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1. Introduction

Let R and R, denote the sets of all real numbers and nonnegative real numbers respectively, N
the set of all positive integers and A the closure and coA the convex hull closure of A. Additionally, =
denotes a Banach space, 8 = {A : A # ¢J, bounded, closed and convex subset of 2}, B(E) = {A #
&+ A is bounded subset of E}, kerM, = {A € B(E) : M(A) = 0} be the kernel of function M, :
B(E) —» R,.

Fixed point theory has been developed in two directions. One deals with contraction mappings on
metric spaces, Banach contraction principle being the first important result in this direction. In the
second direction, continuous operators are dealt with convex and compact subsets of a Banach space.
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Brouwer’s fixed point theorem and its infinite dimensional form, Schuader’s fixed point theorems are
the two important theorems in this second direction. In this paper, Fix((') denotes a set of fixed points
of a mapping T in A.

Theorem 1.1 (Brouwer’s Fixed Point Theorem). [2] Every continuous mapping from the unit ball of
R™ into itself has a fixed point.

Theorem 1.2 (Schauder’s Fixed Point Theorem). [15] Let (' : A — A a compact continuous operator,
where A € §. Then Fix(() # .

In Brouwer’s and Schuader’s fixed point theorems, compactness of the space under consideration
is required as a whole or as a part. However, later the requirement of the compactness was relaxed by
making use of the notion of a measure of noncompactness (in short MNC). Using the notion of MNC,
the following theorem was proved by Darbo [5].

Theorem 1.3. [5] Let A € Q and (' : A — A be a continuous function. If there exists k € [0, 1) such
that

M(T(Ag)) < kKM(Ay),
where Ag = A and M, is MNC defined on Z. Then Fix(T) # .

It generalizes the renowned Schuader fixed point result and includes the existence portion of Banach
contraction principle. In the sequel many extensions and generalizations of Darbo’s theorem came into
existence.

The Banach principle has been improved and extended by several researchers (see [7, 13, 14, 16]).
Jleli and Samet [7] introduced the notion of #-contractions and gave a generalization of the Banach
contraction principle in generalized metric spaces, where 6 : (0, 0) — (1, o0) is such that:

(61) 6is non-decreasing;
(6,) for every sequence {«;} < (0,00), we have

limf(k;) = 1 < limk; = 07;
= =0

(65) there exists L € (0,00) and € € (0, 1) such that

O(k) — 1
fim 28 =1 _

L.
-0+ Kk’

Khojasteh er al. [9] introduced the concept of Z-contraction using simulation functions and established
fixed point results for such contractions. Isik ef al. [6] defined almost Z-contractions and presented
fixed point theorems for such contractions. Cho [3] introduced the notion of £-contractions, and proved
fixed point results under such contraction in generalized metric spaces. Using specific form of 2 and
£, we can deduce other known existing contractions. For some results concerning Z-contractions
and its generalizations we refer the reader to [3] and the references cited therein. In particular, Chen
and Tang [4] generalized Z-contraction with Zm-contraction and established Darbo type fixed point
results.

The aim of the present work is two fold. First we prove fixed point theorems under generalized Zy -
contraction and then we prove fixed point results under Darbo type Lm -contraction in Banach spaces.
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It is interesting to see that several existing results in fixed point theory can be concluded from our main
results. Furthermore, as an application of our results, we have proved the existence of solution to the
Caputo fractional Volterra—Fredholm integro-differential equation

T

1 (1) & (6,p (1)) di + ﬂzj 3o (2, 8) & (1, (1)) dt,

0

X

“Dop() = a(x) + 4 f

0

under boundary conditions:

ap(0) + bu(T) = %L (T — 1) '33(%, 1)dt,

where ¢ € (0, 1], “D is the Caputo fractional derivative, A, A, are parameters, and a,b > 0 are real
constants, 4,g : [0,T] —> R, J1,32,33 : [0,T] x [0,T] — R and &,& : [0,T] x R — R are
continuous functions. For the validity of existence result we construct an example.

2. Preliminaries

In this section, we recall some definitions and results which are further considered in the next
sections, allowing us to present the results. The concept of MNC was introduced in [1] as follows:

Definition 2.1. [1] A map M, : B(E) — R, is MNC in E if for all A, A, € B(E) it satisfies the
following conditions:

(i) kerM, # ¥ and relatively compact in =;
(i) A1 c Ay = M(A) < TI(A,);
(iii) M(A7) = M(A);
(iv) M(coA;) = TN(A});
(V) M(nAr + (1 = n)A2) < nL(A1) + (1 —7)T(A2) ¥n € [0, 1];
(vi) if {A,} is a sequence of closed sets in B(E) with A, < A,, Vn € N and nEToom(A”> = 0, then
Ap =N A =D

The Kuratowski MNC [11] is the function M, : B(E) — R defined by
m(K) = inf{s >0:Kc USi,Si c Z,diam (S;) < 8},

where diam(S) is the diameter of S.
Khojasteh et al. [9] introduced the concept of Z-contraction using simulation functions as follows:

Definition 2.2. A function 2 : R, x R, — IR is simulation if:

(21) Z(0,0) =0;
(25) Z(ki,Kk2) < ky — k1, for all k1, ky > 0;
(25) if {«*} and {k,} are two sequences in (0, c0) such that lim«* = limk, > 0, then

n—o0 n—ao0

lim £ (k}, «,) < 0.

n—o0
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Roldan-Lopez-de-Hierro et al. [12] slightly modified the Definition 2.2 of [9] as follows.
Definition 2.3. A mapping 2 : R; x R; — R is simulation if:

(27) Z(0,0) =0;
(%) g(K],Kz) < Ky — K1, for all K1, Ky > 0;
(25) if {«*}, {k,} are sequences in (0, c0) such that lim«} = limk, > 0 and «, < «, then

n—0o0 n—o0

lim 2 (k}, «,) < 0.
n—o0
Every simulation function in the original Definition 2.2 is also a simulation function in the
sense of Definition 2.3, but the converse is not true, see for instance [12]. Note that Z =
{Z : % is asimulation function in the sense of Definition 2.3}. The following are some examples
of simulation functions.

Example 2.4. The mapping Z : R, x R, — R defined by:

1. Z(ki,k2) = ky — f(k1) — k1, for all k;, k, € R, where f : R, — R, is a lower semi-continuous
function such that f~'(0) = {0},

2. Z(ki,k2) = ko — @(k1) — k1, for all k1, k, € R, where ¢ : R, — R, is a continuous function
such that ¢(k;) = {0} < «; =0,

3. Z(ki,k2) = ko v (k2) — k1, for all k1,4, € Ry, where v : R, — R, is a function such that
limsup v (x1) < 1,

n—rt

4. Z(k1,k2) = ¢(k2) — k1, for all k1,&, € Ry, where ¢ : R, — R, is an upper semi-continuous
function such that ¢(K1) < k1, for all k; > 0 and ¢(0) = 0,

5. Z(k1,k2) = Kk — S/I )dx, for all k;,k; € R, where A : R, — R, is a function such that

S/l )dx exists and S/l )dx > €, for every € > 0,

6. g(K],Kz) = szil —Kl,fOI' all K1,Ky € R_;,_,

are simulation functions.
Cho [3] introduced the notion of £-simulation function as follows:

Definition 2.5. An L-simulation function is a function . : [1,20) x [l,0) — R satisfying the
following conditions:

(&) Z(1,1) =1,
(%) D%(Kl,Kz) < %,fOI' all K1, Ky > 1;

(&) if {k,} and {«*} are two sequences in (1, o) such that lim, = lim«} > 1 and , < &}, then
n—00 n—o0

lim %2 (k,, k) < 1.

n—o0
Note that £ (1,1) < 1, forall > 1.
Example 2.6. The functions .%},, %, : [1,0) x [1,00) — R defined by
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1. Z(k1,k2) = Z—%, for all k;,k, = 1, where n € (0, 1);

2. Lk k) = oty VKi.ky = 1, where ¢ [1,00) — [1,90) is lower semicontinuous and

nondecreasing with ¢~!({1}) = 1,
are L-simulation functions.
Definition 2.7. [8] A continuous non-decreasing function ¢ : R, — R, such that ¢(¢) = 0 if and
only if # = 0 is called an altering distance function.
3. Some results on Z-contractions
In this section, we obtain the results on generalized Zm-contraction. First we give the following
definition.

Definition 3.1. Let A € §2. A self-mapping Y on A is called generalized Zy -contraction if there exists
% € Z such that
Z(M(T(A1)), A(A1,A2)) = 0, (3.1)

where A; and A; are subsets of A, M,(A1), ML(C(A1)), M(T(Az)) > 0, M, is MNC defined in E and
1
A(A],Az) = max {TTL(A1>, TTL(T(A1)>, TTL(T(AQ))» ETTL(T<A1) v T(Az))} .

Using the notion of Zy -contraction, we establish the main result of this section.

Theorem 3.2. Let Y : A — A be a continuous function, where A € §L. Assume that there exists % € Z
such that % non-decreasing function and Y is a generalized Zy -contraction. Then Fix() # .

Proof. Define a sequence {A,} , such that

Ao =Aand A, =co(YTA,_), forall ne N. (3.2)

We need to prove that A,,; < A, and TA, < A,, for all n € IN. For proof of the first inclusion, we
use induction. If n = 1, then by (3.2), we have Ag = A and A; = co(TAy) < Ag. Next, assume that
A, < A,_1, thenco(Y(A,)) = co(T(A,_1)), using (3.2), we get the first inclusion

Apit © A, (3.3)
To obtained the second inclusion, using the inclusion (3.3) we have
TA, < c0(TA,) = Apst < An. (3.4)

Thus A1 € A, and TA, < A,,Vn e N.

Now, we discuss two cases, depending on the values of .. If we consider m as a non-negative
integer with M.(A,,) = 0, then A,, is a compact set and hence by Theorem 1.2, Y has a fixed point in
A, © A. Instead, assume that M.(A,) > 0, Vn € N. Then on setting A; = A,.; and A, = A, in
contraction (3.1), we have

LMY (Ani1))s AlAnirs An)) = 0, (3.5)
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where
A Arir) = max { AL E (i) TUCT(AD) (M)
< max {TTL(An)a m(An>» m(An+l)’ %TTL(An o An+l)}
= max {TTL(An)’ TTL(An>’ TT1"(1\114-1 )’ %TTL(A,,)}
=TN(A,),
that is,

A(An, A1) <M(A). (3.6)

Using inequality (3.6) and the axiom (%) of % -simulation function, inequality (3.5) becomes,

O <g(m( ( n-H)) (AI’H-]’AI’Z))

that is, M.(A,) = M.(A,+1) and hence, {N,(A,)} is a decreasing sequence of positive real numbers.
Thus, we can find » > 0 such that lim M.(A,) = r. Next, we claim that » = 0. To support our claim,
n—0o0

suppose that r # 0, that is, r > 0. Let u, = M.(A, 1) and v, = M,(A,), then since u, < v,, so by the
axiom (.25) of 2 -simulation function, we have

limsup Z(M(A,41), MU(A,)) = limsup 2 (u,,v,) <O,

n—0o0 n—00

which is contradiction to (3.7). Thus r = 0 and hence {A,} is a sequence of closed sets in B(E) with
A,i1 © Ay, forall n € N and lim M,(A,) = 0, so the intersection set A, = ::Ol A, is non-empty,
n—0o0

closed and convex subset of A. Furthermore, since A,, = A,, for all n € N, so by Definition 2.1(i1),
M(Ay) < TM(A,), for all n € N. Thus N,(Ay) = 0 and hence A, € ker M, that is , Ay, is bounded.
But A is closed so that A, is compact. Therefore by Theorem 1.2, Fix(Y) # . O

From Theorem 3.2 we obtain the following corollaries. We assume that A € §2.
Corollary 3.3. Let Y : A — A be a continuous function such that

S LA }).

for any non-empty subsets Ay and A, of A, where W, is MNC. Then Fix(Y) # (.

o (L CT(AY)) < s (max {mm,mT(Am,m(’r(Az)),

Corollary 3.4. Let Y : A — A be a continuous function such that
M (T(A1)) < A(A1LA2) — f(A(A1LA2)),

for any non-empty subsets A, and A, of A, where N\, is MNC and f : R, — R, is a lower semi-
continuous function such that f~'(0) = {0}. Then Fix() # .
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The conclusion of Corollary 3.4 is true if f : R, — R, is continuous function such that f(¢) =
0 < t=0.

Corollary 3.5. Let (' : A — A be a continuous function such that
m(T(Al)) S Y (A(Al,Az)) A(Al»AZ),

for any non-empty subsets A and A, of A, where M\, is MNC and v : Ry, — R, is a function with
limsup v (7) < 1. Then Fix(Y) # &.

n—rt

Corollary 3.6. Let T : A — A be a continuous function such that

1

M (r(a) <6 (max { MG IUT(AD). (A, DA U A ).

for any non-empty subsets Ay and A, of A, where W\, is MNC and ¢ : R, — R, is an upper semi-
continuous mapping with ¢(t) < t, ¥t > 0 and $(0) = 0. Then Fix(T) # .
Corollary 3.7. Let (' : A — A be a continuous function such that

M(T(A1))
J A(x)dx < max {wAl),m(T(Al)),m(‘r(Az))

0

1
U U TR

for any non-empty subsets Ay and A, of A, where M, is MNC and A : R, — R, is a mapping such
that § A(x)dx exists and § A(x)dx > €, for every € > 0. Then Fix() # .
0 0

Corollary 3.8. Let Y : A — A be a continuous function such that

A(Al,Ag)
M (T(A))) < TE AN A AALAS)

for any non-empty subsets Ay and A, of A, where W, is MNC. Then Fix(Y) # (.
4. Some results on Ly -contraction

In this section, we obtain some results on Lm-contraction. Let us denote by ® the class of all
functions 6 : (0,00) — (1,00) that satisfy conditions (6;) and (6,). First we introduce the notion of
Lm-contraction as:

Definition 4.1. Let A* € . A self-mapping Y on A* is called Ly -contraction with respect to .Z if
there exist # € ® such that, for all A = A* with TI,(A) > 0,

Z(0(M,(T(A))), 6(M(A))) = 1, 4.1)

where M, is MNC defined in =.

Theorem 4.2. Let T : A — A be a continuous function. Assume that there exist 0 € © and Y is
L -contraction with respect to L. Then Fix(() # .
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6347

Proof. Define a sequence {A,}, such that
Ao =Aand A, =co(YA,_), forall ne N. 4.2)

Then A, € A,and YA, c A,, Vne N.

Now, we discuss two cases, depending on the values of .. If we consider m as a non-negative
integer with M,(A,,) = 0, then A,, is a compact set and hence by Theorem 1.2, " has a fixed point in
A, © A. Instead, assume that TN,(A,,) > 0, for all n € N. Then on setting A = A,, in contraction (4.1),
we have

1< 2O 6A) < s 43
that 1s,
(MY (An))) < 6(M(A))
Since 6 is nondecreasing, so that
MUY (A,)) < TUA,). .

Now, using inequality (4.4), we have

M(Aps1) =M(co(T(A,)))
<M(A,),

that is, T,(A,+1) < M(A,) and hence, {IN.(A,)} is a decreasing sequence of positive real numbers.
Thus, we can find » > 0 with lim M,(A,) = r. Next, we claim that » = 0. To support our claim,

n—00

suppose that r # 0. Then in view of (6,), we get

lim O(ML(A,)) # 1,
n—0o0

which implies that
lim 6(M,(A,)) > 1. 4.5)

n—o0

Let u, = 6(M.(A,+1)) and v, = 6(M.(A,)), then since u, < v,, so by the axiom (.%) of .£-simulation
function, we have

I <limsup Z(M(Ans1), MU(A,)) = limsup Z(u,,v,) < 1,
n—0o0 n—0o0
which is contradiction. Thus » = 0 and hence {A,} is a sequence of closed sets from B(E) such that
A1 © Ay, foralln € N and lim M,(A,) = 0, so the intersection set A, = :j A, is non-empty,

n—ao0
closed and convex subset of A. Furthermore, since A,, = A, for all n € N, so by Definition 2.1(i1),

M(Ay) < M(A,), for all n € N. Thus M,(Ay) = 0 and hence A, € ker M, that is, A, is bounded.
But A is closed so that A, is compact. Therefore by Theorem 1.2, Fix(Y) # . O
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By taking . = %), in Theorem 4.2, we obtain the following result.
Corollary 4.3. Let Y : A* — A* be a continuous functions such that, for all A = A* with M(A) > 0,

OM(T(A))) < (BM(A)))", (4.6)

where § € ® and k € (0, 1). Then Fix(T) # (.

Remark 4.4. Corollary 4.3 is the Darbo type version of Theorem 2.1 in [7].
By taking .Z = .%,, in Theorem 4.2, we obtain the next result.

Corollary 4.5. Let Y : A* — A* be a continuous functions such that, for all A = A* with M(A) > 0,
6(M(A))
O(M(T(A))) € =,
A< Samia))

where 6 € ® and ¢ : [1,00) — [1,0) is lower semi-continuous and nondecreasing with ' ({1}) = 1.
Then Fix(Y) # .

4.7)

By taking 6(¢) = ¢', for all 7 > 0 in Corollary 4.5, we obtain next result.
Corollary 4.6. Let (' : A* — A* be a continuous functions such that, for all A — A* with M,(A) > 0,
MT(A)) < TUA) = e(MU(A)), (4.8)
where ¢ : R, — R, is lower semi-continuous and nondecreasing with ¢~'({0}) = 0. Then Fix(() #
.
Remark 4.7. Corollary 4.6 is the Rhoades’s Theorem of Darbo type [13].

5. Some applications

Let B(a, r) be the closed ball with center at a and radius r and B, be the ball B(0, r). We check the
existence of solution to Caputo fractional Volterra—Fredholm integro differential equation

T

31 (e 0) & (1t (1) dr + 2, j 3 (et)b (Lp(@)d, (1)

D) = al) + 1 [

0

under boundary conditions:

a(0) + (%) = s | (T =) Nyl (52)

where ¢ € (0, 1], °D is the Caputo fractional derivative, 1, A, are parameters, and a,b > 0 are real
constants, 4, : [0,T] —> R, J1,32,33 : [0,T] x [0,T] — R and &,& : [0,T] x R — R are
continuous functions.

Lemma 5.1. [10] For p,e R, [ =0,1,...,r — 1, we have
1°[°DB(t)] = b(t) + po + pit + pat® + .. + prgt’™
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Using Lemma 5.1, we can easily establish the following result.

Lemma 5.2. Problem (5.1) is equivalent to the integral equation

1 * o—1 B b : . p—1
() =—f0<x—ﬁ>~ o(9)d —<a+b)r(p)f0<z 9)71g(9)dd

b [0 ([ S 00 s 2 [

b

e ol A G IO

oy S 006 <t,u<r>>dr)dﬂ "

~

<

32 (9.0)& (1 (1) dr) @

T

1
(a+b)l(p) L

(T —1)"7'35 (%,1) at.
(5.3)

Proof. Using Lemma 5.1, we obtain

T

u(w) = —co+ 17 (a() + L7 ( [[sienawumasa |

0 0

I (x,0) & (1,1 (1)) dt) (5.4)

Apply boundary conditions, we deduce that

b T oo 7; T e
Co=mﬁ(iﬁ) g(3)dd (a—i—b)l"(g@)fo(z 197135 (e, 1) dt

b T 9 T
———— [ @-9) A IO E () dt+ | 3090 & (tu (1)) dt | do.
b | @0 ([ S oweaGuma x| wo0anna)
Thus by substituting the values of ¢ in (5.4), we get integral equation (5.3).
i

Notice that the solution of Eq (5.1) is equivalent to Eq (5.3). Now, we are in a position to present
the existence result.

Theorem 5.3. Let u,v € B,, 9,7 € [0,T], and a,b > 0 be real constants. If u,g : [0,T] — R,
31,32, 33 : [0,T] x [0,T] —» Rand &,& : [0,T] x R — R are continuous functions satisfying the
following axioms:

1. there exist C; > 0,i = 1,2 such that

& (1. (1)) = & (v ()] < Ci | — vl (5.5)

C(p+1)

2. there exist real numbers A, and A, with |A;| C1R; + || C28, < ==

2{gl + 10| 81T + | 2] K2F2] + K3

such that

< 5.6
T(p + 1) — 2[4 Ci8 + o] CoSa] (56)
where & = supl|é; (1,0) |, F, = sup|é&, (1,0) | and
0
] = supf 131 (¢, 7)| dT < 0, (5.7)
0
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and -
] = supj 13: (9, 7)|dr < o0, i=2,3. (5.8)
0
Then problem (5.3) has a solution in B,, equivalently problem (5.1) has a solution in B,.

Proof. Let B, = {u e C([0,T],R) : |u|| < r}. Then, B, is a non-empty, closed, bounded, and convex
subset of C ([0, T],R). Define the operator Y : B, — B, by

L b
['(p) (a+b)I(p) |

1 * ol ﬂ@ .
+ mfo (% —9) </11J0 Si (@, 0) & () dt + /lzfo 3 (0,1) & (L, (z))dt) do

Tu(w) = f(z 9 a(8)d — fo (T~ 0y g(®)dt

- m L (T-9)""! <ﬂl L J1(0,1) & (t,u (1)) dr

+ A L ) 30 (9,0) & (t,u (1)) dt) dy + (T —1)"7'35 (%, 1) dt.

1
(a+D)(p) fo

Our first claim is T : B, — B, is well-defined. Let u € B,, for some r. Then for all x € [0, T], we
have

1 * o—1 L )
[tut)| <5 f be =)™ 8@ + ) J

+ i | e ( |1 @016 (o (o)

N f 132 (8.0 62 (2 (1) dt) e

L b
(a+b)I'(p)

# 12 [ 13: 0.0l € n (0) dr) 4

(T—0)"" [o(9)| a0

1
(a+b)l(p)

J:@ -7 ( |4 J: |31 (&) &1 (2,1 (1)) | dit

L (T = 17 3 (1)

[ p—1 1 : — 9!
<fi7 ), =2 @]+ o [ @ 0) a0

* %p) f(}‘ - W’_l{ ] fo 310 (@ 0)] (&1 (£ (1) — & (£,0)] + | (£,0)]) dt
+ !ﬂz\fo 132 (0, )] (|62 (8,1 (1)) — &2 (1,0)] + &2 (2, 0)|)dt}dﬁ

+ @L (T - ﬂ)f@—l{ Ml’fo 131 (3, 0)| (€1 (1,1 (1)) — &1 (2,0)] + |&1 (2,0)]) dt

ol [ 00108 (o 1)~ 0] + s o>|>dt}dﬁ

1 : p—1 |
+mﬁ(z—r) |33 (%, )| dt
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gﬂ f%(x — 9 'd9 + sl f(z —9)*7 a9 + s F(z — 1) dt
[(p) Jo I'(p) Jo L'(p) Jo
N (] K (Cy ] + 1) + | K (Coflu]| + )

(o) J(; (% — 19)3’9_ dd
{81 (C u] + F1) + [ K2 (Co u] + )} (7
* M) J,

with the help of (5.6), (5.7) and (5.8), we get

T - 9)"'do,

lal =? sl T [u[Si(Cir+ &) + [ K (Cor + F2) 27

Tu(x)| <
ThOl <Fore T T v o)
LR (Crr+§1) + || K (Cor + F2) T 7+ K337
+ i =
I'(p) p  T(p) ¢
©
< (2 2148, (C 21| 8, (C K3) ———
2a] + 2[4 & (Cir + F1) + 2| K (Cor + F2) + 3)F(80+1>
39
=12 + 48 + 1| K] +2r(|C1 41| 8 + || CoR)) + K3} ——
{2 (g + 14| S$1F1 + 2] K2Fa) + 2r (|C1 | K1 + |A2] C282) 3}F(g)+l)

<r.
That is, |T (u)| < r, for all g € B,, which implies that Y (1z) € B, and hence Y : B, — B, is well-

defined. Now, we have to show that Y : B, — B, is continuous. For this, using (5.7), (5.5) and (5.8),
we have

“rﬂ (%) — Tv ()

T

:‘ﬁf(%_ﬁ)wl (/IIJ:SI (9,1) &, (t,,u(t))dt—i-/lzf

0

— m f(z — )9t (/11 f:& (9, 1) & (¢, (1)) dt + /lzf

0

32 (,0) & (1 (1)) dt) a9
2 (9. & (1t (1)) dr) a0

B % 0”(% gy (ﬂl fsl (9,1)& (6, (1) dt + s f 3 (8.0 & (6 (1)) dt) it
+ m f(z — 9! (/11 f:sl (9,1) & (t,v (1) dt + A, LI 32 (9,1) & (8, v (1)) dt) dﬁ‘

1 % ol ] N ) )
<mf0 (x — ) (MML 151 (3, 0)] &1 (61 (1) — & (2,v (1)) dt) d0

+ ﬁ JO”(% —9)! <|/12]L 132 (3, 0)| &2 (8,12 (7)) — & (2, v (1)) dt) d¥
+ mjo (T —9)! (/11|J0 131 (9, 0)| €1 (8,2 (7)) — &1 (2, v (1)) dt) do

b ¥ p—1 * ~ .
+ (aT)F(@)Jo (T-9) (ﬁzljo 132 (B, 0)] &2 (1,1 (1)) — & (t,v(t))|dt) do
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_G& ] = V] + Co8y | o] | — V|

f (% — )" 'dy
0

I(p)
bCi8y 4] [p — V|| + BC2Ks || | — V| (T
S Al e =l 28 Ao |1 V”J(fz—ﬁ)“"ldﬂ
(a+b)[(p) 0
_ (G ] =] + G [ | — v]) %7
T(p+1)
Ci (81 [ u—v]| + Cofa || | —v]) TV
+
I(p+1)
2(C8 [+ CR LT
T(p+1) '

But [1;| 18] + || Co8); < F(gpl), thatis h = 2(C‘S‘|ﬂr‘|(;f]$;2w)y € (0, 1). It follows from above that

[ = v < bl =] (5.9)

That is, Y : B, — B, is contraction and hence continuous. Next, we have to show that T is L-
contraction. Let A be any subset of B, with M,(A) > 0, and y, v € A. Then from inequality (5.9), we
write

diam (YA) < hdiam (A) . (5.10)
Now, let define 6 : (0,00) — (1,00) by 6(¢) = €', then clearly 6 € ®. Using inequality (5.10), we have

o (M. (7 (A))) =6 (diam (T (A)))
:ediam(T(A))
gehdiam(A)

_ ( odiam(A) h

= ()"

= (O(M(A)".

Consequently,

M @) _ |
o (M.(T(A) ~
Thus for .2 (k1, k) = %, the above inequality becomes

Z(0(M(T(A))), 6(MU(A))) = 1,

That is, T : B, — B, is Ly -contraction and so Theorem 4.2 ensures the existence of a fixed point of Y
in B,, equivalently, the Eq (5.3) has a solution in B,. m|

To illustrate the Theorem 5.3, we present an example.

AIMS Mathematics Volume 6, Issue 6, 6340-6355.
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Example 5.4. Consider the following Caputo fractional Volterra—Fredholm integro-differential
equation

3 —xt X
: 1 /5 +2
cD"u(x) = _re _f % sin (2) 20 + 3[u(9)]2d9 + 22J @ dﬂ (5.11)

2 7 1 + 92

with boundary condition

1 2 scos (2)
5u(0) +3u(2) = =—— | 2 - T ——=2 5.12
u(0) + 30(2) - s | -0 5.1
Compare Eq (5.11) with Eq (5.1), we get
—1 1 e ™
A1 ZT’JZZZ’aZS’b:&g(%) = - 7
X 9 %2 scos(g)
R) 90 = —si 5 ’& ’ﬂ = ’@ aﬂ = T 5 .z >
316.9) 3sm(3> J2 (6 9) = g 3 6 9) = =575

& (O (9)) = /20 + 3[u(@)]?, & (O 1 (9)) = /5 + 2[u(9)]*.

Clearly g : [0,2] — R, 31,32,33 : [0,2] x [0,2] — R and &,& : [0,2] x R — R are continuous.
Now, we have to verify condition (5.5) of Theorem 5.3. Consider

6 (9,1 (9)) — & (9, (9))] = \ V20 + 3O — 420+ 3D )P

)
20 + 3[u(9)]* — 20 — 3[v(9) |
29 + 3[u(9)]> + /29 + 3[v(9)]?
3@ — (@) P
3[lu@)] + ()]
[1(9) = v()] ju(9) +
u(@)| + P (9)|
<=l

v(d)]

Similarly,

62 (3,1 (9)) =& (0 v ()] < [ —v].

Thus &,& : R — R are Lipschitz with C; = C, = 1.
Next, we have to verify the conditions (5.7) and (5.8) of Theorem 5.3. To do this, we have

| 9 %
! =supf = sin <—)‘dﬁ=sup <— x| cos (—)) =0,
! NERE x| cos { 3

% 2
K, = supf
0

Vi
1+ 932
AIMS Mathematics Volume 6, Issue 6, 6340-6355.
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and

1 % 9 22 sin (%) + 4 cos (%) —4
R = —_ = X . .
3 = sup (%2+5f0 ¥ cos (2>dﬁ) sup( 215 0.17

Finally, to verify condition (5.6) of Theorem 5.3. Let B, = {1 € C([0,2],R) : ||| < 2}, then since
la] = 0,8 = 0,8, ~ 2.197, 83 = 0.17, F, = 2, and F, = /5, so we have

I(p+1)
U €181 + || G ~ 0104619 < 0.2576988 ~ ————.

and

2{lgl + || 81T + | 2] K2 F2] + K
T9T(p + 1) = 2[| 4] C18 + || CoR5]

~1.953315 < 2.

Thus Theorem 5.3 ensures the existence of a solution of (5.11) in B,.
6. Conclusions

Darbo type contractions are introduced and fixed point results are established in a Banach space
using the concept of measure of non compactness. Various existing results are deduced as corollaries
to our main results. Further, our results are applied to prove the existence and uniqueness of solution
to the Caputo fractional Volterra—Fredholm integro-differential equation under integral type boundary
conditions which is further illustrated by appropriate example. Our study paves the way for further
studies on Darbo type contractions and its applications.
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