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1. Introduction

Let R and R` denote the sets of all real numbers and nonnegative real numbers respectively, N
the set of all positive integers and A the closure and coA the convex hull closure of A. Additionally, Ξ

denotes a Banach space, T “ tΛ : Λ ‰ H, bounded, closed and convex subset of Ξu, BpΞq “ tΛ ‰

H : Λ is bounded subset of Ξu, ker W “ tΛ P BpΞq : WpΛq “ 0u be the kernel of function W :
BpΞq Ñ R`.

Fixed point theory has been developed in two directions. One deals with contraction mappings on
metric spaces, Banach contraction principle being the first important result in this direction. In the
second direction, continuous operators are dealt with convex and compact subsets of a Banach space.
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Brouwer’s fixed point theorem and its infinite dimensional form, Schuader’s fixed point theorems are
the two important theorems in this second direction. In this paper, FixpΥq denotes a set of fixed points
of a mapping Υ in Λ.

Theorem 1.1 (Brouwer’s Fixed Point Theorem). [2] Every continuous mapping from the unit ball of
R

n into itself has a fixed point.

Theorem 1.2 (Schauder’s Fixed Point Theorem). [15] Let Υ : Λ Ñ Λ a compact continuous operator,
where Λ P T. Then FixpΥq ‰ H.

In Brouwer’s and Schuader’s fixed point theorems, compactness of the space under consideration
is required as a whole or as a part. However, later the requirement of the compactness was relaxed by
making use of the notion of a measure of noncompactness (in short MNC). Using the notion of MNC,
the following theorem was proved by Darbo [5].

Theorem 1.3. [5] Let Λ P T and Υ : Λ Ñ Λ be a continuous function. If there exists k P r0, 1q such
that

WpΥpΛ0qq ď kWpΛ0q,

where Λ0 Ă Λ and W is MNC defined on Ξ. Then FixpΥq ‰ H.

It generalizes the renowned Schuader fixed point result and includes the existence portion of Banach
contraction principle. In the sequel many extensions and generalizations of Darbo’s theorem came into
existence.

The Banach principle has been improved and extended by several researchers (see [7, 13, 14, 16]).
Jleli and Samet [7] introduced the notion of θ-contractions and gave a generalization of the Banach
contraction principle in generalized metric spaces, where θ : p0,8q Ñ p1,8q is such that:

pθ1q θ is non-decreasing;
pθ2q for every sequence tκ ju Ă p0,8q, we have

lim
jÑ8

θpκ jq “ 1 ðñ lim
jÑ8

κ j “ 0`;

pθ3q there exists L P p0,8q and ` P p0, 1q such that

lim
κÑ0`

θpκq ´ 1
κ`

“ L.

Khojasteh et al. [9] introduced the concept ofZ-contraction using simulation functions and established
fixed point results for such contractions. Isik et al. [6] defined almost Z-contractions and presented
fixed point theorems for such contractions. Cho [3] introduced the notion ofL-contractions, and proved
fixed point results under such contraction in generalized metric spaces. Using specific form of Z and
L , we can deduce other known existing contractions. For some results concerning Z-contractions
and its generalizations we refer the reader to [3] and the references cited therein. In particular, Chen
and Tang [4] generalized Z-contraction with ZW-contraction and established Darbo type fixed point
results.

The aim of the present work is two fold. First we prove fixed point theorems under generalizedZW-
contraction and then we prove fixed point results under Darbo type LW-contraction in Banach spaces.
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It is interesting to see that several existing results in fixed point theory can be concluded from our main
results. Furthermore, as an application of our results, we have proved the existence of solution to the
Caputo fractional Volterra–Fredholm integro-differential equation

cD℘µpκq “ gpκq ` λ1

ż κ

0
J1 pκ, tq ξ1 pt, µ ptqq dt ` λ2

ż T

0
J2 pκ, tq ξ2 pt, µ ptqq dt,

under boundary conditions:

aµp0q ` bµpTq “
1

Γp℘q

ż T

0
pT´ tq℘´1

J3pκ, tqdt,

where ℘ P p0, 1s, cD is the Caputo fractional derivative, λ1, λ2 are parameters, and a, b ą 0 are real
constants, µ, g : r0,Ts Ñ R, J1,J2,J3 : r0,Ts ˆ r0,Ts Ñ R and ξ1, ξ2 : r0,Ts ˆ R Ñ R are
continuous functions. For the validity of existence result we construct an example.

2. Preliminaries

In this section, we recall some definitions and results which are further considered in the next
sections, allowing us to present the results. The concept of MNC was introduced in [1] as follows:

Definition 2.1. [1] A map W : BpΞq Ñ R` is MNC in Ξ if for all Λ1,Λ2 P BpΞq it satisfies the
following conditions:

(i) ker W ‰ H and relatively compact in Ξ;
(ii) Λ1 Ă Λ2 ñ WpΛ1q ď WpΛ2q;

(iii) WpΛ1q “ WpΛ1q;
(iv) WpcoΛ1q “ WpΛ1q;
(v) WpηΛ1 ` p1´ ηqΛ2q ď ηWpΛ1q ` p1´ ηqWpΛ2q @η P r0, 1s;

(vi) if tΛnu is a sequence of closed sets in BpΞq with Λn`1 Ă Λn, @n P N and lim
nÑ`8

WpΛnq “ 0, then

Λ8 “
Ş`8

n“1 Λn ‰ H.

The Kuratowski MNC [11] is the function W : BpΞq Ñ R` defined by

W pKq “ inf

#

ε ą 0 : K Ă
n
ď

i“1

Si,Si Ă Ξ, diam pSiq ă ε

+

,

where diampS q is the diameter of S .
Khojasteh et al. [9] introduced the concept ofZ-contraction using simulation functions as follows:

Definition 2.2. A function Z : R` ˆR` Ñ R is simulation if:

pZ1q Z p0, 0q “ 0;
pZ2q Z pκ1, κ2q ă κ2 ´ κ1, for all κ1, κ2 ą 0;
pZ3q if tκ˚nu and tκnu are two sequences in p0,8q such that lim κ˚n

nÑ8
“ lim κn

nÑ8
ą 0, then

lim Z pκ˚n , κnq
nÑ8

ă 0.
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Roldán-López-de-Hierro et al. [12] slightly modified the Definition 2.2 of [9] as follows.

Definition 2.3. A mapping Z : R` ˆR` Ñ R is simulation if:

pZ1q Z p0, 0q “ 0;
pZ2q Z pκ1, κ2q ă κ2 ´ κ1, for all κ1, κ2 ą 0;
pZ3q if tκ˚nu, tκnu are sequences in p0,8q such that lim κ˚n

nÑ8
“ lim κn

nÑ8
ą 0 and κn ă κ˚n , then

lim Z pκ˚n , κnq
nÑ8

ă 0.

Every simulation function in the original Definition 2.2 is also a simulation function in the
sense of Definition 2.3, but the converse is not true, see for instance [12]. Note that Z “

tZ : Z is a simulation function in the sense of Definition 2.3u. The following are some examples
of simulation functions.

Example 2.4. The mapping Z : R` ˆR` Ñ R defined by:

1. Z pκ1, κ2q “ κ2´ f pκ1q ´ κ1, for all κ1, κ2 P R`, where f : R` Ñ R` is a lower semi-continuous
function such that f´1p0q “ t0u,

2. Z pκ1, κ2q “ κ2 ´ ϕpκ1q ´ κ1, for all κ1, κ2 P R`, where ϕ : R` Ñ R` is a continuous function
such that ϕpκ1q “ t0u ô κ1 “ 0,

3. Z pκ1, κ2q “ κ2 O pκ2q ´ κ1, for all κ1, κ2 P R`, where O : R` Ñ R` is a function such that
lim sup

nÑr`

O pκ1q ă 1,

4. Z pκ1, κ2q “ φpκ2q ´ κ1, for all κ1, κ2 P R`, where φ : R` Ñ R` is an upper semi-continuous
function such that φpκ1q ă κ1, for all κ1 ą 0 and φp0q “ 0,

5. Z pκ1, κ2q “ κ2 ´

κ1
ş

0
λpxqdx, for all κ1, κ2 P R`, where λ : R` Ñ R` is a function such that

ε
ş

0
λpxqdx exists and

ε
ş

0
λpxqdx ą ε, for every ε ą 0,

6. Z pκ1, κ2q “
κ2

κ2`1 ´ κ1, for all κ1, κ2 P R`,

are simulation functions.

Cho [3] introduced the notion of L-simulation function as follows:

Definition 2.5. An L-simulation function is a function L : r1,8q ˆ r1,8q Ñ R satisfying the
following conditions:

pL1q L p1, 1q “ 1;
pL2q L pκ1, κ2q ă

κ2
κ1

, for all κ1, κ2 ą 1;
pL3q if tκnu and tκ˚nu are two sequences in p1,8q such that lim κn

nÑ8
“ lim κ˚n

nÑ8
ą 1 and κn ă κ˚n , then

lim L pκn, κ
˚
n q

nÑ8
ă 1.

Note that L p1, 1q ă 1, for all t ą 1.

Example 2.6. The functions Lb,Lw : r1,8q ˆ r1,8q Ñ R defined by
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1. Lbpκ1, κ2q “
κn2
κ1

, for all κ1, κ2 ě 1, where n P p0, 1q;
2. Lwpκ1, κ2q “

κ2
κ1φpκ2q

@κ1, κ2 ě 1, where φ : r1,8q Ñ r1,8q is lower semicontinuous and
nondecreasing with φ´1pt1uq “ 1,

are L-simulation functions.

Definition 2.7. [8] A continuous non-decreasing function φ : R` Ñ R` such that ϕptq “ 0 if and
only if t “ 0 is called an altering distance function.

3. Some results onZW-contractions

In this section, we obtain the results on generalized ZW-contraction. First we give the following
definition.

Definition 3.1. Let Λ P T. A self-mapping Υ on Λ is called generalizedZW-contraction if there exists
Z P Z such that

Z pWpΥpΛ1qq,∆pΛ1,Λ2qq ě 0, (3.1)

where Λ1 and Λ2 are subsets of Λ, WpΛ1q,WpΥpΛ1qq,WpΥpΛ2qq ą 0, W is MNC defined in Ξ and

∆pΛ1,Λ2q “ max
"

WpΛ1q,WpΥpΛ1qq,WpΥpΛ2qq,
1
2

WpΥpΛ1q Y ΥpΛ2qq

*

.

Using the notion ofZW-contraction, we establish the main result of this section.

Theorem 3.2. Let Υ : Λ Ñ Λ be a continuous function, where Λ P T. Assume that there exists Z P Z

such that Z non-decreasing function and Υ is a generalizedZW-contraction. Then FixpΥq ‰ H.

Proof. Define a sequence tΛnu
8
n“0 such that

Λ0 “ Λ and Λn “ copΥΛn´1q, for all n P N. (3.2)

We need to prove that Λn`1 Ă Λn and ΥΛn Ă Λn, for all n P N. For proof of the first inclusion, we
use induction. If n “ 1, then by p3.2q, we have Λ0 “ Λ and Λ1 “ copΥΛ0q Ă Λ0. Next, assume that
Λn Ă Λn´1, then copΥpΛnqq Ă copΥpΛn´1qq, using p3.2q, we get the first inclusion

Λn`1 Ă Λn. (3.3)

To obtained the second inclusion, using the inclusion p3.3q we have

ΥΛn Ă copΥΛnq “ Λn`1 Ă Λn. (3.4)

Thus Λn`1 Ă Λn and ΥΛn Ă Λn, @n P N.
Now, we discuss two cases, depending on the values of W. If we consider m as a non-negative

integer with WpΛmq “ 0, then Λm is a compact set and hence by Theorem 1.2, Υ has a fixed point in
Λm Ă Λ. Instead, assume that WpΛnq ą 0, @n P N. Then on setting Λ1 “ Λn`1 and Λ2 “ Λn in
contraction (3.1), we have

Z pWpΥpΛn`1qq,∆pΛn`1,Λnqq ě 0, (3.5)
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where

∆pΛn,Λn`1q “max
"

WpΛnq,WpΥpΛnqq,WpΥpΛn`1qq,
1
2

WpΥpΛnq Y ΥpΛn`1qq

*

ďmax
"

WpΛnq,WpΛnq,WpΛn`1q,
1
2

WpΛn Y Λn`1q

*

“max
"

WpΛnq,WpΛnq,WpΛn`1q,
1
2

WpΛnq

*

“WpΛnq,

that is,

∆pΛn,Λn`1q ďWpΛnq. (3.6)

Using inequality (3.6) and the axiom pZ2q of Z -simulation function, inequality p3.5q becomes,

0 ďZ pWpΥpΛn`1qq,∆pΛn`1,Λnqq

ďZ pWpΛn`1q,WpΛnqq

ďWpΛnq ´WpΛn`1q,

(3.7)

that is, WpΛnq ě WpΛn`1q and hence, tWpΛnqu is a decreasing sequence of positive real numbers.
Thus, we can find r ě 0 such that lim

nÑ8
WpΛnq “ r. Next, we claim that r “ 0. To support our claim,

suppose that r ‰ 0, that is, r ą 0. Let un “ WpΛn`1q and vn “ WpΛnq, then since un ă vn, so by the
axiom pZ3q of Z -simulation function, we have

lim sup
nÑ8

Z pWpΛn`1q,WpΛnqq “ lim sup
nÑ8

Z pun, vnq ă 0,

which is contradiction to p3.7q. Thus r “ 0 and hence tΛnu is a sequence of closed sets in BpΞq with
Λn`1 Ă Λn, for all n P N and lim

nÑ8
WpΛnq “ 0, so the intersection set Λ8 “

Ş`8

n“1 Λn is non-empty,
closed and convex subset of Λ. Furthermore, since Λ8 Ă Λn, for all n P N, so by Definition 2.1(ii),
WpΛ8q ď WpΛnq, for all n P N. Thus WpΛ8q “ 0 and hence Λ8 P ker W, that is , Λ8 is bounded.
But Λ8 is closed so that Λ8 is compact. Therefore by Theorem 1.2, FixpΥq ‰ H. �

From Theorem 3.2 we obtain the following corollaries. We assume that Λ P T.

Corollary 3.3. Let Υ : Λ Ñ Λ be a continuous function such that

ψ1 pW pΥpΛ1qqq ď ψ2

ˆ

max
"

WpΛ1q,WpΥpΛ1qq,WpΥpΛ2qq,
1
2

WpΥpΛ1q Y ΥpΛ2qq

*˙

,

for any non-empty subsets Λ1 and Λ2 of Λ, where W is MNC. Then FixpΥq ‰ H.

Corollary 3.4. Let Υ : Λ Ñ Λ be a continuous function such that

W pΥpΛ1qq ď ∆pΛ1,Λ2q ´ f p∆pΛ1,Λ2qq ,

for any non-empty subsets Λ1 and Λ2 of Λ, where W is MNC and f : R` Ñ R` is a lower semi-
continuous function such that f´1p0q “ t0u. Then FixpΥq ‰ H.
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The conclusion of Corollary 3.4 is true if f : R` Ñ R` is continuous function such that f ptq “
0 ô t “ 0.

Corollary 3.5. Let Υ : Λ Ñ Λ be a continuous function such that

W pΥpΛ1qq ď O p∆pΛ1,Λ2qq∆pΛ1,Λ2q,

for any non-empty subsets Λ1 and Λ2 of Λ, where W is MNC and O : R` Ñ R` is a function with
lim sup

nÑr`

O ptq ă 1. Then FixpΥq ‰ H.

Corollary 3.6. Let Υ : Λ Ñ Λ be a continuous function such that

W pΥpΛ1qq ď φ

ˆ

max
"

WpΛ1q,WpΥpΛ1qq,WpΥpΛ2qq,
1
2

WpΥpΛ1q Y ΥpΛ2qq

*˙

,

for any non-empty subsets Λ1 and Λ2 of Λ, where W is MNC and φ : R` Ñ R` is an upper semi-
continuous mapping with φptq ă t, @t ą 0 and φp0q “ 0. Then FixpΥq ‰ H.

Corollary 3.7. Let Υ : Λ Ñ Λ be a continuous function such that

ż WpΥpΛ1qq

0
λpxqdx ď max

"

WpΛ1q,WpΥpΛ1qq,WpΥpΛ2qq,
1
2

WpΥpΛ1q Y ΥpΛ2qq

*

,

for any non-empty subsets Λ1 and Λ2 of Λ, where W is MNC and λ : R` Ñ R` is a mapping such

that
ε
ş

0
λpxqdx exists and

ε
ş

0
λpxqdx ą ε, for every ε ą 0. Then FixpΥq ‰ H.

Corollary 3.8. Let Υ : Λ Ñ Λ be a continuous function such that

W pΥpΛ1qq ď
∆pΛ1,Λ2q

1` ∆pΛ1,Λ2q
,

for any non-empty subsets Λ1 and Λ2 of Λ, where W is MNC. Then FixpΥq ‰ H.

4. Some results on LW-contraction

In this section, we obtain some results on LW-contraction. Let us denote by Θ the class of all
functions θ : p0,8q Ñ p1,8q that satisfy conditions pθ1q and pθ2q. First we introduce the notion of
LW-contraction as:

Definition 4.1. Let Λ˚ P T. A self-mapping Υ on Λ˚ is called LW-contraction with respect to L if
there exist θ P Θ such that, for all Λ Ă Λ˚ with WpΛq ą 0,

L pθpWpΥpΛqqq, θpWpΛqqq ě 1, (4.1)

where W is MNC defined in Ξ.

Theorem 4.2. Let Υ : Λ Ñ Λ be a continuous function. Assume that there exist θ P Θ and Υ is
LW-contraction with respect to L . Then FixpΥq ‰ H.
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Proof. Define a sequence tΛnu
8
n“0 such that

Λ0 “ Λ and Λn “ copΥΛn´1q, for all n P N. (4.2)

Then Λn`1 Ă Λn and ΥΛn Ă Λn, @n P N.
Now, we discuss two cases, depending on the values of W. If we consider m as a non-negative

integer with WpΛmq “ 0, then Λm is a compact set and hence by Theorem 1.2, Υ has a fixed point in
Λm Ă Λ. Instead, assume that WpΛnq ą 0, for all n P N. Then on setting Λ “ Λn in contraction (4.1),
we have

1 ď L pθpWpΥpΛnqqq, θpWpΛnqqq ď
θpWpΛnqq

θpWpΥpΛnqqq
, (4.3)

that is,

θpWpΥpΛnqqq ď θpWpΛnqq.

Since θ is nondecreasing, so that

WpΥpΛnqq ď WpΛnq. (4.4)

Now, using inequality (4.4), we have

WpΛn`1q “WpcopΥpΛnqqq

“WpΥpΛnqq

ďWpΛnq,

that is, WpΛn`1q ď WpΛnq and hence, tWpΛnqu is a decreasing sequence of positive real numbers.
Thus, we can find r ě 0 with lim

nÑ8
WpΛnq “ r. Next, we claim that r “ 0. To support our claim,

suppose that r ‰ 0. Then in view of pθ2q, we get

lim
nÑ8

θpWpΛnqq ‰ 1,

which implies that
lim
nÑ8

θpWpΛnqq ą 1. (4.5)

Let un “ θpWpΛn`1qq and vn “ θpWpΛnqq, then since un ď vn, so by the axiom pL3q of L -simulation
function, we have

1 ď lim sup
nÑ8

L pWpΛn`1q,WpΛnqq “ lim sup
nÑ8

L pun, vnq ă 1,

which is contradiction. Thus r “ 0 and hence tΛnu is a sequence of closed sets from BpΞq such that
Λn`1 Ă Λn, for all n P N and lim

nÑ8
WpΛnq “ 0, so the intersection set Λ8 “

Ş`8

n“1 Λn is non-empty,
closed and convex subset of Λ. Furthermore, since Λ8 Ă Λn, for all n P N, so by Definition 2.1(ii),
WpΛ8q ď WpΛnq, for all n P N. Thus WpΛ8q “ 0 and hence Λ8 P ker W, that is, Λ8 is bounded.
But Λ8 is closed so that Λ8 is compact. Therefore by Theorem 1.2, FixpΥq ‰ H. �
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By taking L “ Lb in Theorem 4.2, we obtain the following result.

Corollary 4.3. Let Υ : Λ˚ Ñ Λ˚ be a continuous functions such that, for all Λ Ă Λ˚ with WpΛq ą 0,

θpWpΥpΛqqq ď pθpWpΛqqqk, (4.6)

where θ P Θ and k P p0, 1q. Then FixpΥq ‰ H.

Remark 4.4. Corollary 4.3 is the Darbo type version of Theorem 2.1 in [7].

By taking L “ Lw in Theorem 4.2, we obtain the next result.

Corollary 4.5. Let Υ : Λ˚ Ñ Λ˚ be a continuous functions such that, for all Λ Ă Λ˚ with WpΛq ą 0,

θpWpΥpΛqqq ď
θpWpΛqq

φpθpWpΛqqq
, (4.7)

where θ P Θ and φ : r1,8q Ñ r1,8q is lower semi-continuous and nondecreasing with φ´1pt1uq “ 1.
Then FixpΥq ‰ H.

By taking θptq “ et, for all t ą 0 in Corollary 4.5, we obtain next result.

Corollary 4.6. Let Υ : Λ˚ Ñ Λ˚ be a continuous functions such that, for all Λ Ă Λ˚ with WpΛq ą 0,

WpΥpΛqq ď WpΛq ´ ϕpWpΛqq, (4.8)

where ϕ : R` Ñ R` is lower semi-continuous and nondecreasing with ϕ´1pt0uq “ 0. Then FixpΥq ‰
H.

Remark 4.7. Corollary 4.6 is the Rhoades’s Theorem of Darbo type [13].

5. Some applications

Let Bpa, rq be the closed ball with center at a and radius r and Br be the ball Bp0, rq. We check the
existence of solution to Caputo fractional Volterra–Fredholm integro differential equation

cD℘µpκq “ gpκq ` λ1

ż κ

0
J1 pκ, tq ξ1 pt, µ ptqq dt ` λ2

ż T

0
J2 pκ, tq ξ2 pt, µ ptqq dt, (5.1)

under boundary conditions:

aµp0q ` bµpTq “
1

Γp℘q

ż T

0
pT´ tq℘´1

J3pκ, tqdt, (5.2)

where ℘ P p0, 1s, cD is the Caputo fractional derivative, λ1, λ2 are parameters, and a, b ą 0 are real
constants, µ, g : r0,Ts Ñ R, J1,J2,J3 : r0,Ts ˆ r0,Ts Ñ R and ξ1, ξ2 : r0,Ts ˆ R Ñ R are
continuous functions.

Lemma 5.1. [10] For pl P R, l “ 0, 1, . . . , r ´ 1, we have

I℘rcD℘
hptqs “ hptq ` p0 ` p1t` p2t

2
` ...` pr´1t

r´1.
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Using Lemma 5.1, we can easily establish the following result.

Lemma 5.2. Problem p5.1q is equivalent to the integral equation

µpκq “
1

Γp℘q

ż κ

0
pκ´ ϑq℘´1

gpϑqdϑ´
b

pa` bqΓp℘q

ż T

0
pT´ ϑq℘´1

gpϑqdϑ

`
1

Γp℘q

ż κ

0
pκ´ ϑq℘´1

ˆ

λ1

ż ϑ

0
J1 pϑ, tq ξ1 pt, µ ptqq dt ` λ2

ż T

0
J2 pϑ, tq ξ2 pt, µ ptqq dt

˙

dϑ

´
b

pa` bqΓp℘q

ż T

0
pT´ ϑq℘´1

ˆ

λ1

ż ϑ

0
J1 pϑ, tq ξ1 pt, µ ptqq dt

` λ2

ż T

0
J2 pϑ, tq ξ2 pt, µ ptqq dt

˙

dϑ`
1

pa` bqΓp℘q

ż T

0
pT´ tq℘´1

J3 pκ, tq dt.

(5.3)

Proof. Using Lemma 5.1, we obtain

µpκq “ ´c0 ` I℘ pgpκqq ` λ1I℘
ˆ
ż κ

0
J1 pκ, tq ξ1 pt, µ ptqq dt ` λ2

ż T

0
J2 pκ, tq ξ2 pt, µ ptqq dt

˙

(5.4)

Apply boundary conditions, we deduce that

c0 “
b

pa` bqΓp℘q

ż T

0
pT´ ϑq℘´1

gpϑqdϑ´
1

pa` bqΓp℘q

ż T

0
pT´ tq℘´1

J3 pκ, tq dt

`
b

pa` bqΓp℘q

ż T

0
pT´ ϑq℘´1

ˆ

λ1

ż ϑ

0
J1 pϑ, tq ξ1 pt, µ ptqq dt ` λ2

ż T

0
J2 pϑ, tq ξ2 pt, µ ptqq dt

˙

dϑ.

Thus by substituting the values of c0 in p5.4q, we get integral equation p5.3q.
�

Notice that the solution of Eq (5.1) is equivalent to Eq (5.3). Now, we are in a position to present
the existence result.

Theorem 5.3. Let µ, ν P Br, ϑ, τ P r0,Ts , and a, b ą 0 be real constants. If µ, g : r0,Ts Ñ R,
J1,J2,J3 : r0,Ts ˆ r0,Ts Ñ R and ξ1, ξ2 : r0,Ts ˆ R Ñ R are continuous functions satisfying the
following axioms:

1. there exist Ci ą 0, i “ 1, 2 such that

|ξi pt, µ ptqq ´ ξi pt, ν ptqq| ď Ci }µ´ ν} ; (5.5)

2. there exist real numbers λ1 and λ2 with |λ1|C1K1 ` |λ2|C2K2 ă
Γp℘`1q

2Tp such that

2 r}g} ` |λ1|K1F1 ` |λ2|K2F2s ` K3

T´℘Γp℘` 1q ´ 2 r|λ1|C1K1 ` |λ2|C2K2s
ď r, (5.6)

where F1 “ sup|ξ1 pt, 0q |,F2 “ sup|ξ2 pt, 0q | and

K1 “ sup
ż ϑ

0
|J1 pϑ, τq| dτ ă 8, (5.7)

AIMS Mathematics Volume 6, Issue 6, 6340–6355.



6350

and

Ki “ sup
ż T

0
|Ji pϑ, τq| dτ ă 8, i “ 2, 3. (5.8)

Then problem p5.3q has a solution in Br, equivalently problem p5.1q has a solution in Br.

Proof. Let Br “ tµ P C pr0,Ts ,Rq : }µ} ď ru. Then, Br is a non-empty, closed, bounded, and convex
subset of C pr0,Ts ,Rq. Define the operator Υ : Br Ñ Br by

Υµpκq “
1

Γp℘q

ż κ

0
pκ´ ϑq℘´1

gpϑqdϑ´
b

pa` bqΓp℘q

ż T

0
pT´ ϑq℘´1

gpϑqdϑ

`
1

Γp℘q

ż κ

0
pκ´ ϑq℘´1

ˆ

λ1

ż ϑ

0
J1 pϑ, tq ξ1 pt, µ ptqq dt ` λ2

ż T

0
J2 pϑ, tq ξ2 pt, µ ptqq dt

˙

dϑ

´
b

pa` bqΓp℘q

ż T

0
pT´ ϑq℘´1

ˆ

λ1

ż ϑ

0
J1 pϑ, tq ξ1 pt, µ ptqq dt

` λ2

ż T

0
J2 pϑ, tq ξ2 pt, µ ptqq dt

˙

dϑ`
1

pa` bqΓp℘q

ż T

0
pT´ tq℘´1

J3 pκ, tq dt.

Our first claim is Υ : Br Ñ Br is well-defined. Let µ P Br, for some r. Then for all κ P r0,Ts, we
have

|Υµpκq| ď
1

Γp℘q

ż κ

0
pκ´ ϑq℘´1 |gpϑq| dϑ`

b
pa` bqΓp℘q

ż T

0
pT´ ϑq℘´1 |gpϑq| dϑ

`
1

Γp℘q

ż κ

0
pκ´ ϑq℘´1

ˆ

|λ1|

ż ϑ

0
|J1 pϑ, tq| |ξ1 pt, µ ptqq| dt

` |λ2|

ż T

0
|J2 pϑ, tq| |ξ2 pt, µ ptqq| dt

˙

dϑ`
1

pa` bqΓp℘q

ż T

0
pT´ tq℘´1 |J3 pκ, tq| dt

`
b

pa` bqΓp℘q

ż T

0
pT´ ϑq℘´1

ˆ

|λ1|

ż ϑ

0
|J1 pϑ, tq| |ξ1 pt, µ ptqq| dt

` |λ2|

ż T

0
|J2 pϑ, tq| |ξ2 pt, µ ptqq| dt

˙

dϑ

ď
1

Γp℘q

ż κ

0
pκ´ ϑq℘´1 |gpϑq| dϑ`

1
Γp℘q

ż T

0
pT´ ϑq℘´1 |gpϑq| dϑ

`
1

Γp℘q

ż κ

0
pκ´ ϑq℘´1

"

|λ1|

ż ϑ

0
|J1 pϑ, tq| p|ξ1 pt, µ ptqq ´ ξ1 pt, 0q| ` |ξ1 pt, 0q|q dt

` |λ2|

ż T

0
|J2 pϑ, tq| p|ξ2 pt, µ ptqq ´ ξ2 pt, 0q| ` |ξ2 pt, 0q|q dt

*

dϑ

`
1

Γp℘q

ż T

0
pT´ ϑq℘´1

"

|λ1|

ż ϑ

0
|J1 pϑ, tq| p|ξ1 pt, µ ptqq ´ ξ1 pt, 0q| ` |ξ1 pt, 0q|q dt

` |λ2|

ż T

0
|J2 pϑ, tq| p|ξ2 pt, µ ptqq ´ ξ2 pt, 0q| ` |ξ2 pt, 0q|q dt

*

dϑ

`
1

Γp℘q

ż T

0
pT´ tq℘´1 |J3 pκ, tq| dt
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ď
}g}

Γp℘q

ż κ

0
pκ´ ϑq℘´1dϑ`

}g}

Γp℘q

ż T

0
pT´ ϑq℘´1dϑ`

K3

Γp℘q

ż T

0
pT´ tq℘´1dt

`
|λ1|K1 pC1 }µ} ` F1q ` |λ2|K2 pC2 }µ} ` F2q

Γp℘q

ż κ

0
pκ´ ϑq℘´1dϑ

`
t|λ1|K1 pC1 }µ} ` F1q ` |λ2|K2 pC2 }µ} ` F2qu

Γp℘q

ż T

0
pT´ ϑq℘´1dϑ,

with the help of p5.6q, p5.7q and p5.8q, we get

|Υµpκq| ď
}g}

Γp℘q

κ℘

℘
`
}g}

Γp℘q

T℘

℘
`
|λ1|K1 pC1r ` F1q ` |λ2|K2 pC2r ` F2q

Γp℘q

κ℘

℘

`
|λ1|K1 pC1r ` F1q ` |λ2|K2 pC2r ` F2q

Γp℘q

T℘

℘
`

r ` K3

Γp℘q

T℘

℘

ďp2 }g} ` 2 |λ1|K1 pC1r ` F1q ` 2 |λ2|K2 pC2r ` F2q ` K3q
T℘

Γp℘` 1q

“ t2 p}g} ` |λ1|K1F1 ` |λ2|K2F2q ` 2r p|C1λ1|K1 ` |λ2|C2K2q ` K3u
T℘

Γp℘` 1q
ďr.

That is, }Υ pµq} ď r, for all µ P Br, which implies that Υ pµq P Br and hence Υ : Br Ñ Br is well-
defined. Now, we have to show that Υ : Br Ñ Br is continuous. For this, using p5.7q, p5.5q and p5.8q,
we have

ˇ

ˇ

ˇ

ˇ

Υµ pκq ´ Υν pκq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1
Γp℘q

ż κ

0
pκ´ ϑq℘´1

ˆ

λ1

ż ϑ

0
J1 pϑ, tq ξ1 pt, µ ptqq dt ` λ2

ż T

0
J2 pϑ, tq ξ2 pt, µ ptqq dt

˙

dϑ

´
b

pa` bqΓp℘q

ż T

0
pT´ ϑq℘´1

ˆ

λ1

ż ϑ

0
J1 pϑ, tq ξ1 pt, µ ptqq dt ` λ2

ż T

0
J2 pϑ, tq ξ2 pt, µ ptqq dt

˙

dϑ

´
1

Γp℘q

ż κ

0
pκ´ ϑq℘´1

ˆ

λ1

ż ϑ

0
J1 pϑ, tq ξ1 pt, ν ptqq dt ` λ2

ż T

0
J2 pϑ, tq ξ2 pt, ν ptqq dt

˙

dϑ

`
b

pa` bqΓp℘q

ż T

0
pT´ ϑq℘´1

ˆ

λ1

ż ϑ

0
J1 pϑ, tq ξ1 pt, ν ptqq dt ` λ2

ż T

0
J2 pϑ, tq ξ2 pt, ν ptqq dt

˙

dϑ
ˇ

ˇ

ˇ

ˇ

ď
1

Γp℘q

ż κ

0
pκ´ ϑq℘´1

ˆ

|λ1|

ż ϑ

0
|J1 pϑ, tq| |ξ1 pt, µ ptqq ´ ξ1 pt, ν ptqq| dt

˙

dϑ

`
1

Γp℘q

ż κ

0
pκ´ ϑq℘´1

ˆ

|λ2|

ż T

0
|J2 pϑ, tq| |ξ2 pt, µ ptqq ´ ξ2 pt, ν ptqq| dt

˙

dϑ

`
b

pa` bqΓp℘q

ż T

0
pT´ ϑq℘´1

ˆ

|λ1|

ż ϑ

0
|J1 pϑ, tq| |ξ1 pt, µ ptqq ´ ξ1 pt, ν ptqq| dt

˙

dϑ

`
b

pa` bqΓp℘q

ż T

0
pT´ ϑq℘´1

ˆ

|λ2|

ż T

0
|J2 pϑ, tq| |ξ2 pt, µ ptqq ´ ξ2 pt, ν ptqq| dt

˙

dϑ
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ď
C1K1 |λ1| }µ´ ν} `C2K2 |λ2| }µ´ ν}

Γp℘q

ż κ

0
pκ´ ϑq℘´1dϑ

`
bC1K1 |λ1| }µ´ ν} ` bC2K2 |λ2| }µ´ ν}

pa` bqΓp℘q

ż T

0
pT´ ϑq℘´1dϑ

“
pC1K1 |λ1| }µ´ ν} `C2K2 |λ2| }µ´ ν}q κ℘

Γp℘` 1q

`
C1 pK1 |λ1| }µ´ ν} `C2K2 |λ2| }µ´ ν}qT℘

Γp℘` 1q

ď
2 pC1K1 |λ1| `C2K2 |λ2|qT

℘

Γp℘` 1q
}µ´ ν} .

But |λ1|C1K1 ` |λ2|C2K2 ă
Γp℘`1q

2Tp , that is h “ 2pC1K1|λ1|`C2K2|λ2|qT
℘

Γp℘`1q P p0, 1q. It follows from above that

}Υµ´ Υν} ď h }µ´ ν} . (5.9)

That is, Υ : Br Ñ Br is contraction and hence continuous. Next, we have to show that Υ is LW-
contraction. Let Λ be any subset of Br with WpΛq ą 0, and µ, ν P Λ. Then from inequality p5.9q, we
write

diam pΥΛq ď hdiam pΛq . (5.10)

Now, let define θ : p0,8q Ñ p1,8q by θptq “ et, then clearly θ P Θ. Using inequality p5.10q, we have

θ pW pΥ pΛqqq “θ pdiam pΥ pΛqqq

“ediampΥpΛqq

ďehdiampΛq

“
`

ediampΛq
˘h

“
`

eWpΛq
˘h

“pθ pW pΛqqq
h
.

Consequently,
pθ pW pΛqqq

h

θ pW pΥ pΛqqq
ě 1.

Thus for L pκ1, κ2q “
κh

2
κ1

, the above inequality becomes

L pθpWpΥpΛqqq, θpWpΛqqq ě 1,

That is, Υ : Br Ñ Br is LW-contraction and so Theorem 4.2 ensures the existence of a fixed point of Υ

in Br, equivalently, the Eq p5.3q has a solution in Br. �

To illustrate the Theorem 5.3, we present an example.
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Example 5.4. Consider the following Caputo fractional Volterra–Fredholm integro-differential
equation

cD0.9µpκq “ ´
κ3e´κ

4

2
´

1
7

ż κ

0

κ

3
sin

ˆ

ϑ

3

˙

b

2ϑ` 3rµpϑqs2dϑ`
1

22

ż 2

0

κ2
a

5` 2rµpϑqs2

1` ϑκ2 dϑ, (5.11)

with boundary condition

5µp0q ` 3µp2q “
1

Γp0.9q

ż 2

0
p2´ ϑq0.9´1 s cos

`

ϑ
2

˘

κ2 ` 5
dϑ, (5.12)

Compare Eq p5.11q with Eq p5.1q, we get

λ1 “
´1
7
, λ2 “

1
22
, a “ 5, b “ 3, gpκq “ ´

κ3e´κ
4

2
,

J1 pκ, ϑq “
κ

3
sin

ˆ

ϑ

3

˙

,J2 pκ, ϑq “
κ2

1` ϑκ2 ,J3 pκ, ϑq “
s cos

`

ϑ
2

˘

κ2 ` 5
,

ξ1 pϑ, µ pϑqq “
b

2ϑ` 3rµpϑqs2, ξ2 pϑ, µ pϑqq “
b

5` 2rµpϑqs2.

Clearly g : r0, 2s Ñ R, J1,J2,J3 : r0, 2s ˆ r0, 2s Ñ R and ξ1, ξ2 : r0, 2s ˆ R Ñ R are continuous.
Now, we have to verify condition p5.5q of Theorem 5.3. Consider

|ξ1 pϑ, µ pϑqq ´ ξ1 pϑ, ν pϑqq| “

ˇ

ˇ

ˇ

ˇ

b

2ϑ` 3rµpϑqs2 ´
b

2ϑ` 3rνpϑqs2
ˇ

ˇ

ˇ

ˇ

“
|2ϑ` 3rµpϑqs2 ´ 2ϑ´ 3rνpϑqs2|

a

2ϑ` 3rµpϑqs2 `
a

2ϑ` 3rνpϑqs2

ď
3 |rµpϑqs2 ´ rνpϑqs2|

3r|µpϑq| ` |νpϑq|s

“
|µpϑq ´ νpϑq| |µpϑq ` νpϑq|

|µpϑq| ` |νpϑq|

ď }µ´ ν} .

Similarly,

|ξ2 pϑ, µ pϑqq ´ ξ2 pϑ, ν pϑqq| ď }µ´ ν} .

Thus ξ1, ξ2 : RÑ R are Lipschitz with C1 “ C2 “ 1.
Next, we have to verify the conditions p5.7q and p5.8q of Theorem 5.3. To do this, we have

K1 “ sup
ż κ

0

ˇ

ˇ

ˇ

ˇ

κ

3
sin

ˆ

ϑ

3

˙
ˇ

ˇ

ˇ

ˇ

dϑ “ sup
´

´ |κ| cos
´κ

3

¯¯

“ 0,

K2 “ sup
ż κ

0

ˇ

ˇ

ˇ

ˇ

κ2

1` ϑκ2

ˇ

ˇ

ˇ

ˇ

dϑ “ sup
`

lnp1` κ3
q
˘

« 2.197,
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and

K3 “ sup
ˆ

1
κ2 ` 5

ż κ

0
ϑ cos

ˆ

ϑ

2

˙

dϑ
˙

“ sup

˜

2κ sin
`

κ
2

˘

` 4 cos
`

κ
2

˘

´ 4
κ2 ` 5

¸

« 0.17.

Finally, to verify condition p5.6q of Theorem 5.3. Let B2 “ tµ P C pr0, 2s ,Rq : }µ} ď 2u, then since
}g} “ 0,K1 “ 0,K2 « 2.197,K3 “ 0.17, F1 “ 2, and F2 “

?
5, so we have

|λ1|C1K1 ` |λ2|C2K2 « 0.104619 ă 0.2576988 «
Γp℘` 1q

2Tp ,

and

2 r}g} ` |λ1|K1F1 ` |λ2|K2F2s ` K3

T´℘Γp℘` 1q ´ 2 r|λ1|C1K1 ` |λ2|C2K2s
«1.953315 ă 2.

Thus Theorem 5.3 ensures the existence of a solution of p5.11q in B2.

6. Conclusions

Darbo type contractions are introduced and fixed point results are established in a Banach space
using the concept of measure of non compactness. Various existing results are deduced as corollaries
to our main results. Further, our results are applied to prove the existence and uniqueness of solution
to the Caputo fractional Volterra–Fredholm integro-differential equation under integral type boundary
conditions which is further illustrated by appropriate example. Our study paves the way for further
studies on Darbo type contractions and its applications.
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