivatives. Special cases demonstrating the problem's generality include lower-order systems where $ n = 0 $ reduces the 1D equation to a delay Volterra-Fredholm integral equation; non-delayed systems with $ p_k = 1 $, recovering classical integro-differential equations; pure Volterra dynamics achieved by omitting $ f $ (1D) or the Fredholm term (2D) to isolate Volterra behavior, or removing $ e $ (1D) or the Volterra term (2D) to focus on Fredholm interactions; single-integral equations formed by discarding mixed integrals; and pantograph-free cases with $ c_k = 0 $ and $ f_{k_1, k_2} = 0 $. These examples illustrate the framework's flexibility in unifying several problems while addressing novel combinations of high-order derivatives, multi-delays, and mixed integrals.

    High-order P-VF-IDEs represent a class of mathematical models that integrate effects of time delays proportional to the independent variable, known as pantograph terms, with both Volterra and Fredholm-type integro-differential equations. These equations arise in various fields, including control theory, population dynamics, and systems biology, where they model processes influenced by historical states and time-dependent interactions [1,2]. A pantograph is a mechanical device that collects electric current from overhead wires to supply power to electric trains and trams. Its name originates from a historical mechanical device used for copying and scaling drawings based on similar principles of motion transfer and scaling. In electric transportation systems, the pantograph ensures a consistent connection with overhead conductors, facilitating a continuous and stable flow of electricity to the vehicle. The term also originates from early drafting instruments used for geometric replication and proportional scaling [3,4]. Numerical approximations of P-VF-IDEs face significant challenges due to the integration of proportional delays and mixed integral terms. These complexities necessitate the use of adaptive numerical methods to achieve high accuracy. Common numerical techniques include the collocation approach [5,6], the direct operational tau approach [7], the spectral tau approach [8], the Taylor polynomial scheme [9], the Adomian decomposition method [10], and the Laguerre matrix scheme [11].

    Over the years, spectral methods have proven highly effective for approximating solutions to differential and integral equations, particularly when the data and solutions are smooth. These methods use global polynomial approximations, making them especially suitable for problems requiring high accuracy. Since the solution of a delay differential equation (DDE) globally depends on its history due to the delay variable, a global spectral method presents a good approach for solving DDEs by capturing the entire solution behavior with high precision across the domain. For instance, Rahimkhani et al. [3] proposed a numerical method for solving fractional pantograph differential equations using the Müntz-Legendre wavelet approximation. This approach emphasized the operational matrix of fractional-order integration to reduce the differential equation to a system of algebraic equations, facilitating efficient numerical solutions. Ezz-Eldien and Doha [12] proposed a numerical method for solving pantograph Volterra integro-differential equations using a Chebyshev collocation technique. Yang and Hou [14] extended the Jacobi spectral method to nonlinear fractional pantograph differential equations by transforming them into Volterra-Fredholm integral equations. Ghomanjani et al. [15] introduced a Bezier curve-based approach for solving Volterra delay-integro-differential equations and linear systems with distributed input delay and saturation. Their method involved a two-step approximation strategy, where the time interval was divided into subintervals, and piecewise Bezier polynomials were applied. Huang et al. [16] utilized the discontinuous Galerkin method for the numerical treatment of pantograph-type differential equations. Qin et al. [17] developed an $ hp $-version fractional spectral collocation method for weakly singular Volterra integro-differential equations with vanishing delay, demonstrating that approximations in a fractional polynomial space can achieve exponentially decreasing errors even in the presence of weak singularities. Zaky et al. [18,19,20,21] formulated and analyzed spectral collocation schemes for solving broad classes of linear/nonlinear integral/differential equations. Rahimkhani et al. [22] introduced the Hahn wavelet method for fractional-order integro-differential equations, transforming them into integer-order forms using the Laplace transform. This approach allows for continuous and differentiable solutions without requiring operational matrices.

    This study enhances the numerical treatment of high-order P-VF-IDEs by addressing a literature gap through the following contributions. The Legendre spectral tau method is introduced to simultaneously manage high-order derivatives, multiple pantograph delays, and mixed Volterra-Fredholm integrals within a unified framework. While existing methods, such as Chebyshev collocation [12,13], Jacobi spectral techniques [14], or Müntz-Legendre wavelets [3], focus on specific aspects (e.g., Volterra-only integrals or one-dimensional cases), The proposed framework unifies these elements, tackling equations previously considered intractable due to their combined complexity. By integrating high-order derivatives, multiple delays, and mixed integrals, this approach goes beyond the disjointed methods found in current literature, establishing a basis for future advancements in fractional or partial P-VF-IDEs.

    This paper is organized as follows: In the next section, we provide some necessary properties of Legendre polynomial approximations. In Section 3, we construct the Legendre tau scheme for solving the one-dimensional high-order P-VF-IDEs. In Section 4, we extend the numerical scheme for the two-dimensional case. Section 5 provides some numerical results to clarify the schemes. The conclusion is given in the last section.

    The shifted Legendre polynomials $ P^\sigma_i(x) $, defined on the interval $ \Omega = [0, \sigma] $, are the eigenfunctions of the Sturm-Liouville problem:

    $ \frac{d}{dx} \left( x(\sigma - x) \frac{d}{dx} P^\sigma_i(x) \right) + i(i + 1) P^\sigma_i(x) = 0, \quad x \in \Omega, $

    and can be expressed as:

    $ P^\sigma_i(x) = \sum\limits_{p = 0}^i C_{i, p} \frac{x^p}{\sigma^p} = \sum\limits_{p = 0}^i (-1)^{i-p} \frac{(i + p)!}{(i - p)! (p!)^2 \sigma^p} x^p, $

    where $ C_{i, p} = (-1)^{i-p} \frac{(i + p)!}{(i - p)! (p!)^2 \sigma^p} $. These polynomials satisfy the derivative conditions:

    $ \frac{d^s}{dx^s} P^\sigma_i(0) = (-1)^{i-s} \frac{(i + s)!}{(i - s)! s! \sigma^s}, \quad \text{and} \quad \frac{d^s}{dx^s} P^\sigma_i(\sigma) = \frac{(i + s)!}{(i - s)! s! \sigma^s}. $

    The shifted Legendre polynomials satisfy the orthogonality relation:

    $ σ0Pσi(x)Pσp(x)dx=σ2i+1δip, $ (2.1)

    where $ \delta_{ip} $ is the Kronecker delta. Any function $ y \in L^2(\Omega) $ can be expanded as:

    $ y(x)=i=0aiPσi(x),whereai=2i+1σσ0y(x)Pσi(x)dx. $ (2.2)

    Let $ \text{Proj}^\sigma_{\mathcal{N}} $ denote the orthogonal projection operator:

    $ \text{Proj}^\sigma_{\mathcal{N}}: L^2(\Omega) \rightarrow S_{\mathcal{N}}, \quad S_{\mathcal{N}} = \text{Span}\{ P^\sigma_i(x) : 0 \leq i \leq \mathcal{N} \}. $

    This projection is given by:

    $ ProjσNy=yN(x)=Ni=0aiPσi(x)=ATNΦσN(x), $ (2.3)

    where:

    $ AN=[aifor0iN]T,ΦσN(x)=[Pσi(x)for0iN]T. $ (2.4)

    For functions $ y \in L^2(\Omega_1 \times \Omega_2) $ with $ \Omega_1 = [0, \sigma_1] $ and $ \Omega_2 = [0, \sigma_2] $, the approximation becomes:

    $ yN1,N2(x1,x2)=N1i=0N2j=0ai,jPσ1i(x1)Pσ2j(x2)=ATN1,N2Φσ1,σ2N1,N2(x1,x2), $ (2.5)

    where:

    $ AN1,N2=[ai,jfor0iN1,0jN2]T,Φσ1,σ2N1,N2(x1,x2)=[Pσ1i(x1)Pσ2j(x2)for0iN1,0jN2]T. $ (2.6)

    The coefficients $ a_{i, j} $ are computed via:

    $ ai,j=(2i+1)(2j+1)σ1σ2σ10σ20y(x1,x2)Pσ1i(x1)Pσ2j(x2)dx1dx2. $ (2.7)

    The spectral tau approach for (1.1) is to find $ y_{\mathcal{N}}\in P_{\mathcal{N}} $, such that

    $ nk=0bky(k)N(x)=gN(x)+nk=0cky(k)N(pkx)+nk=0pkx0dky(k)N(s)ds+x0eyN(s)ds+σ0fyN(s)ds. $ (3.1)

    Now, we denote

    $ yN(x)=ATNΦσN(x),gN(x)=GTNΦσN(x), $ (3.2)

    where $ \mathcal{G}_\mathcal{N} $ is a known vector given by

    $ \mathcal{G}_\mathcal{N} = \left[g_0, g_1, \cdots, g_\mathcal{N}\right]^T; \qquad g_j = \frac{2j+1}{\sigma} \int_{0}^{\sigma} g(x) P^{\sigma}_{j}(x) dx. $

    If we denote $ x_{\mathcal{N}, j, \sigma} $ by the Legendre Gauss quadrature nodes on the $ (0, \sigma) $ and $ \varpi_{\mathcal{N}, j, \sigma} $ by its corresponding Christoffel numbers, then we have

    $ g_j\simeq \frac{2j+1}{\sigma} \sum\limits_{k = 0}^{\mathcal{N}} \varpi_{\mathcal{N}, k, \sigma}g(x_{\mathcal{N}, k, \sigma}) P^{\sigma}_{j}(x_{\mathcal{N}, k, \sigma}). $

    The following theorems are of great benefit later.

    Theorem 1. [23] The derivative of order $ k $ for the vector $ \Phi^{\sigma}_{\mathcal{N}}(x) $ is given by:

    $ dkdxkΦσN(x)=D(N,k)ΦσN(x);D(N,k)=(D(1))k, $ (3.3)

    where $ \boldsymbol{D}^{(1)} = (d_{r, j})_{0\leq r, j \leq \mathcal{N}}, $ and

    $ d_{r, j} = \begin{cases}\dfrac{2}{\sigma}(2j+1), \  & r = j+s, \  \begin{cases}s = 1, 3, \cdots, \mathcal{N}-1, \ &\mathcal{N} \;\mathit{\text{is even}}, \\ s = 1, 3, \cdots, \mathcal{N}, \  &\mathcal{N} \;\mathit{\text{is odd}}, \end{cases}\\ 0, &otherwise. \end{cases} $

    Theorem 2. [24] The integration of the vector $ \Phi^{\sigma}_{\mathcal{N}}(x) $ is given by:

    $ x0ΦσN(x)dx=I(N,1)ΦσN(x), $ (3.4)

    where

    $ \boldsymbol{I}_{(\mathcal{N}, 1)} = (\beta_{i, j})_{0\leq i, j\leq \mathcal{N}}; \qquad \quad \beta_{i, j} = \sum\limits_{k = 0}^i\sum\limits_{l = 0}^{j}\frac{(-1)^{i+j+k+l} (i+k)!(j+l)!\sigma}{(i-k)!k!(k+1)!(j-l)!(l!)^2(k+l+2)}. $

    Theorem 3. For $ 0 \leq p \leq 1, $ the pantograph operational matrix $ \boldsymbol{Q}_{\mathcal{N}, p} $ can be defined by

    $ ΦσN(px)=QN,pΦσN(x), $ (3.5)

    where $ \boldsymbol{Q}_{\mathcal{N}, p} = (q^p_{k, j})_{0\leq k, j\leq \mathcal{N}}, $ and $ q^p_{k, j} = \sum\limits_{r = 0}^{k} \dfrac{C_{k, r}p^rf_{r, j}}{\sigma^r} $.

    Proof. We start by expressing $ P^{\sigma}_{k}(px) $ by:

    $ Pσk(px)=kr=0Ck,rprxrσr. $ (3.6)

    Expanding $ x^r $ in terms of $ P^{\sigma}_{j}(x), \ j = 0, 1, \cdots, \mathcal{N}, $ by

    $ xr=Nj=0fr,jPσj;fr,j=2j+1σσ0xrPσj(x)dx,0j. $ (3.7)

    A combination of (3.6) and (3.7) then yields

    $ Pσk(px)=kr=0Ck,rprσr(Nj=0fr,jPσj)=Nj=0Pσj(kr=0Ck,rprfr,jσr)=[kr=0Ck,rprfr,0σr,kr=0Ck,rprfr,1σr,,kr=0Ck,rprfr,Nσr]TΦσN(x), $ (3.8)

    which completes the proof.

    Application of Theorems 1–3, we have

    $ dkyN(x)dxk=ATND(N,k)ΦσN(x),x0yN(s)ds=ATNI(N,1)ΦσN(x),yN(px)=ATNQN,pΦσN(x),dkyN(px)dxk=ATND(N,k)QN,pΦσN(x),x0yN(ps)ds=ATNI(N,1)QN,pΦσN(x). $ (3.9)

    Using Theorems 1–3, and with the help of (3.9), the residual $ \mathcal{R}_{\mathcal{N}}(x) $ for (3.1) is given by:

    $ RN(x)=nk=0bkATND(N,k)ΦσN(x)nk=0ckATND(N,k)QN,pkΦσN(x)eATNI(N,1)ΦσN(x)nk=0dkATND(N,k)I(N,1)QN,pkΦσN(x)fa0σGTNΦσN(x), $ (3.10)

    According to the spectral tau method, the numerical solution for (1.1) is obtained by generating $ \mathcal{N}+1 $ linear algebraic equations as follows:

    $ σ0RN(x)Pσk(x)dx=0,k=0,1,,Nn, $ (3.11)
    $ ATND(N,k)ΦσN(0)=ϱk,k=0,1,,n1. $ (3.12)

    Define the vector $ {}_{\sigma}\textbf{M}_{\mathcal{N}}^i, \ i = 0, 1, \cdots, \mathcal{N}-n, $ as follows:

    $ {}_{\sigma}\textbf{M}_{\mathcal{N}}^i = \frac{\sigma}{2i+1}\mathbf{e}_i, $

    where $ \mathbf{e}_i $ is the $ \mathcal{N}+1 $ standard basis vector. Then the system of equations (3.11) simplifies to:

    $ nk=0bkATND(N,k)σMiNnk=0ckATND(N,k)QN,pkσMiNnk=0dkATND(N,k)I(N,1)QN,pkσMiNeATNI(N,1)σMiNfσ2δi0ATNe0GTNσMiN=0,i=0,1,,Nn, $ (3.13)

    If we denote $ E_i, \ i = 0, 1, \cdots, \mathcal{N}-n, $ by

    $ Ei=nk=0bk(σMiN)TDT(N,k)nk=0ck(σMiN)TQTN,pkDT(N,k)nk=0dk(σMiN)TQTN,pkIT(N,1)DT(N,k)e(σMiN)TIT(N,1)fδi0σ2eT0,i=0,1,,Nn, $

    and

    $ C_i = \left(\Phi^{\sigma}_{\mathcal{N}}(0)\right)^T\textbf{D}_{(\mathcal{N}, i)}^T, \qquad i = 0, 1, \cdots, n-1, $

    then the solution of the main problem is reduced to the system

    $ \textbf{S} A_{\mathcal{N}} = \textbf{B}. $

    The coefficient matrix S is expressed as:

    $ \textbf{S} = [(σM0N)T(nk=0bkDT(N,k)ckQTN,pkDT(N,k)dkQTN,pkIT(N,1)DT(N,k)eIT(N,1))fσ2eT0(σM1N)T(nk=0bkDT(N,k)ckQTN,pkDT(N,k)dkQTN,pkIT(N,1)DT(N,k)eIT(N,1))(σMNnN)T(nk=0bkDT(N,k)ckQTN,pkDT(N,k)dkQTN,pkIT(N,1)DT(N,k)eIT(N,1))(ΦσN(0))TDT(N,0)(ΦσN(0))TDT(N,n1)]. $

    Compactly, we can write S as:

    $ \textbf{S} = [E0E1ENnC0C1Cn1], $

    where each $ E_i $ is a row vector of length $ \mathcal{N}+1 $, and the total system is of size $ (\mathcal{N}+1)\times (\mathcal{N}+1) $. The right-hand side vector B is given by:

    $ \textbf{B} = [g0σ1g1σ3g2σ5gNnσ2N2n+1ϱ0ϱ1ϱn1]. $

    In this section, we employ the Legendre spectral tau method to solve the two-dimensional high-order pantograph-type Volterra-Fredholm integro-differential equation:

    $ n1k1=0n2k2=0bk1,k2k1+k2y(x1,x2)xk11xk22=g(x1,x2)+σ20σ10cy(s1,s2)ds1ds2+x20x10dy(s1,s2)ds1ds2+n1k1=0n2k2=0p1x10p2x20ek1,k2k1+k2y(s1,s2)xk11xk22ds1ds2+n1k1=0n2k2=0fk1,k2k1+k2y(p1x1,p2x2)xk11xk22, $ (4.1)

    subject to the initial conditions:

    $ k1y(x1,x2)xk11=ϱ1,k1(0,x2),k1=0,1,,n11,0x2σ2,k2y(x1,x2)xk22=ϱ2,k2(x1,0),k2=0,1,,n21,0x1σ1, $ (4.2)

    where $ \sigma_1, \sigma_2, c, d, b_{k_1, k_2}, e_{k_1, k_2} $, and $ f_{k_1, k_2} $ (for $ 0 \leq k_1 \leq n_1 $, $ 0 \leq k_2 \leq n_2 $) are known real constants.

    As a spectral approach, we seek an approximate solution $ y_{\mathcal{N}_1, \mathcal{N}_2} \in P_{\mathcal{N}_1} \times P_{\mathcal{N}_2} $ such that:

    $ n1k1=0n2k2=0bk1,k2k1+k2yN1,N2(x1,x2)xk11xk22=gN1,N2(x1,x2)+x20x10dyN1,N2(s1,s2)ds1ds2+σ20σ10cyN1,N2(s1,s2)ds1ds2+n1k1=0n2k2=0fk1,k2k1+k2yN1,N2(p1x1,p2x2)xk11xk22+n1k1=0n2k2=0p1x10p2x20ek1,k2k1+k2yN1,N2(s1,s2)xk11xk22ds1ds2. $ (4.3)

    We represent the approximate solution $ y_{\mathcal{N}_1, \mathcal{N}_2} $ and the right-hand side function $ g_{\mathcal{N}_1, \mathcal{N}_2} $ in terms of Legendre basis functions:

    $ yN1,N2(x1,x2)=ATN1,N2Φσ1,σ2N1,N2(x1,x2),gN1,N2(x1,x2)=GTN1,N2Φσ1,σ2N1,N2(x1,x2), $ (4.4)

    where $ \mathcal{G}_{\mathcal{N}_1, \mathcal{N}_2} $ is a known vector given by:

    $ \mathcal{G}_{\mathcal{N}_1, \mathcal{N}_2} = \left[ g_{0, 0}, g_{1, 0}, \dots, g_{\mathcal{N}_1, 0}, g_{0, 1}, \dots, g_{\mathcal{N}_1, \mathcal{N}_2} \right]^T, $

    and the coefficients $ g_{i, j} $ are computed as:

    $ g_{i, j} = \frac{(2i+1)(2j+1)}{\sigma_1 \sigma_2} \int_{0}^{\sigma_2} \int_{0}^{\sigma_1} g(x_1, x_2) \, P^{\sigma_1}_i(x_1) \, P^{\sigma_2}_j(x_2) \, dx_1 dx_2. $

    The following matrix operators are defined for differentiation, integration, and scaling:

    Theorem 4. Let $ \mathbb{I}_{\mathcal{N}_1} $ and $ \mathbb{I}_{\mathcal{N}_2} $ denote the identity matrices of orders ($ \mathcal{N}_1 $ +1) and $ (\mathcal{N}_2+1) $, respectively. Then:

    $ kxk1Φσ1,σ2N1,N2(x1,x2)=D(1,k)Φσ1,σ2N1,N2(x1,x2),D(1,k)=D(N1,1)IN2, $ (4.5)
    $ kxk2Φσ1,σ2N1,N2(x1,x2)=D(2,k)Φσ1,σ2N1,N2(x1,x2),D(2,k)=IN1D(N2,2), $ (4.6)
    $ x10Φσ1,σ2N1,N2(s1,x2)ds1=I(1,1)Φσ1,σ2N1,N2(x1,x2),I(1,1)=I(N1,1)IN2, $ (4.7)
    $ x20Φσ1,σ2N1,N2(x1,s2)ds2=I(2,1)Φσ1,σ2N1,N2(x1,x2),I(2,1)=IN1I(N2,2), $ (4.8)
    $ Φσ1,σ2N1,N2(p1x1,x2)=Q1,p1Φσ1,σ2N1,N2(x1,x2),Q1,p1=QN1,p1IN2, $ (4.9)
    $ Φσ1,σ2N1,N2(x1,p2x2)=Q2,p2Φσ1,σ2N1,N2(x1,x2),Q2,p2=IN1QN2,p2. $ (4.10)

    In virtue of (4.4)–(4.10), we have

    $ kxk1yN1,N2(x1,x2)=ATN1,N2D(1,k)Φσ1,σ2N1,N2(x1,x2),kxk2yN1,N2(x1,x2)=ATN1,N2D(2,k)Φσ1,σ2N1,N2(x1,x2),x10yN1,N2(s1,x2)ds1=ATN1,N2I(1,1)Φσ1,σ2N1,N2(x1,x2),x20yN1,N2(x1,s2)ds2=ATN1,N2I(2,1)Φσ1,σ2N1,N2(x1,x2),yN1,N2(p1x1,x2)=ATN1,N2Q1,p1Φσ1,σ2N1,N2(x1,x2),yN1,N2(x1,p2x2)=ATN1,N2Q2,p2Φσ1,σ2N1,N2(x1,x2),yN1,N2(p1x1,p2x2)=ATN1,N2Q1,p2Q2,p2Φσ1,σ2N1,N2(x1,x2). $ (4.11)

    Using the basis representation and matrix operators, the residual $ \mathcal{R}_{\mathcal{N}_1, \mathcal{N}_2} $ of (4.3) is given by:

    $ RN1,N2(x1,x2)=n1k1=0n2k2=0bk1,k2ATN1,N2D(1,k1)D(2,k2)Φσ1,σ2N1,N2(x1,x2)GTN1,N2Φσ1,σ2N1,N2(x1,x2)dATN1,N2I(1,1)I(2,1)Φσ1,σ2N1,N2(x1,x2)cσ1σ2a0,0n1k1=0n2k2=0ek1,k2ATN1,N2D(1,k1)D(2,k2)I(1,1)I(2,1)Q1,p1Q2,p2Φσ1,σ2N1,N2(x1,x2)n1k1=0n2k2=0fk1,k2ATN1,N2D(1,k1)D(2,k2)Q1,p1Q2,p2Φσ1,σ2N1,N2(x1,x2). $

    The system of $ (\mathcal{N}_1+1)(\mathcal{N}_2+1) $ algebraic equations is obtained by enforcing the residual to be orthogonal to the basis functions:

    $ σ20σ10RN1,N2(x1,i,x2,j)Pσ1i(x1)Pσ2j(x2)dx1dx2=0,0iN1n1,0jN2n2, $ (4.12)
    $ ATN1,N2D(1,k1)Φσ1,σ2N1,N2(0,x2,j)=ϱ1,k1(x2,j),0k1n11,0jN2, $ (4.13)
    $ ATN1,N2D(2,k2)Φσ1,σ2N1,N2(x1,j,0)=ϱ2,k2(x1,j),0k2n21,n1jN1, $ (4.14)

    where $ x_{1, i} $ and $ x_{2, j} $ are the roots of $ P^{\sigma_1}_{\mathcal{N}_1+1}(x_1) $ and $ P^{\sigma_2}_{\mathcal{N}_2+1}(x_2) $, respectively.

    Define the vector $ \mathbf{e}_{00} = \mathbf{e}_0\otimes\mathbf{e}_0 $ and $ {}_{\sigma_1, \sigma_2}\textbf{M}_{\mathcal{N}_1, \mathcal{N}_2}^{i, j}, \ i = 0, 1, \cdots, \mathcal{N}_1-n_1, \ j = 0, 1, \cdots, \mathcal{N}_2-n_2, $ as follows:

    $ {}_{\sigma_1, \sigma_2} \textbf{M}_{\mathcal{N}_1, \mathcal{N}_2}^{i, j} = {}_{\sigma_1} \textbf{M}^i_{\mathcal{N}_1}\otimes {}_{\sigma_2} \textbf{M}^j_{\mathcal{N}_2}, \quad i = 0, 1, \cdots, \mathcal{N}_1-n_1, \ j = 0, 1, \cdots, \mathcal{N}_2-n_2, $

    then the system (4.12) is simplified to:

    $ n1k1=0n2k2=0bk1,k2ATN1,N2D(1,k1)D(2,k2)σ1,σ2Mi,jN1,N2GTN1,N2σ1,σ2Mi,jN1,N2dATN1,N2I(1,1)I(2,1)σ1,σ2Mi,jN1,N2cσ21σ22δi0δj0ATN1,N2e00n1k1=0n2k2=0fk1,k2ATN1,N2D(1,k1)D(2,k2)Q1,p1Q2,p2σ1,σ2Mi,jN1,N2n1k1=0n2k2=0ek1,k2ATN1,N2D(1,k1)D(2,k2)I(1,1)I(2,1)Q1,p1Q2,p2σ1,σ2Mi,jN1,N2. $

    Denoting $ E_{i, j}, \ i = 0, 1, \cdots, \mathcal{N}_1-n_1, \ j = 0, 1, \cdots, \mathcal{N}_2-n_2, $ by

    $ Ei,j=n1k1=0n2k2=0bk1,k2(σ1,σ2Mi,jN1,N2)TDT(2,k2)DT(1,k1)d(σ1,σ2Mi,jN1,N2)TIT(2,1)IT(1,1)cσ21σ22δi0δj0eT00n1k1=0n2k2=0fk1,k2(σ1,σ2Mi,jN1,N2)TQT2,p2QT1,p1DT(2,k2)DT(1,k1)n1k1=0n2k2=0ek1,k2(σ1,σ2Mi,jN1,N2)TQT2,p2QT1,p1IT(2,1)IT(1,1)DT(2,k2)DT(1,k1), $

    and

    $ C1,i,j=(Φσ1,σ2N1,N2(0,x2,j))TDT(1,i),i=0,1,,n11,j=0,1,,N2,C2,i,j=(Φσ1,σ2N1,N2(x1,j,0))TDT(2,i),i=0,1,,n21,j=n1,n1+1,,N1. $

    The solution of the main problem is reduced to the system

    $ \textbf{S} A_{\mathcal{N}_1, \mathcal{N}_2} = \textbf{B}, $

    where

    $ S=[E0,0; E0,1; ; EN1n1;N2n2; C1,0,0; C1,0,N2; ; C1,n11,N2; C2,0,n1; C2,0,n1+1; ; C2,n21,N1]T,B=[g0,0σ1σ2(1)(1), g0,1σ1σ2(1)(3),g0,2σ1σ2(1)(5), ,gN1n1,N2n2σ1γ2(2N12n1+1)(2N22n2+1),ϱ1,0(x2,0),ϱ1,0(x2,1), , ϱ1,n11(x2,N2), ϱ2,0(x1,n1),ϱ2,0(x1,n1+1),, ϱ2,n21(x1,N1])]T. $

    In this subsection, we analyze the convergence behavior of the proposed numerical method. We consider a test problem with an irregular solution and compute the maximum absolute errors (MAEs) for different values of $ \mathcal{N} $.

    We consider the following P-VF-IDE:

    $ d2y(x)dx2+dy(x)dx=12y(13x)+x0y(t)dt+13x0y(t)dt+10y(t)dt+g(x),0x1, $ (5.1)

    with the initial conditions:

    $ y(0) = 0, \quad \frac{dy(0)}{dx} = 0. $

    The function $ g(x) $ is chosen such that the exact solution is:

    $ y(x) = x^{\frac{11}{3}}. $

    We apply the proposed numerical scheme to this problem for various values of $ \mathcal{N} $. The MAEs of the numerical solution $ y_{\mathcal{N}}(x) $ are computed and summarized in Table 1. The MAEs decrease as $ \mathcal{N} $ increases, demonstrating the method's high accuracy. The convergence behavior is further visualized in Figure 1. The results demonstrate that the proposed numerical method achieves excellent convergence for problems with irregular solutions. The decay of errors with increasing $ \mathcal{N} $ highlights the efficiency and robustness of the method.

    Table 1.  The MAEs of $ y_{\mathcal{N}}(x) $ for problem 5.1.
    $ \mathcal{N} $ 4 8 12 16 20
    MAE $ 8.2705\times10^{-4} $ $ 4.9139\times10^{-6} $ $ 6.0563\times10^{-7} $ $ 1.5001\times10^{-7} $ $ 4.9759\times10^{-8} $

     | Show Table
    DownLoad: CSV
    Figure 1.  Convergence of the approximate solution for problem 5.1.

    To numerically investigate the stability of the spectral tau method, we consider the following Volterra integro-differential equation [25]:

    $ dy(x)dx=y(0.5x)+x0y(t)dt+0.5x0y(t)dt+11.5x,0x1, $ (5.2)

    with the initial condition $ y(0) = 0 $ and the exact solution $ y(x) = 1 - e^{-x} $.

    To assess the stability of the method, we introduce perturbations to the right-hand side and the initial condition. Specifically, we consider the following perturbed problems:

    $ (i) $ Perturbed right-hand side: The perturbed right-hand side problem is given by:

    $ dz(x)dx=z(0.5x)+x0z(t)dt+0.5x0z(t)dt+11.5x+ϵr, $ (5.3)

    with the initial condition $ z(0) = 0 $ and the exact solution $ z(x) = 1 - e^{-x} $, where $ \epsilon_r $ is a small perturbation parameter. This perturbation tests the sensitivity of the method to changes in the forcing term of the equation.

    The maximum absolute errors, $ \lvert y_{\mathcal{N}}(x) - z_{\mathcal{N}}(x) \rvert $, for the perturbed right-hand side problem (5.3) are computed for several values of $ \epsilon_r $. The results are summarized in Table 2.

    Table 2.  Maximum absolute errors for the perturbed right-hand side problem (5.3).
    $ \mathcal{N} $ $ \epsilon_r=0.1 $ $ \epsilon_r=0.01 $ $ \epsilon_r=0.001 $
    6 0.15237708 0.01523770 0.00152376
    8 0.15237709 0.01523770 0.00152377
    10 0.15237709 0.01523770 0.00152377

     | Show Table
    DownLoad: CSV

    $ (ii) $ Perturbed initial condition: The perturbed initial condition problem is given by:

    $ dz(x)dx=z(0.5x)+x0z(t)dt+0.5x0z(t)dt+11.5x, $ (5.4)

    with the perturbed initial condition:

    $ z(0) = \epsilon_i, $

    where $ \epsilon_i $ is a small perturbation parameter. This perturbation tests the sensitivity of the method to changes in the initial condition.

    The maximum absolute errors, $ \lvert y_{\mathcal{N}}(x) - z_{\mathcal{N}}(x) \rvert $, for the perturbed initial condition problem (5.4) are computed for several values of $ \epsilon_i $. The results are summarized in Table 3.

    Table 3.  Maximum absolute errors for the perturbed initial condition problem (5.4).
    $ \mathcal{N} $ $ \epsilon_i=0.1 $ $ \epsilon_i=0.01 $ $ \epsilon_i =0.001 $
    6 0.34154212 0.03415420 0.00341541
    8 0.34154212 0.03415421 0.00341542
    10 0.34154212 0.03415421 0.00341542

     | Show Table
    DownLoad: CSV

    The numerical results demonstrate that the spectral tau method remains stable under small perturbations to both the right-hand side and the initial condition. The errors introduced by the perturbations are proportional to the perturbation parameters $ \epsilon_r $ and $ \epsilon_i $, indicating that the method is robust and well-conditioned. Specifically:

    ● For the perturbed right-hand side, the errors decrease linearly with $ \epsilon_r $.

    ● For the perturbed initial condition, the errors decrease linearly with $ \epsilon_i $.

    These findings confirm the stability of the spectral tau method and its ability to handle small perturbations without significant loss of accuracy.

    In this subsection, we evaluate the performance of the proposed numerical method by comparing it with existing methods. Specifically, we consider the following Volterra integro-differential equation [25]:

    $ dy(x)dx=y(0.5x)+x0y(t)dt+0.5x0y(t)dt+11.5x,0x1, $ (5.5)

    with the initial condition $ y(0) = 0 $ and the exact solution $ y(x) = 1 - e^{-x} $.

    For the solution of this problem, Zhao et al. [25] used the spectral collocation approach based on the Sinc function (SCSFM). This method reduces the problem to solving a system of algebraic equations. In Table 4, we compare the MAEs of $ y_{\mathcal{N}}(x) $ obtained using our method with those obtained using the SCSFM [25].

    Table 4.  Comparing MAEs of $ y_{\mathcal{N}}(x) $ given using our method against those given using the SCSFM [25] for 5.5.
    SCSFM [25] Our scheme
    $ N $ MAE $ M $ MAE
    10 $ 1.2608\times10^{-4} $ 2 $ 7.1205\times10^{-3} $
    20 $ 2.2598\times10^{-6} $ 4 $ 1.6006\times10^{-5} $
    30 $ 9.5984\times10^{-8} $ 6 $ 2.2379\times10^{-8} $
    40 $ 7.1028\times10^{-9} $ 8 $ 1.9964\times10^{-11} $
    50 $ 7.4603\times10^{-10} $ 10 $ 1.0957\times10^{-14} $
    60 $ 9.7609\times10^{-11} $ 12 $ 4.0571\times10^{-16} $

     | Show Table
    DownLoad: CSV

    The results in Table 4 demonstrate that our method achieves significantly higher accuracy compared to the SCSFM, especially for larger values of $ \mathcal{N} $. For instance, with $ \mathcal{N} = 12 $, our method achieves an MAE of $ 4.0571 \times 10^{-16} $, whereas the SCSFM achieves $ 9.7609 \times 10^{-11} $ with $ \mathcal{N} = 60 $. This highlights the superior convergence properties of our method.

    To further illustrate the accuracy of our method, we plot the absolute error function $ |y(x) - y_{\mathcal{N}}(x)| $ for $ \mathcal{N} = 6, 10 $ and $ 14 $ in Figure 2.

    Figure 2.  Absolute errors with $ \mathcal{N} = 6, 10, $ and $ 14 $ for problem 5.5.

    In this subsection, we extend the application of the proposed numerical method to a two-dimensional problem. The goal is to demonstrate the effectiveness of the method in solving higher-dimensional integro-differential equations. We consider the following problem:

    $ 5y(x1,x2)x31x22=y(x1,x2)+y(0.5x1,0.25x2)0.25x200.5x10y(s1,s2)x1ds1ds2+x20x10y(s1,s2)ds1ds2+1010y(s1,s2)ds1ds2+g(x1,x2), $ (5.6)

    where $ 0 \leq x_1, x_2 \leq 1 $, and the initial conditions are given by:

    $ y(0, x_2) = \log(x_2 + 1), \quad \frac{\partial y(0, x_2)}{\partial x_1} = \frac{\partial^2 y(0, x_2)}{\partial x_1^2} = y(x_1, 0) = 0, \quad \frac{\partial y(x_1, 0)}{\partial x_2} = x_1^4 + 1. $

    The function $ g(x_1, x_2) $ is chosen such that the exact solution is:

    $ y(x_1, x_2) = (x_1^4 + 1) \log(1 + x_2). $

    We apply the numerical scheme presented in Section 4 to solve this problem. The discretization is performed with $ \mathcal{N}_1 = 4 $ and varying values of $ \mathcal{N}_2 $. The absolute errors of the numerical solution $ y_{4, \mathcal{N}_2}(x_1, x_2) $ are computed for $ \mathcal{N}_2 = 4, 8, 12, 16, $ and $ 20 $. The results are summarized in Table 5.

    Table 5.  Absolute errors of $ y_{\mathcal{N}_1, \mathcal{N}_2}(x_1, x_2) $ at $ \mathcal{N}_1 = 4 $ and different choices of $ \mathcal{N}_2 $ for problem 5.6.
    $ (x_1, x_2) $ $ \mathcal{N}_2=4 $ $ \mathcal{N}_2=8 $ $ \mathcal{N}_2=12 $ $ \mathcal{N}_2=16 $ $ \mathcal{N}_2=20 $
    (0.1, 0.1) $ 5.695\times10^{-5} $ $ 2.231\times10^{-8} $ $ 7.399\times10^{-12} $ $ 3.955\times10^{-15} $ $ 4.163\times10^{-17} $
    (0.2, 0.2) $ 1.763\times10^{-5} $ $ 7.956\times10^{-8} $ $ 1.358\times10^{-10} $ $ 1.518\times10^{-13} $ $ 3.330\times10^{-16} $
    (0.3, 0.3) $ 2.306\times10^{-4} $ $ 3.891\times10^{-7} $ $ 5.919\times10^{-10} $ $ 7.792\times10^{-13} $ $ 1.111\times10^{-15} $
    (0.4, 0.4) $ 6.320\times10^{-4} $ $ 1.224\times10^{-6} $ $ 1.783\times10^{-9} $ $ 2.277\times10^{-12} $ $ 2.997\times10^{-15} $
    (0.5, 0.5) $ 1.367\times10^{-3} $ $ 2.739\times10^{-6} $ $ 4.033\times10^{-9} $ $ 5.164\times10^{-12} $ $ 6.772\times10^{-15} $
    (0.6, 0.6) $ 2.603\times10^{-3} $ $ 5.225\times10^{-6} $ $ 7.698\times10^{-9} $ $ 9.859\times10^{-12} $ $ 1.276\times10^{-14} $
    (0.7, 0.7) $ 4.467\times10^{-3} $ $ 8.894\times10^{-6} $ $ 1.303\times10^{-8} $ $ 1.664\times10^{-11} $ $ 2.164\times10^{-14} $
    (0.8, 0.8) $ 7.000\times10^{-3} $ $ 1.369\times10^{-5} $ $ 2.004\times10^{-8} $ $ 2.563\times10^{-11} $ $ 3.330\times10^{-14} $
    (0.9, 0.9) $ 1.007\times10^{-2} $ $ 1.953\times10^{-5} $ $ 2.860\times10^{-9} $ $ 3.654\times10^{-11} $ $ 4.707\times10^{-14} $

     | Show Table
    DownLoad: CSV

    The results in Table 5 demonstrate the high accuracy of the proposed method for two-dimensional problems. As $ \mathcal{N}_2 $ increases, the absolute errors decrease significantly, indicating the convergence of the numerical solution to the exact solution. To further illustrate the accuracy of the method, we plot the absolute error function $ |y(x_1, x_2) - y_{\mathcal{N}_1, \mathcal{N}_2}(x_1, x_2)| $ for $ (\mathcal{N}_1, \mathcal{N}_2) = \{(4, 10), (4, 14), (4, 18)\} $ in Figure 3. To analyze the convergence behavior, we plot the logarithmic function of the MAEs for $ \mathcal{N}_1 = 4 $ and varying $ \mathcal{N}_2 $ in Figure 4.

    Figure 3.  Absolute error function of $ y(x_1, x_2) $ with $ (\mathcal{N}_1, \mathcal{N}_2) = \{(4, 10), (4, 14), (4, 18)\} $ for problem 5.6.
    Figure 4.  The logarithmic function of MAEs of $ y(x_1, x_2) $ with $ \mathcal{N}_1 = 4 $ for problem 5.6.

    The numerical results confirm the effectiveness of the proposed method for solving two-dimensional integro-differential equations. The errors decrease exponentially as $ \mathcal{N}_2 $ increases, demonstrating the spectral accuracy of the method. The logarithmic error plot further highlights the rapid convergence of the numerical solution.

    This paper investigated a class of high-order P-VF-IDEs, which incorporate both Volterra and Fredholm integral components along with pantograph delay elements. We introduced a spectral tau approach for approximating solutions to P-VF-IDEs in one and two dimensions, utilizing operational differentiation and integration matrices to transform the continuous problem into a manageable system of algebraic equations. This method demonstrated high accuracy with a few numbers of computational modes. Through comprehensive numerical experiments, we highlighted the accuracy and convergence properties of the spectral Legendre tau method, affirming its effectiveness in solving high-order P-VF-IDEs in comparison to other spectral techniques. The results indicate that the proposed approach is a powerful tool for addressing intricate integro-differential equations with integral and proportional delay features.

    M. A. Zaky: Writing–review & editing, Writing–original draft, Validation, Supervision, Software, Investigation; W. G. Alharbi: Validation, Formal analysis; M. M. Alzubaidi: Validation, Methodology, Writing the original draft. R. T. Matoog: Validation, Methodology, Writing the original draft. All authors have read and agreed to the published version of the manuscript.

    The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP2503).

    This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP2503).

    The authors declare that they do not have a conflict of interest.

    [1] Rabesandratana T. (2013). The seer of science publishing. Science 342: 66-67. doi: 10.1126/science.342.6154.66
    [2] Miller G. A. (2010). Mistreating psychology in the decades of the brain. Perspect Psychol Sci 5:716–743. DOI: 10. 1177/1745691610388774.
    [3] Wang D, Song C, & Barabasi AL. (2013). Quantifying long-term scientific impact. Science 342:127-132. DOI: 10. 1126/science. 1237825. doi: 10.1126/science.1237825
    [4] Uzzi B, Mukherjee S, Stringer S, & Jones J. (2013). Atypical combinations and scientific impact. Science, 342: 468-472. DOI: 10. 1126/science. 1240474. doi: 10.1126/science.1240474
  • This article has been cited by:

    1. Amin Ghoreyshi, Mostafa Abbaszadeh, Mahmoud A. Zaky, Mehdi Dehghan, Finite block method for nonlinear time-fractional partial integro-differential equations: Stability, convergence, and numerical analysis, 2025, 214, 01689274, 82, 10.1016/j.apnum.2025.03.002
    2. Mostafa Abbaszadeh, Mahmoud A. Zaky, Mehdi Dehghan, Virtual element approximation and BDF2 time-discrete scheme for a partial integro-differential equation with a singular Abel's kernel, 2025, 501, 00963003, 129451, 10.1016/j.amc.2025.129451
    3. Ali H. Tedjani, Sharifah E. Alhazmi, Samer S. Ezz-Eldien, An operational approach for one- and two-dimension high-order multi-pantograph Volterra integro-differential equation, 2025, 10, 2473-6988, 9274, 10.3934/math.2025426
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5125) PDF downloads(855) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog