Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Competitive exclusion in a DAE model for microbial electrolysis cells

1 Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526, USA
2 Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA

Special Issues: Recent advances of mathematical modeling and computational methods in cell and developmental biology

Microbial electrolysis cells (MECs) are devices that employ electroactive bacteria to perform extracellular electron transfer, enabling hydrogen generation from biodegradable substrates. In our previous work, we developed and analyzed a differential-algebraic equation (DAE) model for MECs. The model resembles a chemostat or continuous stirred tank reactor (CSTR). It consists of ordinary differential equations for concentrations of substrate, microorganisms, and an extracellular mediator involved in electron transfer. There is also an algebraic constraint for electric current and hydrogen production. Our goal is to determine the outcome of competition between methanogenic archaea and electroactive bacteria, because only the latter contribute to electric current and the resulting hydrogen production. We investigate asymptotic stability in two industrially relevant versions of the model. An important aspect of many chemostat models is the principle of competitive exclusion. This states that only microbes which grow at the lowest substrate concentration will survive as t → ∞.
We show that if methanogens can grow at the lowest substrate concentration, then the equilibrium corresponding to competitive exclusion by methanogens is globally asymptotically stable. The analogous result for electroactive bacteria is not necessarily true. In fact we show that local asymptotic stability of competitive exclusion by electroactive bacteria is not guaranteed, even in a simplified version of the model. In this case, even if electroactive bacteria can grow at the lowest substrate concentration, a few additional conditions are required to guarantee local asymptotic stability. We provide numerical simulations supporting these arguments. Our results suggest operating conditions that are most conducive to success of electroactive bacteria and the resulting current and hydrogen production in MECs. This will help identify when producing methane or electricity and hydrogen is favored.
  Article Metrics


1. L. Lu, Z. J. Ren, Microbial electrolysis cells for waste biorefinery: A state of the art review, Bioresour. Technol., 215 (2016), 254-264.

2. B. E. Logan, D. Call, S. Cheng, H. V. M. Hamelers, T. H. J. A. Sleutels, A. W. Jeremiasse, et al., Microbial electrolysis cells for high yield hydrogen gas production from organic matter, Environ. Sci. Technol., 42 (2008), 8630-8640.

3. L. Lu, D. Hou, X. Wang, D. Jassby, Z. J. Ren, Active H2 harvesting prevents methanogenesis in microbial electrolysis cells, Environ. Sci. Technol. Lett., 3 (2016), 286-290.

4. L. Lu, W. Vakki, J. A. Aguiar, C. Xiao, K. Hurst, M. Fairchild, et al., Unbiased solar H2 production with current density up to 23 mA cm-2 by Swiss-cheese black Si coupled with wastewater bioanode, Energy Environ. Sci., 12 (2019), 1088-1099.    

5. T. Chookaew, P. Prasertsan, Z. J. Ren, Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell, N. Biotechnol., 31 (2014), 179-184.

6. L. Lu, N. Ren, D. Xing, B. E. Logan, Hydrogen production with effluent from an ethanol-h2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell, Biosens. Bioelectron., 24 (2009), 3055-3060.

7. H. Dudley, L. Lu, Z. Ren, D. Bortz, Sensitivity and bifurcation analysis of a Differential-Algebraic equation model for a microbial electrolysis cell, SIAM J. Appl. Dyn. Syst., 709-728.

8. R. P. Pinto, B. Srinivasan, A. Escapa, B. Tartakovsky, Multi-population model of a microbial electrolysis cell, Environ. Sci. Technol., 45 (2011), 5039-5046.

9. E G & G Services, U.S. Department of Energy, Fuel cell handbook, 7th edition, 2004.

10. R. Pinto, B. Srinivasan, M. F. Manuel, B. Tartakovsky, A two-population bio-electrochemical model of a microbial fuel cell, Bioresour. Technol., 101 (2010), 5256-5265.

11. B. E. Logan, Microbial fuel cells: Methodology and technology, Environ. Sci. Technol., 40 (2006), 5181-5192.

12. A. Kato Marcus, C. I. Torres, B. E. Rittmann, Conduction-based modeling of the biofilm anode of a microbial fuel cell, Biotechnol. Bioeng., 98 (2007), 1171-1182.

13. D. A. Noren, M. A. Hoffman, Clarifying the butler-volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models, J. Power Sources, 152 (2005), 175-181.

14. S. Hsu, S. Hubbell, P. Waltman, A mathematical theory for Single-nutrient competition in continuous cultures of Micro-organisms, SIAM J. Appl. Math., 32 (1977), 366-383.

15. S. Hsu, Limiting behavior for competing species, SIAM J. Appl. Math., 34 (1978), 760-763.

16. S. R. Hansen, S. P. Hubbell, Single-nutrient microbial competition: Qualitative agreement between experimental and theoretically forecast outcomes, Science, 207 (1980), 1491-1493.

17. H. L. Smith, P. Waltman, The Theory of the Chemostat: Dynamics of microbial competition, Cambridge University Press, 1995.

18. T. Sari, F. Mazenc, Global dynamics of the chemostat with different removal rates and variable yields, Math. Biosci. Eng., 8 (2011), 827-840.

19. R. A. Armstrong, R. McGehee, Competitive exclusion, Am. Nat., 115 (1980), 151-170.

20. D. J. Hill, I. M. Y. Mareels, Stability theory for differential/algebraic systems with application to power systems, IEEE Trans. Circuits Syst. I, Reg. Papers, 37 (1990), 1416-1423.

21. R. Riaza, Differential-algebraic systems: Analytical aspects and circuit applications, World Scientific, 2008.

22. R. März, Practical Lyapunov stability criteria for differential algebraic equations, Humboldt-Univ., Fachbereich Mathematik, Informationsstelle, Berlin, 1991.

23. R. E. Beardmore, Stability and bifurcation properties of index-1 DAEs, Numer. Algorithms, 19 (1998), 43-53.

24. R. Riaza, Stability issues in regular and noncritical singular DAEs, Acta Appl. Math., 73 (2002), 301-336.

25. J. LaSalle, Some extensions of Liapunov's second method, IRE Trans. Circuit Theory, 7 (1960), 520-527.

26. S. Hsu, K. Cheng, S. Hubbell, Exploitative competition of microorganisms for two complementary nutrients in continuous cultures, SIAM J. Appl. Math., 41 (1981), 422-444.

27. M. M. Ballyk, G. S. K. Wolkowicz, Exploitative competition in the chemostat for two perfectly substitutable resources, Math. Biosci, 118 (1993), 127-180.

28. B. Li, G. Wolkowicz, Y. Kuang, Global Asymptotic behavior of a Chemostat model with two pPerfectly complementary resources and distributed delay, SIAM J. Appl. Math., 60 (2000), 2058-2086.

29. B. Li, H. Smith, How many species can two essential resources support?, SIAM J. Appl. Math., 62 (2001), 336-366.

30. K. Brenan, S. Campbell, L. Petzold, Numerical solution of Initial-value problems in Differential-algebraic equations, Classics in Applied Mathematics, Society for Industrial and Applied Mathematics, 1995.

31. A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, et al., SUNDI-ALS: Suite of nonlinear and differential/algebraic equation solvers, ACM Trans. Math. Softw., 31 (2005), 363-396.

32. G. Wolkowicz, Z. Lu, Global dynamics of a mathematical model of competition in the Chemostat: General response functions and differential death rates, SIAM J. Appl. Math, 52 (1992), 222-233.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved