Research article

Darbo-Type Zm and Lm contractions and its applications to Caputo fractional integro-differential equations

  • Received: 07 January 2021 Accepted: 16 March 2021 Published: 12 April 2021
  • MSC : Secondary 54H25; Primary 47H10

  • Darbo type Zm-contraction and Darbo type Lm-contraction are introduced and some fixed point results are established for such contraction mappings. As an application, we prove the existence of solution of a Caputo fractional Volterra-Fredholm integro-differential equation via integral type boundary conditions and verify the validity of our application by an appropriate example.

    Citation: Mian Bahadur Zada, Muhammad Sarwar, Reny George, Zoran D. Mitrović. Darbo-Type Zm and Lm contractions and its applications to Caputo fractional integro-differential equations[J]. AIMS Mathematics, 2021, 6(6): 6340-6355. doi: 10.3934/math.2021372

    Related Papers:

    [1] Umar Ishtiaq, Fahad Jahangeer, Doha A. Kattan, Manuel De la Sen . Generalized common best proximity point results in fuzzy multiplicative metric spaces. AIMS Mathematics, 2023, 8(11): 25454-25476. doi: 10.3934/math.20231299
    [2] Xiangxing Tao, Jiahui Wang . Commutators of multilinear $ \theta $-type generalized fractional integrals on non-homogeneous metric measure spaces. AIMS Mathematics, 2022, 7(6): 9627-9647. doi: 10.3934/math.2022535
    [3] Aftab Hussain . Fractional convex type contraction with solution of fractional differential equation. AIMS Mathematics, 2020, 5(5): 5364-5380. doi: 10.3934/math.2020344
    [4] Monairah Alansari, Mohammed Shehu Shagari, Akbar Azam, Nawab Hussain . Admissible multivalued hybrid $\mathcal{Z}$-contractions with applications. AIMS Mathematics, 2021, 6(1): 420-441. doi: 10.3934/math.2021026
    [5] Md Hasanuzzaman, Mohammad Imdad . Relation theoretic metrical fixed point results for Suzuki type $\mathcal{Z_\mathcal{R}}$-contraction with an application. AIMS Mathematics, 2020, 5(3): 2071-2087. doi: 10.3934/math.2020137
    [6] Nizar Souayah, Nabil Mlaiki, Salma Haque, Doaa Rizk, Amani S. Baazeem, Wasfi Shatanawi . A new type of three dimensional metric spaces with applications to fractional differential equations. AIMS Mathematics, 2022, 7(10): 17802-17814. doi: 10.3934/math.2022980
    [7] Tatjana Došenović, Dušan Rakić, Stojan Radenović, Biljana Carić . Ćirić type nonunique fixed point theorems in the frame of fuzzy metric spaces. AIMS Mathematics, 2023, 8(1): 2154-2167. doi: 10.3934/math.2023111
    [8] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for $ \psi $-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
    [9] Muhammad Nazam, Aftab Hussain, Asim Asiri . On a common fixed point theorem in vector-valued $ b $-metric spaces: Its consequences and application. AIMS Mathematics, 2023, 8(11): 26021-26044. doi: 10.3934/math.20231326
    [10] Zijie Qin, Lin Chen . Characterization of ternary derivation of strongly double triangle subspace lattice algebras. AIMS Mathematics, 2023, 8(12): 29368-29381. doi: 10.3934/math.20231503
  • Darbo type Zm-contraction and Darbo type Lm-contraction are introduced and some fixed point results are established for such contraction mappings. As an application, we prove the existence of solution of a Caputo fractional Volterra-Fredholm integro-differential equation via integral type boundary conditions and verify the validity of our application by an appropriate example.



    Let R and R+ denote the sets of all real numbers and nonnegative real numbers respectively, N the set of all positive integers and ¯A the closure and ¯coA the convex hull closure of A. Additionally, Ξ denotes a Banach space, Ω={Λ:Λ, bounded, closed and convex subset of Ξ}, B(Ξ)={Λ:Λ is bounded subset of Ξ}, kerm={ΛB(Ξ):m(Λ)=0} be the kernel of function m:B(Ξ)R+.

    Fixed point theory has been developed in two directions. One deals with contraction mappings on metric spaces, Banach contraction principle being the first important result in this direction. In the second direction, continuous operators are dealt with convex and compact subsets of a Banach space. Brouwer's fixed point theorem and its infinite dimensional form, Schuader's fixed point theorems are the two important theorems in this second direction. In this paper, Fix(Υ) denotes a set of fixed points of a mapping Υ in Λ.

    Theorem 1.1 (Brouwer's Fixed Point Theorem).[2] Every continuous mapping from the unit ball of Rn into itself has a fixed point.

    Theorem 1.2 (Schauder's Fixed Point Theorem).[15] Let Υ:ΛΛ a compact continuous operator, where ΛΩ. Then Fix(Υ).

    In Brouwer's and Schuader's fixed point theorems, compactness of the space under consideration is required as a whole or as a part. However, later the requirement of the compactness was relaxed by making use of the notion of a measure of noncompactness (in short MNC). Using the notion of MNC, the following theorem was proved by Darbo [5].

    Theorem 1.3. [5] Let ΛΩ and Υ:ΛΛ be a continuous function. If there exists k[0,1) such that

    m(Υ(Λ0))km(Λ0),

    where Λ0Λ and m is MNC defined on Ξ. Then Fix(Υ).

    It generalizes the renowned Schuader fixed point result and includes the existence portion of Banach contraction principle. In the sequel many extensions and generalizations of Darbo's theorem came into existence.

    The Banach principle has been improved and extended by several researchers (see [7,13,14,16]). Jleli and Samet [7] introduced the notion of θ-contractions and gave a generalization of the Banach contraction principle in generalized metric spaces, where θ:(0,)(1,) is such that:

    (θ1) θ is non-decreasing;

    (θ2) for every sequence {κj}(0,), we have

    limjθ(κj)=1limjκj=0+;

    (θ3) there exists L(0,) and (0,1) such that

    limκ0+θ(κ)1κ=L.

    Khojasteh et al. [9] introduced the concept of Z-contraction using simulation functions and established fixed point results for such contractions. Isik et al. [6] defined almost Z-contractions and presented fixed point theorems for such contractions. Cho [3] introduced the notion of L-contractions, and proved fixed point results under such contraction in generalized metric spaces. Using specific form of Z and L, we can deduce other known existing contractions. For some results concerning Z-contractions and its generalizations we refer the reader to [3] and the references cited therein. In particular, Chen and Tang [4] generalized Z-contraction with Zm-contraction and established Darbo type fixed point results.

    The aim of the present work is two fold. First we prove fixed point theorems under generalized Zm-contraction and then we prove fixed point results under Darbo type Lm-contraction in Banach spaces. It is interesting to see that several existing results in fixed point theory can be concluded from our main results. Furthermore, as an application of our results, we have proved the existence of solution to the Caputo fractional Volterra–Fredholm integro-differential equation

    cDμ(ϰ)=g(ϰ)+λ1ϰ0J1(ϰ,t)ξ1(t,μ(t))dt+λ2T0J2(ϰ,t)ξ2(t,μ(t))dt,

    under boundary conditions:

    aμ(0)+bμ(T)=1Γ()T0(Tt)1J3(ϰ,t)dt,

    where (0,1], cD is the Caputo fractional derivative, λ1,λ2 are parameters, and a,b>0 are real constants, μ,g:[0,T]R, J1,J2,J3:[0,T]×[0,T]R and ξ1,ξ2:[0,T]×RR are continuous functions. For the validity of existence result we construct an example.

    In this section, we recall some definitions and results which are further considered in the next sections, allowing us to present the results. The concept of MNC was introduced in [1] as follows:

    Definition 2.1. [1] A map m:B(Ξ)R+ is MNC in Ξ if for all Λ1,Λ2B(Ξ) it satisfies the following conditions:

    (i) kerm and relatively compact in Ξ;

    (ii) Λ1Λ2  m(Λ1)m(Λ2);

    (iii) m(¯Λ1)=m(Λ1);

    (iv) m(¯coΛ1)=m(Λ1);

    (v) m(ηΛ1+(1η)Λ2)ηm(Λ1)+(1η)m(Λ2) η[0,1];

    (vi) if {Λn} is a sequence of closed sets in B(Ξ) with Λn+1Λn, nN and limn+m(Λn)=0, then Λ=+n=1Λn.

    The Kuratowski MNC [11] is the function m:B(Ξ)R+ defined by

    m(K)=inf{ε>0:Kni=1Si,SiΞ,diam(Si)<ε},

    where diam(S) is the diameter of S.

    Khojasteh et al. [9] introduced the concept of Z-contraction using simulation functions as follows:

    Definition 2.2. A function Z:R+×R+R is simulation if:

    (Z1) Z(0,0)=0;

    (Z2) Z(κ1,κ2)<κ2κ1, for all κ1,κ2>0;

    (Z3) if {κn} and {κn} are two sequences in (0,) such that limκnn=limκnn>0, then

    limZ(κn,κn)n<0.

    Roldán-López-de-Hierro et al. [12] slightly modified the Definition 2.2 of [9] as follows.

    Definition 2.3. A mapping Z:R+×R+R is simulation if:

    (Z1) Z(0,0)=0;

    (Z2) Z(κ1,κ2)<κ2κ1, for all κ1,κ2>0;

    (Z3) if {κn}, {κn} are sequences in (0,) such that limκnn=limκnn>0 and κn<κn, then

    limZ(κn,κn)n<0.

    Every simulation function in the original Definition 2.2 is also a simulation function in the sense of Definition 2.3, but the converse is not true, see for instance [12]. Note that Z={Z:Z is a simulation function in the sense of Definition 2.3}. The following are some examples of simulation functions.

    Example 2.4. The mapping Z:R+×R+R defined by:

    1. Z(κ1,κ2)=κ2f(κ1)κ1, for all κ1,κ2R+, where f:R+R+ is a lower semi-continuous function such that f1(0)={0},

    2. Z(κ1,κ2)=κ2φ(κ1)κ1, for all κ1,κ2R+, where φ:R+R+ is a continuous function such that φ(κ1)={0}κ1=0,

    3. Z(κ1,κ2)=κ2(κ2)κ1, for all κ1,κ2R+, where :R+R+ is a function such that lim supnr+ (κ1)<1,

    4. Z(κ1,κ2)=ϕ(κ2)κ1, for all κ1,κ2R+, where ϕ:R+R+ is an upper semi-continuous function such that ϕ(κ1)<κ1, for all κ1>0 and ϕ(0)=0,

    5. Z(κ1,κ2)=κ2κ10λ(x)dx, for all κ1,κ2R+, where λ:R+R+ is a function such that ϵ0λ(x)dx exists and ϵ0λ(x)dx>ϵ, for every ϵ>0,

    6. Z(κ1,κ2)=κ2κ2+1κ1, for all κ1,κ2R+,

    are simulation functions.

    Cho [3] introduced the notion of L-simulation function as follows:

    Definition 2.5. An L-simulation function is a function L:[1,)×[1,)R satisfying the following conditions:

    (L1) L(1,1)=1;

    (L2) L(κ1,κ2)<κ2κ1, for all κ1,κ2>1;

    (L3) if {κn} and {κn} are two sequences in (1,) such that limκnn=limκnn>1 and κn<κn, then

    limL(κn,κn)n<1.

    Note that L(1,1)<1, for all t>1.

    Example 2.6. The functions Lb,Lw:[1,)×[1,)R defined by

    1. Lb(κ1,κ2)=κn2κ1, for all κ1,κ21, where n(0,1);

    2. Lw(κ1,κ2)=κ2κ1ϕ(κ2) κ1,κ21, where ϕ:[1,)[1,) is lower semicontinuous and nondecreasing with ϕ1({1})=1,

    are L-simulation functions.

    Definition 2.7. [8] A continuous non-decreasing function ϕ:R+R+ such that φ(t)=0 if and only if t=0 is called an altering distance function.

    In this section, we obtain the results on generalized Zm-contraction. First we give the following definition.

    Definition 3.1. Let ΛΩ. A self-mapping Υ on Λ is called generalized Zm-contraction if there exists ZZ such that

    Z(m(Υ(Λ1)),Δ(Λ1,Λ2))0, (3.1)

    where Λ1 and Λ2 are subsets of Λ, m(Λ1),m(Υ(Λ1)),m(Υ(Λ2))>0, m is MNC defined in Ξ and

    Δ(Λ1,Λ2)=max{m(Λ1),m(Υ(Λ1)),m(Υ(Λ2)),12m(Υ(Λ1)Υ(Λ2))}.

    Using the notion of Zm-contraction, we establish the main result of this section.

    Theorem 3.2. Let Υ:ΛΛ be a continuous function, where ΛΩ. Assume that there exists ZZ such that Z non-decreasing function and Υ is a generalized Zm-contraction. Then Fix(Υ).

    Proof. Define a sequence {Λn}n=0 such that

    Λ0=Λ and  Λn=¯co(ΥΛn1), for all  nN. (3.2)

    We need to prove that Λn+1Λn and ΥΛnΛn, for all nN. For proof of the first inclusion, we use induction. If n=1, then by (3.2), we have Λ0=Λ and Λ1=¯co(ΥΛ0)Λ0. Next, assume that ΛnΛn1, then ¯co(Υ(Λn))¯co(Υ(Λn1)), using (3.2), we get the first inclusion

    Λn+1Λn. (3.3)

    To obtained the second inclusion, using the inclusion (3.3) we have

    ΥΛn¯co(ΥΛn)=Λn+1Λn. (3.4)

    Thus Λn+1Λn and ΥΛnΛn,nN.

    Now, we discuss two cases, depending on the values of m. If we consider m as a non-negative integer with m(Λm)=0, then Λm is a compact set and hence by Theorem 1.2, Υ has a fixed point in ΛmΛ. Instead, assume that m(Λn)>0, nN. Then on setting Λ1=Λn+1 and Λ2=Λn in contraction (3.1), we have

    Z(m(Υ(Λn+1)),Δ(Λn+1,Λn))0, (3.5)

    where

    Δ(Λn,Λn+1)=max{m(Λn),m(Υ(Λn)),m(Υ(Λn+1)),12m(Υ(Λn)Υ(Λn+1))}max{m(Λn),m(Λn),m(Λn+1),12m(ΛnΛn+1)}=max{m(Λn),m(Λn),m(Λn+1),12m(Λn)}=m(Λn),

    that is,

    Δ(Λn,Λn+1)m(Λn). (3.6)

    Using inequality (3.6) and the axiom (Z2) of Z-simulation function, inequality (3.5) becomes,

    0Z(m(Υ(Λn+1)),Δ(Λn+1,Λn))Z(m(Λn+1),m(Λn))m(Λn)m(Λn+1), (3.7)

    that is, m(Λn)m(Λn+1) and hence, {m(Λn)} is a decreasing sequence of positive real numbers. Thus, we can find r0 such that limn m(Λn)=r. Next, we claim that r=0. To support our claim, suppose that r0, that is, r>0. Let un=m(Λn+1) and vn=m(Λn), then since un<vn, so by the axiom (Z3) of Z-simulation function, we have

    lim supn Z(m(Λn+1),m(Λn))=lim supn Z(un,vn)<0,

    which is contradiction to (3.7). Thus r=0 and hence {Λn} is a sequence of closed sets in B(Ξ) with Λn+1Λn, for all nN and limn m(Λn)=0, so the intersection set Λ=+n=1Λn is non-empty, closed and convex subset of Λ. Furthermore, since ΛΛn, for all nN, so by Definition 2.1(ii), m(Λ)m(Λn), for all nN. Thus m(Λ)=0 and hence Λkerm, that is, Λ is bounded. But Λ is closed so that Λ is compact. Therefore by Theorem 1.2, Fix(Υ). From Theorem 3.2 we obtain the following corollaries. We assume that ΛΩ.

    Corollary 3.3. Let Υ:ΛΛ be a continuous function such that

    ψ1(m(Υ(Λ1)))ψ2(max{m(Λ1),m(Υ(Λ1)),m(Υ(Λ2)),12m(Υ(Λ1)Υ(Λ2))}),

    for any non-empty subsets Λ1 and Λ2 of Λ, where m is MNC. Then Fix(Υ).

    Corollary 3.4. Let Υ:ΛΛ be a continuous function such that

    m(Υ(Λ1))Δ(Λ1,Λ2)f(Δ(Λ1,Λ2)),

    for any non-empty subsets Λ1 and Λ2 of Λ, where m is MNC and f:R+R+ is a lower semi-continuous function such that f1(0)={0}. Then Fix(Υ).

    The conclusion of Corollary 3.4 is true if f:R+R+ is continuous function such that f(t)=0   t=0.

    Corollary 3.5. Let Υ:ΛΛ be a continuous function such that

    m(Υ(Λ1))(Δ(Λ1,Λ2))Δ(Λ1,Λ2),

    for any non-empty subsets Λ1 and Λ2 of Λ, where m is MNC and :R+R+ is a function with lim supnr+ (t)<1. Then Fix(Υ).

    Corollary 3.6. Let Υ:ΛΛ be a continuous function such that

    m(Υ(Λ1))ϕ(max{m(Λ1),m(Υ(Λ1)),m(Υ(Λ2)),12m(Υ(Λ1)Υ(Λ2))}),

    for any non-empty subsets Λ1 and Λ2 of Λ, where m is MNC and ϕ:R+R+ is an upper semi-continuous mapping with ϕ(t)<t, t>0 and ϕ(0)=0. Then Fix(Υ).

    Corollary 3.7. Let Υ:ΛΛ be a continuous function such that

    m(Υ(Λ1))0λ(x)dxmax{m(Λ1),m(Υ(Λ1)),m(Υ(Λ2)),12m(Υ(Λ1)Υ(Λ2))},

    for any non-empty subsets Λ1 and Λ2 of Λ, where m is MNC and λ:R+R+ is a mapping such that ϵ0λ(x)dx exists and ϵ0λ(x)dx>ϵ, for every ϵ>0. Then Fix(Υ).

    Corollary 3.8. Let Υ:ΛΛ be a continuous function such that

    m(Υ(Λ1))Δ(Λ1,Λ2)1+Δ(Λ1,Λ2),

    for any non-empty subsets Λ1 and Λ2 of Λ, where m is MNC. Then Fix(Υ).

    In this section, we obtain some results on Lm-contraction. Let us denote by Θ the class of all functions θ:(0,)(1,) that satisfy conditions (θ1) and (θ2). First we introduce the notion of Lm-contraction as:

    Definition 4.1. Let ΛΩ. A self-mapping Υ on Λ is called Lm-contraction with respect to L if there exist θΘ such that, for all ΛΛ with m(Λ)>0,

    L(θ(m(Υ(Λ))),θ(m(Λ)))1, (4.1)

    where m is MNC defined in Ξ.

    Theorem 4.2. Let Υ:ΛΛ be a continuous function. Assume that there exist θΘ and Υ is Lm-contraction with respect to L. Then Fix(Υ).

    Proof. Define a sequence {Λn}n=0 such that

    Λ0=Λ and  Λn=¯co(ΥΛn1), for all  nN. (4.2)

    Then Λn+1Λn and ΥΛnΛn, nN.

    Now, we discuss two cases, depending on the values of m. If we consider m as a non-negative integer with m(Λm)=0, then Λm is a compact set and hence by Theorem 1.2, Υ has a fixed point in ΛmΛ. Instead, assume that m(Λn)>0, for all nN. Then on setting Λ=Λn in contraction (4.1), we have

    1L(θ(m(Υ(Λn))),θ(m(Λn)))θ(m(Λn))θ(m(Υ(Λn))), (4.3)

    that is,

    θ(m(Υ(Λn)))θ(m(Λn)).

    Since θ is nondecreasing, so that

    m(Υ(Λn))m(Λn). (4.4)

    Now, using inequality (4.4), we have

    m(Λn+1)=m(¯co(Υ(Λn)))=m(Υ(Λn))m(Λn),

    that is, m(Λn+1)m(Λn) and hence, {m(Λn)} is a decreasing sequence of positive real numbers. Thus, we can find r0 with limn m(Λn)=r. Next, we claim that r=0. To support our claim, suppose that r0. Then in view of (θ2), we get

    limn θ(m(Λn))1,

    which implies that

    limn θ(m(Λn))>1. (4.5)

    Let un=θ(m(Λn+1)) and vn=θ(m(Λn)), then since unvn, so by the axiom (L3) of L-simulation function, we have

    1lim supn L(m(Λn+1),m(Λn))=lim supn L(un,vn)<1,

    which is contradiction. Thus r=0 and hence {Λn} is a sequence of closed sets from B(Ξ) such that Λn+1Λn, for all nN and limn m(Λn)=0, so the intersection set Λ=+n=1Λn is non-empty, closed and convex subset of Λ. Furthermore, since ΛΛn, for all nN, so by Definition 2.1(ii), m(Λ)m(Λn), for all nN. Thus m(Λ)=0 and hence Λkerm, that is, Λ is bounded. But Λ is closed so that Λ is compact. Therefore by Theorem 1.2, Fix(Υ).

    By taking L=Lb in Theorem 4.2, we obtain the following result.

    Corollary 4.3. Let Υ:ΛΛ be a continuous functions such that, for all ΛΛ with m(Λ)>0,

    θ(m(Υ(Λ)))(θ(m(Λ)))k, (4.6)

    where θΘ and k(0,1). Then Fix(Υ).

    Remark 4.4. Corollary 4.3 is the Darbo type version of Theorem 2.1 in [7].

    By taking L=Lw in Theorem 4.2, we obtain the next result.

    Corollary 4.5. Let Υ:ΛΛ be a continuous functions such that, for all ΛΛ with m(Λ)>0,

    θ(m(Υ(Λ)))θ(m(Λ))ϕ(θ(m(Λ))), (4.7)

    where θΘ and ϕ:[1,)[1,) is lower semi-continuous and nondecreasing with ϕ1({1})=1. Then Fix(Υ).

    By taking θ(t)=et, for all t>0 in Corollary 4.5, we obtain next result.

    Corollary 4.6. Let Υ:ΛΛ be a continuous functions such that, for all ΛΛ with m(Λ)>0,

    m(Υ(Λ))m(Λ)φ(m(Λ)), (4.8)

    where φ:R+R+ is lower semi-continuous and nondecreasing with φ1({0})=0. Then Fix(Υ).

    Remark 4.7. Corollary 4.6 is the Rhoades's Theorem of Darbo type [13].

    Let B(a,r) be the closed ball with center at a and radius r and Br be the ball B(0,r). We check the existence of solution to Caputo fractional Volterra–Fredholm integro differential equation

    cDμ(ϰ)=g(ϰ)+λ1ϰ0J1(ϰ,t)ξ1(t,μ(t))dt+λ2T0J2(ϰ,t)ξ2(t,μ(t))dt, (5.1)

    under boundary conditions:

    aμ(0)+bμ(T)=1Γ()T0(Tt)1J3(ϰ,t)dt, (5.2)

    where (0,1], cD is the Caputo fractional derivative, λ1,λ2 are parameters, and a,b>0 are real constants, μ,g:[0,T]R, J1,J2,J3:[0,T]×[0,T]R and ξ1,ξ2:[0,T]×RR are continuous functions.

    Lemma 5.1. [10] For plR, l=0,1,,r1, we have

    I[cDh(t)]=h(t)+p0+p1t+p2t2+...+pr1tr1.

    Using Lemma 5.1, we can easily establish the following result.

    Lemma 5.2. Problem (5.1) is equivalent to the integral equation

    μ(ϰ)=1Γ()ϰ0(ϰϑ)1g(ϑ)dϑb(a+b)Γ()T0(Tϑ)1g(ϑ)dϑ+1Γ()ϰ0(ϰϑ)1(λ1ϑ0J1(ϑ,t)ξ1(t,μ(t))dt+λ2T0J2(ϑ,t)ξ2(t,μ(t))dt)dϑb(a+b)Γ()T0(Tϑ)1(λ1ϑ0J1(ϑ,t)ξ1(t,μ(t))dt+λ2T0J2(ϑ,t)ξ2(t,μ(t))dt)dϑ+1(a+b)Γ()T0(Tt)1J3(ϰ,t)dt. (5.3)

    Proof. Using Lemma 5.1, we obtain

    μ(ϰ)=c0+I(g(ϰ))+λ1I(ϰ0J1(ϰ,t)ξ1(t,μ(t))dt+λ2T0J2(ϰ,t)ξ2(t,μ(t))dt) (5.4)

    Apply boundary conditions, we deduce that

    c0=b(a+b)Γ()T0(Tϑ)1g(ϑ)dϑ1(a+b)Γ()T0(Tt)1J3(ϰ,t)dt+b(a+b)Γ()T0(Tϑ)1(λ1ϑ0J1(ϑ,t)ξ1(t,μ(t))dt+λ2T0J2(ϑ,t)ξ2(t,μ(t))dt)dϑ.

    Thus by substituting the values of c0 in (5.4), we get integral equation (5.3).

    Notice that the solution of Eq (5.1) is equivalent to Eq (5.3). Now, we are in a position to present the existence result.

    Theorem 5.3. Let μ,νBr,ϑ,τ[0,T], and a,b>0 be real constants. If μ,g:[0,T]R, J1,J2,J3:[0,T]×[0,T]R and ξ1,ξ2:[0,T]×RR are continuous functions satisfying the following axioms:

    1. there exist Ci>0,i=1,2 such that

    |ξi(t,μ(t))ξi(t,ν(t))|Ciμν; (5.5)

    2. there exist real numbers λ1 and λ2 with |λ1|C1K1+|λ2|C2K2<Γ(+1)2Tp such that

    2[g+|λ1|K1F1+|λ2|K2F2]+K3TΓ(+1)2[|λ1|C1K1+|λ2|C2K2]r, (5.6)

    where F1=sup|ξ1(t,0)|,F2=sup|ξ2(t,0)| and

    K1=supϑ0|J1(ϑ,τ)|dτ<, (5.7)

    and

    Ki=supT0|Ji(ϑ,τ)|dτ<,  i=2,3. (5.8)

    Then problem (5.3) has a solution in Br, equivalently problem (5.1) has a solution in Br.

    Proof. Let Br={μC([0,T],R):μr}. Then, Br is a non-empty, closed, bounded, and convex subset of C([0,T],R). Define the operator Υ:BrBr by

    Υμ(ϰ)=1Γ()ϰ0(ϰϑ)1g(ϑ)dϑb(a+b)Γ()T0(Tϑ)1g(ϑ)dϑ+1Γ()ϰ0(ϰϑ)1(λ1ϑ0J1(ϑ,t)ξ1(t,μ(t))dt+λ2T0J2(ϑ,t)ξ2(t,μ(t))dt)dϑb(a+b)Γ()T0(Tϑ)1(λ1ϑ0J1(ϑ,t)ξ1(t,μ(t))dt+λ2T0J2(ϑ,t)ξ2(t,μ(t))dt)dϑ+1(a+b)Γ()T0(Tt)1J3(ϰ,t)dt.

    Our first claim is Υ:BrBr is well-defined. Let μBr, for some r. Then for all ϰ[0,T], we have

    |Υμ(ϰ)|1Γ()ϰ0(ϰϑ)1|g(ϑ)|dϑ+b(a+b)Γ()T0(Tϑ)1|g(ϑ)|dϑ+1Γ()ϰ0(ϰϑ)1(|λ1|ϑ0|J1(ϑ,t)||ξ1(t,μ(t))|dt+|λ2|T0|J2(ϑ,t)||ξ2(t,μ(t))|dt)dϑ+1(a+b)Γ()T0(Tt)1|J3(ϰ,t)|dt+b(a+b)Γ()T0(Tϑ)1(|λ1|ϑ0|J1(ϑ,t)||ξ1(t,μ(t))|dt+|λ2|T0|J2(ϑ,t)||ξ2(t,μ(t))|dt)dϑ1Γ()ϰ0(ϰϑ)1|g(ϑ)|dϑ+1Γ()T0(Tϑ)1|g(ϑ)|dϑ+1Γ()ϰ0(ϰϑ)1{|λ1|ϑ0|J1(ϑ,t)|(|ξ1(t,μ(t))ξ1(t,0)|+|ξ1(t,0)|)dt+|λ2|T0|J2(ϑ,t)|(|ξ2(t,μ(t))ξ2(t,0)|+|ξ2(t,0)|)dt}dϑ+1Γ()T0(Tϑ)1{|λ1|ϑ0|J1(ϑ,t)|(|ξ1(t,μ(t))ξ1(t,0)|+|ξ1(t,0)|)dt+|λ2|T0|J2(ϑ,t)|(|ξ2(t,μ(t))ξ2(t,0)|+|ξ2(t,0)|)dt}dϑ+1Γ()T0(Tt)1|J3(ϰ,t)|dt
    gΓ()ϰ0(ϰϑ)1dϑ+gΓ()T0(Tϑ)1dϑ+K3Γ()T0(Tt)1dt+|λ1|K1(C1μ+F1)+|λ2|K2(C2μ+F2)Γ()ϰ0(ϰϑ)1dϑ+{|λ1|K1(C1μ+F1)+|λ2|K2(C2μ+F2)}Γ()T0(Tϑ)1dϑ,

    with the help of (5.6), (5.7) and (5.8), we get

    |Υμ(ϰ)|gΓ()ϰ+gΓ()T+|λ1|K1(C1r+F1)+|λ2|K2(C2r+F2)Γ()ϰ+|λ1|K1(C1r+F1)+|λ2|K2(C2r+F2)Γ()T+r+K3Γ()T(2g+2|λ1|K1(C1r+F1)+2|λ2|K2(C2r+F2)+K3)TΓ(+1)={2(g+|λ1|K1F1+|λ2|K2F2)+2r(|C1λ1|K1+|λ2|C2K2)+K3}TΓ(+1)r.

    That is, Υ(μ)r, for all μBr, which implies that Υ(μ)Br and hence Υ:BrBr is well-defined. Now, we have to show that Υ:BrBr is continuous. For this, using (5.7), (5.5) and (5.8), we have

    |Υμ(ϰ)Υν(ϰ)|=|1Γ()ϰ0(ϰϑ)1(λ1ϑ0J1(ϑ,t)ξ1(t,μ(t))dt+λ2T0J2(ϑ,t)ξ2(t,μ(t))dt)dϑb(a+b)Γ()T0(Tϑ)1(λ1ϑ0J1(ϑ,t)ξ1(t,μ(t))dt+λ2T0J2(ϑ,t)ξ2(t,μ(t))dt)dϑ1Γ()ϰ0(ϰϑ)1(λ1ϑ0J1(ϑ,t)ξ1(t,ν(t))dt+λ2T0J2(ϑ,t)ξ2(t,ν(t))dt)dϑ+b(a+b)Γ()T0(Tϑ)1(λ1ϑ0J1(ϑ,t)ξ1(t,ν(t))dt+λ2T0J2(ϑ,t)ξ2(t,ν(t))dt)dϑ|1Γ()ϰ0(ϰϑ)1(|λ1|ϑ0|J1(ϑ,t)||ξ1(t,μ(t))ξ1(t,ν(t))|dt)dϑ+1Γ()ϰ0(ϰϑ)1(|λ2|T0|J2(ϑ,t)||ξ2(t,μ(t))ξ2(t,ν(t))|dt)dϑ+b(a+b)Γ()T0(Tϑ)1(|λ1|ϑ0|J1(ϑ,t)||ξ1(t,μ(t))ξ1(t,ν(t))|dt)dϑ+b(a+b)Γ()T0(Tϑ)1(|λ2|T0|J2(ϑ,t)||ξ2(t,μ(t))ξ2(t,ν(t))|dt)dϑ
    C1K1|λ1|μν+C2K2|λ2|μνΓ()ϰ0(ϰϑ)1dϑ+bC1K1|λ1|μν+bC2K2|λ2|μν(a+b)Γ()T0(Tϑ)1dϑ=(C1K1|λ1|μν+C2K2|λ2|μν)ϰΓ(+1)+C1(K1|λ1|μν+C2K2|λ2|μν)TΓ(+1)2(C1K1|λ1|+C2K2|λ2|)TΓ(+1)μν.

    But |λ1|C1K1+|λ2|C2K2<Γ(+1)2Tp, that is h=2(C1K1|λ1|+C2K2|λ2|)TΓ(+1)(0,1). It follows from above that

    ΥμΥνhμν. (5.9)

    That is, Υ:BrBr is contraction and hence continuous. Next, we have to show that Υ is Lm-contraction. Let Λ be any subset of Br with m(Λ)>0, and μ,νΛ. Then from inequality (5.9), we write

    diam(ΥΛ)hdiam(Λ). (5.10)

    Now, let define θ:(0,)(1,) by θ(t)=et, then clearly θΘ. Using inequality (5.10), we have

    θ(m(Υ(Λ)))=θ(diam(Υ(Λ)))=ediam(Υ(Λ))ehdiam(Λ)=(ediam(Λ))h=(em(Λ))h=(θ(m(Λ)))h.

    Consequently,

    (θ(m(Λ)))hθ(m(Υ(Λ)))1.

    Thus for L(κ1,κ2)=κh2κ1, the above inequality becomes

    L(θ(m(Υ(Λ))),θ(m(Λ)))1,

    That is, Υ:BrBr is Lm-contraction and so Theorem 4.2 ensures the existence of a fixed point of Υ in Br, equivalently, the Eq (5.3) has a solution in Br.

    To illustrate the Theorem 5.3, we present an example.

    Example 5.4. Consider the following Caputo fractional Volterra–Fredholm integro-differential equation

    cD0.9μ(ϰ)=ϰ3eϰ4217ϰ0ϰ3sin(ϑ3)2ϑ+3[μ(ϑ)]2dϑ+12220ϰ25+2[μ(ϑ)]21+ϑϰ2dϑ, (5.11)

    with boundary condition

    5μ(0)+3μ(2)=1Γ(0.9)20(2ϑ)0.91scos(ϑ2)ϰ2+5dϑ, (5.12)

    Compare Eq (5.11) with Eq (5.1), we get

    λ1=17,λ2=122,a=5,b=3,g(ϰ)=ϰ3eϰ42,J1(ϰ,ϑ)=ϰ3sin(ϑ3),J2(ϰ,ϑ)=ϰ21+ϑϰ2,J3(ϰ,ϑ)=scos(ϑ2)ϰ2+5,ξ1(ϑ,μ(ϑ))=2ϑ+3[μ(ϑ)]2,ξ2(ϑ,μ(ϑ))=5+2[μ(ϑ)]2.

    Clearly g:[0,2]R, J1,J2,J3:[0,2]×[0,2]R and ξ1,ξ2:[0,2]×RR are continuous. Now, we have to verify condition (5.5) of Theorem 5.3. Consider

    |ξ1(ϑ,μ(ϑ))ξ1(ϑ,ν(ϑ))|=|2ϑ+3[μ(ϑ)]22ϑ+3[ν(ϑ)]2|=|2ϑ+3[μ(ϑ)]22ϑ3[ν(ϑ)]2|2ϑ+3[μ(ϑ)]2+2ϑ+3[ν(ϑ)]23|[μ(ϑ)]2[ν(ϑ)]2|3[|μ(ϑ)|+|ν(ϑ)|]=|μ(ϑ)ν(ϑ)||μ(ϑ)+ν(ϑ)||μ(ϑ)|+|ν(ϑ)|μν.

    Similarly,

    |ξ2(ϑ,μ(ϑ))ξ2(ϑ,ν(ϑ))|μν.

    Thus ξ1,ξ2:RR are Lipschitz with C1=C2=1.

    Next, we have to verify the conditions (5.7) and (5.8) of Theorem 5.3. To do this, we have

    K1=supϰ0|ϰ3sin(ϑ3)|dϑ=sup(|ϰ|cos(ϰ3))=0,
    K2=supϰ0|ϰ21+ϑϰ2|dϑ=sup(ln(1+ϰ3))2.197,

    and

    K3=sup(1ϰ2+5ϰ0ϑcos(ϑ2)dϑ)=sup(2ϰsin(ϰ2)+4cos(ϰ2)4ϰ2+5)0.17.

    Finally, to verify condition (5.6) of Theorem 5.3. Let B2={μC([0,2],R):μ2}, then since g=0,K1=0,K22.197,K3=0.17, F1=2, and F2=5, so we have

    |λ1|C1K1+|λ2|C2K20.104619<0.2576988Γ(+1)2Tp,

    and

    2[g+|λ1|K1F1+|λ2|K2F2]+K3TΓ(+1)2[|λ1|C1K1+|λ2|C2K2]1.953315<2.

    Thus Theorem 5.3 ensures the existence of a solution of (5.11) in B2.

    Darbo type contractions are introduced and fixed point results are established in a Banach space using the concept of measure of non compactness. Various existing results are deduced as corollaries to our main results. Further, our results are applied to prove the existence and uniqueness of solution to the Caputo fractional Volterra–Fredholm integro-differential equation under integral type boundary conditions which is further illustrated by appropriate example. Our study paves the way for further studies on Darbo type contractions and its applications.

    The authors are thankful to the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia, for supporting this research.

    All authors declare no conflicts of interest in this paper.



    [1] J. Banaś, On measures of noncompactness in Banach spaces, Comment. Math. Uni. Caroline, 21 (1980), 131–143.
    [2] L. Brouwer, Uber Abbildungen von Mannigfaltigkeiten, Math. Ann., 70 (1912), 97–115.
    [3] S. H. Cho, Fixed point theorems for L-contractions in generalized metric spaces, Abstr. Appl. Anal., 2018 (2018), 1–6.
    [4] J. Chen, X. Tang, Generalizations of Darbo's fixed point theorem via simulation functions with application to functional integral equations, J. Comput. Appl. Math., 296 (2016), 564–575. doi: 10.1016/j.cam.2015.10.012
    [5] G. Darbo, Punti unitti in transformazioni a condominio non compatto, Rendiconti del Seminario Matematico della Universita di Padova, 24 (1955), 84–92.
    [6] H. Isik, N. B. Gungor, C. Park, S. Y. Jang, Fixed point theorems for almost Z-contractions with an application, Mathematics, 6 (2018), 37. doi: 10.3390/math6030037
    [7] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 1–8. doi: 10.1186/1029-242X-2014-1
    [8] M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, B. Aust. Math. Soc., 30 (1984), 1–9. doi: 10.1017/S0004972700001659
    [9] F. Khojasteh, S. Shukla, S. Radenovic, A new approach to the study of fixed point theory for simulation function, Filomat, 29 (2015), 1189–1194. doi: 10.2298/FIL1506189K
    [10] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, elsevier, 204 (2006).
    [11] K. Kuratowski, Sur les espaces completes, Fund. Math., 15 (1930), 301–309.
    [12] A. F. Roldán-Ĺpez-de-Hierro, E. Karapínar, C. Roldn-Lpez-de-Hierro, J. Martnez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math., 275 (2015), 345–355. doi: 10.1016/j.cam.2014.07.011
    [13] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Analy. Theory Methods Appl., 47 (2001), 2683–2693. doi: 10.1016/S0362-546X(01)00388-1
    [14] B. Samet, C. Vetro, O. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Analy. Theory Methods Appl., 75 (2012), 2154–2165. doi: 10.1016/j.na.2011.10.014
    [15] J. Schauder, Der fixpunktsatz in funktionalraiimen, Stud. Math., 2 (1930), 171–180. doi: 10.4064/sm-2-1-171-180
    [16] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory A., 2012 (2012), 1–6. doi: 10.1186/1687-1812-2012-1
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2559) PDF downloads(118) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog