
In this paper, we analyze the bifurcation of a Holling-Tanner predator-prey model with strong Allee effect. We confirm that the degenerate equilibrium of system can be a cusp of codimension 2 or 3. As the values of parameters vary, we show that some bifurcations will appear in system. By calculating the Lyapunov number, the system undergoes a subcritical Hopf bifurcation, supercritical Hopf bifurcation or degenerate Hopf bifurcation. We show that there exists bistable phenomena and two limit cycles. By verifying the transversality condition, we also prove that the system undergoes a Bogdanov-Takens bifurcation of codimension 2 or 3. The main conclusions of this paper complement and improve the previous paper [
Citation: Yingzi Liu, Zhong Li, Mengxin He. Bifurcation analysis in a Holling-Tanner predator-prey model with strong Allee effect[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 8632-8665. doi: 10.3934/mbe.2023379
[1] | Kunlun Huang, Xintian Jia, Cuiping Li . Analysis of modified Holling-Tanner model with strong Allee effect. Mathematical Biosciences and Engineering, 2023, 20(8): 15524-15543. doi: 10.3934/mbe.2023693 |
[2] | Juan Ye, Yi Wang, Zhan Jin, Chuanjun Dai, Min Zhao . Dynamics of a predator-prey model with strong Allee effect and nonconstant mortality rate. Mathematical Biosciences and Engineering, 2022, 19(4): 3402-3426. doi: 10.3934/mbe.2022157 |
[3] | Yuhong Huo, Gourav Mandal, Lakshmi Narayan Guin, Santabrata Chakravarty, Renji Han . Allee effect-driven complexity in a spatiotemporal predator-prey system with fear factor. Mathematical Biosciences and Engineering, 2023, 20(10): 18820-18860. doi: 10.3934/mbe.2023834 |
[4] | Mengyun Xing, Mengxin He, Zhong Li . Dynamics of a modified Leslie-Gower predator-prey model with double Allee effects. Mathematical Biosciences and Engineering, 2024, 21(1): 792-831. doi: 10.3934/mbe.2024034 |
[5] | Claudio Arancibia–Ibarra, José Flores . Modelling and analysis of a modified May-Holling-Tanner predator-prey model with Allee effect in the prey and an alternative food source for the predator. Mathematical Biosciences and Engineering, 2020, 17(6): 8052-8073. doi: 10.3934/mbe.2020408 |
[6] | Moitri Sen, Malay Banerjee, Yasuhiro Takeuchi . Influence of Allee effect in prey populations on the dynamics of two-prey-one-predator model. Mathematical Biosciences and Engineering, 2018, 15(4): 883-904. doi: 10.3934/mbe.2018040 |
[7] | Kawkab Al Amri, Qamar J. A Khan, David Greenhalgh . Combined impact of fear and Allee effect in predator-prey interaction models on their growth. Mathematical Biosciences and Engineering, 2024, 21(10): 7211-7252. doi: 10.3934/mbe.2024319 |
[8] | Shuangte Wang, Hengguo Yu . Stability and bifurcation analysis of the Bazykin's predator-prey ecosystem with Holling type Ⅱ functional response. Mathematical Biosciences and Engineering, 2021, 18(6): 7877-7918. doi: 10.3934/mbe.2021391 |
[9] | Zhenliang Zhu, Yuming Chen, Zhong Li, Fengde Chen . Dynamic behaviors of a Leslie-Gower model with strong Allee effect and fear effect in prey. Mathematical Biosciences and Engineering, 2023, 20(6): 10977-10999. doi: 10.3934/mbe.2023486 |
[10] | Manoj K. Singh, Brajesh K. Singh, Poonam, Carlo Cattani . Under nonlinear prey-harvesting, effect of strong Allee effect on the dynamics of a modified Leslie-Gower predator-prey model. Mathematical Biosciences and Engineering, 2023, 20(6): 9625-9644. doi: 10.3934/mbe.2023422 |
In this paper, we analyze the bifurcation of a Holling-Tanner predator-prey model with strong Allee effect. We confirm that the degenerate equilibrium of system can be a cusp of codimension 2 or 3. As the values of parameters vary, we show that some bifurcations will appear in system. By calculating the Lyapunov number, the system undergoes a subcritical Hopf bifurcation, supercritical Hopf bifurcation or degenerate Hopf bifurcation. We show that there exists bistable phenomena and two limit cycles. By verifying the transversality condition, we also prove that the system undergoes a Bogdanov-Takens bifurcation of codimension 2 or 3. The main conclusions of this paper complement and improve the previous paper [
Analyzing the dynamics of predator-prey models is of great importance in mathematical ecology for studying, interpreting and predicting species evolution, growth and interactions. It is well known that different types of biological models, exhibit great different dynamic behavior. Many authors discuss various types of predator-prey systems with hunting cooperation [1], Holling-Tanner [2,3], stochastic [4,5], and study their stability [6,7] and bifurcation [8,9,10,11]. One of the classical Leslie-Gower predator-prey model is
˙x=rx(1−xK)−H(x)y,˙y=sy(1−ynx), | (1.1) |
which was proposed by [12] and [13] to describe the relationship between predator and prey, where x and y represent population densities of prey and predator respectively, r and K are the intrinsic growth rate and the environmental capacity of the prey respectively, s is intrinsic growth rate of the predator at time t, n is a measure of the quality of the prey as food for the predator, H(x) represents the functional response which is a key element to describe the number of predator consuming prey per unit time. The Leslie-Gower predator-prey model with Allee effect [14,15] and generalist predator [16,17], or modified Leslie-Gower predator-prey model [18,19,20] have been widely adopted in the biological model domains.
Functional responses play an important role in predator-prey systems and describe the transformation of organisms from lower to higher trophic levels in the biological chain. The differences in the dynamical behavior of predator-prey systems are partly attributable to the functional responses chosen. Three main types of functional responses were proposed in [21]: Holling Type I is a linear increasing function corresponding to lower animals, Holling Type II is hyperbolic in form corresponding to invertebrate and Holling Type III is sigmoid corresponding to vertebrate. Sˊaez and Gonzˊalez-Olivares in [22] proposed the following Leslie-Gower predator-prey model with Holling Type II functional response
˙x=rx(1−xK)−qxyx+e,˙y=sy(1−ynx), | (1.2) |
where q represents the maximum capture rate per capita and e is half of the saturated response level. They investigated the stability and bifurcation of system (1.2), and showed that local asymptotic stability of a positive equilibrium point does not imply global stability.
The Allee effect is an ecological phenomenon that describes population size and fitness [23,24,25]. In [26], the authors researched deeply a predator-prey system with strong Allee effect and Holling Type I functional response, and provided insights that system has a weak focus of order at least two. Furthermore, the authors explained the collapse of the positive equilibria is a cusp of codimension 2. In [27], they proposed a ratio-dependent Leslie-Gower predator-prey model with the Allee effect and fear effect on prey, and investigated the saddle-node bifurcation, degenerate Hopf bifurcation, and Bogdanov-Takens bifurcation. Martinez-Jeraldo and Aguirre analyzed multiplicative Allee effect and Holling Type I functional response, gave a concrete proof of a subcritical Hopf bifurcation or supercritical Hopf bifurcation, and performed a numerical simulation to prove the existence of a Bogdanov-Takens bifurcation (see [28]). In [29], they studied the stability and bifurcation of a Leslie-Gower predation model with Allee effect and an alternative food source.
Inspired by [22], the authors [30] studied a Holling-Tanner predator-prey model with strong Allee effect (0<m<K) on prey as follows:
˙x=rx(1−xK)(x−m)−qxyx+e,˙y=sy(1−ynx). | (1.3) |
For simplicity, making some substitutions
x=Ku,y=nKv,τ=rKu(u+eK)t,A=eK,S=srK,Q=nqrK,M=mK, | (1.4) |
and still denoting τ by t, system (1.3) is topological equivalent to system
˙u=u2[(u+A)(1−u)(u−M)−Qv],˙v=Sv(u+A)(u−v), | (1.5) |
where M,Q,S are positive constants.
The authors [30] proved the boundedness of system (1.5), and discussed the existence and stability of the equilibrium. They demonstrated the existence of separation lines in the phase plane separating basins of attraction associated with species extinction and coexistence. The author discussed numerous potential bifurcations such as saddle-node, Hopf, and Bogdanov-Takens bifurcations. However, they did not give a detailed proof of Hopf bifurcation and Bogdanov-Takens bifurcation.
Hence, in this paper, we also want to consider system (1.5), where the existence of positive equilibria are determined by third order polynomial, which makes the research more difficult. Using the different method with [30], we want to investigate the existence and stability of the system, and give the rigorous proof of Hopf bifurcation and Bogdanov-Takens bifurcation. We show that there exists bistable phenomena and two limit cycles in system (1.5).
The paper is organized as follows. In Section 2, the existence of equilibria are discussed. In Section 3, we focus on the stability and bifurcations of system (1.5), such as Hopf bifurcation and Bogdanov-Takens bifurcation. In Section 4, we give the proof of the Theorems. In Section 5, we give some numerical simulations to show the feasibility of main results. We give a brief summary in the last section.
We denote the domain of system (1.5) in phase plane
Ω={(u,v)∈R2|0≤u≤1,0≤v≤1}. |
From Theorem 2 [30], the solutions of system (1.5) are ultimately upper bounded and eventually end up in Ω with initial values u(0)≥0 and v(0)≥0.
Apparently, system (1.5) has three boundary equilibria (0,0), (1,0) and (M,0). From [30], the origin (0,0) of system (1.5) is a non-hyperbolic attractor, (1,0) is a hyperbolic saddle and (M,0) is a hyperbolic repeller.
The positive equilibria satisfies:
(u+A)(1−u)(u−M)−Qv=0,v=u. | (2.1) |
Substituting v=u into the first equation of (2.1), we get
f(u)≜u3−(M+1−A)u2−(AM+A−Q−M)u+AM=0, |
and the derivative of f(u) is
f′(u)=3u2−2(M+1−A)u−(AM+A−Q−M). |
Denote
Q∗=(A+M)2+(1+A)(1−M)3. |
When Q<Q∗, the equation f′(u)=0 has two real roots,
u_=M+1−A−√3Q∗−3Q3and¯u=M+1−A+√3Q∗−3Q3. |
Clearly, when Q≥Q∗, the equation f(u)=0 has no positive root, that is system (1.5) has no positive equilibrium.
Note that M+1−A3<1 and f′(1)=(1−M)(1+A)+Q>0, then ¯u<1 if Q<Q∗. By computation, f(1)=Q>0. Therefore, the positive solution of equation f(u)=0 is in the interval (0,1).
Our next discussion is only under Q<Q∗. If ¯u≤0 or ¯u>0 and f(¯u)>0, it is obvious that system (1.5) has no positive equilibrium. If ¯u>0 and f(¯u)=0, equation f(u)=0 has a unique positive real root u∗, that is system (1.5) has a unique equilibrium E∗=(u∗,u∗). If ¯u>0 and f(¯u)<0, equation f(u)=0 has two positive distinct real roots u1,2 (letting u1<u2), which implies that system (1.5) has two positive equilibria E1,2=(u1,2,u1,2).
Hence, we obtain the following theorem.
Theorem 2.1. The existence of positive equilibria of system (1.5) is classified as follows.
(1) System (1.5) has a unique equilibrium E∗=(u∗,u∗) if Q<Q∗, ¯u>0 and f(¯u)=0.
(2) System (1.5) has two positive equilibria E1=(u1,u1) and E2=(u2,u2) if Q<Q∗, ¯u>0 and f(¯u)<0.
(3) System (1.5) has no positive equilibrium if one of the following conditions holds:
(i) Q≥Q∗; (ii) Q<Q∗,¯u≤0; (iii) Q<Q∗,¯u>0 and f(¯u)>0.
In order to investigate the stability of the positive equilibria, we get the Jacobian matrix of system (1.5) at any positive equilibria and obtain
JE=[u2[−3u2−2(A−M−1)u+AM+A−M]−u2QS(u+A)u−S(u+A)u]. |
The determinant and trace of JE are respectively given by
Det(JE)=Su3(u+A)[3u2−2(M+1−A)u−(AM+A−Q−M)]=Su3(u+A)f′(u) |
and
Tr(JE)=u2[−3u2−2(A−M−1)u+AM+A−M]−S(u+A)u. |
The property of eigenvalues of JE plays a crucial role in determining the dynamics of each equilibria. In addition, equilibrium E(u,u) of system (1.5) is an elementary equilibrium (a degenerate equilibrium, respectively) when Det(JE)≠0 (=0, respectively). From the derivative property of f(u), we have f′(u∗)=0,f′(u1)<0 and f′(u2)>0. Hence, the positive equilibria E∗ is a degenerate equilibrium since Det(JE∗)=0. The positive equilibria E1 and E2 respectively are a hyperbolic saddle and an elementary equilibrium on account of Det(JE1)<0 and Det(JE2)>0.
According to f′(u∗)=0, the Jacobian matrix at E∗ can be simplified to
JE∗=[Qu2∗−Qu2∗S(u∗+A)u∗−S(u∗+A)u∗], |
and the trace of JE∗ is
Tr(JE∗)=u∗[Qu∗−S(u∗+A)]. |
From Det(JE∗)=0,Tr(JE∗)=0 and f(u∗)=0, we can express S,A and Q by u∗ and M as follows:
S=(1−u∗)(u∗−M),A=u2∗(M−2u∗+1)u2∗−M,Q=(u∗−1)2(u∗−M)2u2∗−M. | (2.2) |
Since S>0,A>0 and Q>0, the degenerate equilibrium E∗ of system (1.5) satisfies the condition
√M<u∗<M+12. |
Lemma 2.1. [31] The system
˙x=y+Ax2+Bxy+Cy3+o(|x,y|2),˙y=Dx2+Exy+Fy2+o(|x,y|2), |
is equivalent to the system
˙x=y,˙y=Dx2+(E+2A)xy+o(|x,y|2), |
by some nonsingular transformations in the neighborhood of (0,0).
Lemma 2.2. [31] The system
˙x=y,˙y=x2+a30x3+a40x4+y(a21x2+a31x3)+y2(a12x+a22x2)+o(|x,y|4), |
is equivalent to the system
˙x=y,˙y=x2+Gx3y+o(|x,y|4), |
by some nonsingular transformations in the neighborhood of (0,0), where G=a31−a30a21.
If (2.2) and √M<u∗<M+12 hold, it's easy to verify that the conditions of Theorem 2.1 (1) hold, that is E∗ exists. Then the following theorem shows that the degenerate equilibrium E∗ is a cusp of codimension 2 or 3.
Define
u2∗=M2+10M+1+√(M−1)2(M2−14M+1)6(M+1). |
Theorem 3.1. If (2.2) and √M<u∗<M+12 are satisfied, the degenerate equilibrium E∗ is
(1) a cusp of codimension 2 if M∈(0,7−4√3) and u∗≠u2∗, or M∈[7−4√3,1);
(2) a cusp of codimension 3 if M∈(0,7−4√3) and u∗=u2∗.
Now, we give the stability of the positive equilibria E1 and E2.
Theorem 3.2. If condition (2) in Theorem 2.1 holds, system (1.5) has two positive equilibria E1 and E2, where E1 is always a hyperbolic saddle, and E2 is
(1) unstable if 0<S<S∗;
(2) stable if S>S∗>0 or S∗≤0;
(3) may be a center or fine focus if S=S∗>0,
where S∗=u2[−3u22−2(A−M−1)u2+AM+A−M]u2+A.
In this subsection, we will investigate the Hopf bifurcation of system (1.5).
When condition (2) of Theorem 2.1 holds, system (1.5) has two different positive equilibria. From Theorem 3.2, E1 is always a hyperbolic saddle, and E2 is a repeller or an attractor which depends on the sign of Tr(JE2). Changing the sign of Tr(JE2), the stability of E2 will change as well. In this section, we consider the condition Tr(JE2)=0, which implies that system (1.5) may exist a Hopf bifurcation around E2. In the process of calculating of the first-order Lyapunov number, we use the following transformation (see [33] and [34])
¯u=uu2,¯v=vu2,¯t=u42t,¯A=Au2,a=1u2,¯M=Mu2,¯Q=Qu22,¯S=Su22. | (3.1) |
Dropping the bar, system (1.5) has the following form
˙u=u2[(u+A)(a−u)(u−M)−Qv],˙v=Sv(u+A)(u−v), | (3.2) |
where A,Q,S are all positive constants and M<1<a. Because ¯E2(1,1) is an equilibrium of system (3.2), we have Q=(A+1)(a−1)(1−M). Hence system (3.2) becomes
˙u=u2[(u+A)(a−u)(u−M)−(A+1)(a−1)(1−M)v],˙v=Sv(u+A)(u−v). | (3.3) |
Define
S∗=(A+2−a)M+(A+2)a−(2A+3)1+A. |
The Jacobian matrix of system (3.3) at ¯E2(1,1) is
J¯E2=[S∗(A+1)−(A+1)(a−1)(1−M)S(A+1)−S(A+1)]. |
The determinant and trace of J¯E2 are respectively
Det(J¯E2)=S(1+A)(A+2−a−M(1+Aa)) |
and
Tr(J¯E2)=(A+1)(S∗−S). |
If M<A+2−aAa+1≜M1 and 1<a<A+2, then Det(J¯E2)>0. Then the stability of E2 is determined by the sign of Tr(J¯E2). If S∗≤0, i.e., 0<M≤2A+3−(A+2)aA+2−a≜M2 and 1<a<2A+3A+2, we obtain Tr(J¯E2)<0. If S∗>0, i.e., M2<M<M1 and 1<a<2A+3A+2 or 0<M<M1 and 2A+3A+2≤a<A+2, then Tr(J¯E2)>0(=0,<0,respectively) when S<S∗(=S∗,>S∗,respectively). To summarize the above discussion, we have the following theorem.
Theorem 3.3. The stability of the equilibrium ¯E2 of system (3.3) is classified as follows.
(1) ¯E2 is a stable hyperbolic focus or a node if one of the following conditions holds:
(i) 0<M≤M2 and 1<a<2A+3A+2;
(ii) M2<M<M1, 1<a<2A+3A+2 and S>S∗;
(iii) 0<M<M1, 2A+3A+2≤a<A+2 and S>S∗.
(2) ¯E2 is an unstable hyperbolic focus or a node if one of the following conditions holds:
(i) M2<M<M1, 1<a<2A+3A+2 and S<S∗;
(ii) 0<M<M1, 2A+3A+2≤a<A+2 and S<S∗.
(3) ¯E2 is maybe a fine focus or center if one of the following conditions holds:
(i) M2<M<M1, 1<a<2A+3A+2 and S=S∗;
(ii) 0<M<M1, 2A+3A+2≤a<A+2 and S=S∗.
Remark 3.1. If 0<M<M2 and 1<a<2A+3A+2, ¯E2 is a stable hyperbolic focus or a node. Using the transformations (1.4) and (3.1), the coefficients M,A and a of system (3.2) do not include the intrinsic growth rate of predator s of the original system (1.3). Ecologically, when M and a are sufficiently small, we take certain initial value that two species can coexist in the form of steady state independent of the intrinsic growth rate of predator s.
When the case (3) of Theorem 3.3 are satisfied, system (3.3) will go through a Hopf bifurcation. Let
R2=(Mak−5Ma+2)A4+[2k(3Ma−1)−(Ma+9)2+88]A3+[6(Ma−1)k+6(1−3Ma)]A2+(M−a)2A2+[(3Ma−3)k−9Ma+1]A−M−a |
with k=M+a−1. We obtain the following theorem about the Hopf bifurcation.
Theorem 3.4. Assume that the case (3) of Theorem 3.3 are satisfied.
(1) System (3.3) undergoes a subcritical Hopf bifurcation and an unstable limit cycle appears around ¯E2 when R2<0.
(2) System (3.3) undergoes a supercritical Hopf bifurcation and a stable limit cycle appears around ¯E2 when R2>0.
(3) System (3.3) undergoes a degenerate Hopf bifurcation and multiple limit cycles may appear around ¯E2 when R2=0.
From Theorem 3.1, the degenerate equilibrium E∗ of system (1.5) is a cusp of codimension 2 or 3. Hence, system (1.5) presumably exists a Bogdanov-Takens bifurcation of codimension 2 or 3. Then we will choose appropriate bifurcation parameters to verify the existence of the Bogdanov-Takens bifurcation.
When the equilibrium E∗ is a cusp of codimension 2, we select Q and S as bifurcation parameters, and have the following theorem.
Theorem 3.5. Assume that condition (2.2) and √M<u∗<M+12 are satisfied. If M∈(0,7−4√3) and u∗≠u2∗, or M∈[7−4√3,1), the degenerate equilibrium E∗ of system (1.5) undergoes a Bogdanov-Takens bifurcation of codimension 2.
Now, we give the saddle-node bifurcation curve, Hopf bifurcation curve and homoclinic bifurcation curve of system (1.5) around E∗.
Theorem 3.6. Assume that condition (2.2) and √M<u∗<M+12 are satisfied. If M∈(0,7−4√3) and u∗≠u2∗, or M∈[7−4√3,1), system (1.5) undergoes a Bogdanov-Takens bifurcation of codimension 2 around the degenerate equilibrium E∗ when (λ1,λ2) in a small neighborhood of (0,0). Moreover, there are three bifurcation curves.
(1) When M∈(0,7−4√3) and u∗∈(u2∗,M+12), or M∈[7−4√3,1),
SN+={(λ1,λ2)|λ1=0,λ2>0},SN−={(λ1,λ2)|λ1=0,λ2<0};H={(λ1,λ2)|λ1=−(u∗−1)2(u∗−M)2(u3∗−3u∗M+M2+M)u∗(u2∗−M)[3(M+1)u2∗−(M2+10M+1)u∗+3M(M+1)]2λ22+o(|λ2|2),λ2>0};HL={(λ1,λ2)|λ1=−4925(u∗−1)2(u∗−M)2(u3∗−3u∗M+M2+M)u∗(u2∗−M)[3(M+1)u2∗−(M2+10M+1)u∗+3M(M+1)]2λ22+o(|λ2|2),λ2>0}. |
(2) When M∈(0,7−4√3) and u∗∈(√M,u2∗),
SN+={(λ1,λ2)|λ1=0,λ2<0},SN−={(λ1,λ2)|λ1=0,λ2>0};H={(λ1,λ2)|λ1=−(u∗−1)2(u∗−M)2(u3∗−3u∗M+M2+M)u∗(u2∗−M)[3(M+1)u2∗−(M2+10M+1)u∗+3M(M+1)]2λ22+o(|λ2|2),λ2<0};HL={(λ1,λ2)|λ1=−4925(u∗−1)2(u∗−M)2(u3∗−3u∗M+M2+M)u∗(u2∗−M)[3(M+1)u2∗−(M2+10M+1)u∗+3M(M+1)]2λ22+o(|λ2|2),λ2<0}. |
SN, H and HL are respectively a saddle-node bifurcation curve, a Hopf bifurcation curve and a homoclinic bifurcation curve of system (1.5) around E∗.
Now we assume that the equilibrium E∗ is a cusp of codimension 3, and select M,Q and S as bifurcation parameters. In the next theorem, we prove system (1.5) undergoes a Bogdanov-Takens bifurcation of codimension 3 in a small parameter disturbance.
Theorem 3.7. Assume that condition (2.2) and √M<u∗<M+12 are satisfied. If M∈(0,7−4√3) and u∗=u2∗, the degenerate equilibrium E∗ of system (1.5) undergoes a Bogdanov-Takens bifurcation of codimension 3.
Proof of Theorem 3.1. When S=(1−u∗)(u∗−M),A=u2∗(M+1−2u∗)u2∗−M and Q=(u∗−1)2(M−u∗)2u2∗−M, we move E∗ to the origin via the transformation x=u−u∗ and y=v−u∗. Then we have a Taylor expansion at the origin and get a new system
˙x=a10x+a01y+a20x2+a11xy+a02y2+o(|x,y|2),˙y=b10x+b01y+b20x2+b11xy+b02y2+o(|x,y|2), | (4.1) |
where the coefficients are given in Appendix A.
Next, we make a substitution x=a01x1 and y=−a10x1+y1, then system (4.1) becomes
˙x1=y1+c20x21+c11x1y1+c02y21+o(|x1,y1|2),˙y1=d20x21+d11x1y1+d02y21+o(|x1,y1|2), | (4.2) |
where the coefficients are given in Appendix A.
By Lemma 2.1, we get the equivalent system of (4.2) as follows:
˙x1=y1,˙y1=e20x21+e11x1y1+o(|x1,y1|2), | (4.3) |
where
e20=u6∗(u∗−1)4(u∗−M)4(u3∗−3Mu∗+M2+M)(u2∗−M)3 |
and
e11=u4∗(u∗−1)2(u∗−M)2[3(M+1)u2∗−(M2+10M+1)u∗+3M(M+1)](u2∗−M)2. |
When √M<u∗<M+12, u6∗(u∗−1)4(u∗−M)4(u2∗−M)3≠0. Hence, the sign of e20 is depends on u3∗−3Mu∗+M2+M.
Denote
h(u∗)=u3∗−3Mu∗+M2+M,h′(u∗)=3(u∗−√M)(u∗+√M). |
Clearly, h′(u∗)>0 if √M<u∗<M+12. Note that h(√M)=M(√M−1)2>0, then h(u∗)≠0, which implies e20≠0.
Note that u4∗(u∗−1)2(u∗−M)2(u2∗−M)2≠0 if √M<u∗<M+12. To determining the sign of e11, we let
g(u∗)=3(M+1)u2∗−(M2+10M+1)u∗+3M(M+1). | (4.4) |
The discriminant of the equation g(u∗)=0 is
Δ(M)=(M−1)2(M2−14M+1). |
Since M∈(0,1), a solution of Δ(M)=0 is given by M1=7−4√3.
If M∈(0,7−4√3), then Δ(M)>0, which implies that the equation g(u∗)=0 has two different positive real roots
u1∗=M2+10M+1−√Δ(M)6(M+1)andu2∗=M2+10M+1+√Δ(M)6(M+1). |
By calculation, we have g(√M)=−√M(√M−1)2(M−4√M+1)<0 and g(M+12)=(M+1)(M−1)24>0. Then, only u2∗∈(√M,M+12). When u∗≠u2∗, we have g(u∗)≠0, i.e., e11≠0.
If M=7−4√3, the equation g(u∗)=0 has one positive real root u∗∗=2−√3=√M, i.e., e11≠0.
If M∈(7−4√3,1), we have Δ(M)<0. Clearly, g(u∗)≠0, i.e., e11≠0.
Hence, by the result in [32], E∗ is a cusp of codimension 2 if M∈(0,7−4√3) and u∗≠u2∗, or M∈[7−4√3,1) (see Figures 1(a) and 1(b)).
On the other hand, if M∈(0,7−4√3) and u∗=u2∗, we obtain e11=0. Then system (4.1) becomes
˙¯x=¯a10¯x+¯a01¯y+¯a20¯x2+¯a11¯x¯y+¯a30¯x3+¯a21¯x2¯y+¯a40¯x4+o(|¯x,¯y|4),˙¯y=¯b10¯x+¯b01¯y+¯b20¯x2+¯b11¯x¯y+¯b02¯y2+¯b21¯x2¯y+¯b12¯x¯y2, | (4.5) |
where the coefficients are given in Appendix A.
Employing the transformation
¯x1=¯x,¯y1=¯a10¯x+¯a01¯y+¯a20¯x2+¯a11¯x¯y+¯a30¯x3+¯a21¯x2¯y+¯a40¯x4+o(|¯x,¯y|4), |
system (4.5) can be written as
˙¯x1=¯y1,˙¯y1=¯c20¯x21+¯c02¯y21+¯c30¯x31+¯c12¯x1¯y21+¯c21¯x21¯y1+¯c40¯x41+¯c31¯x31¯y1+¯c22¯x21¯y21+o(|¯x1,¯y1|4), | (4.6) |
where the coefficients are given in Appendix A.
Next, introducing a new time variable dt=(1−c02¯x1)dτ, and rewriting τ as t, we have
˙¯x1=¯y1(1−¯c02¯x1),˙¯y1=[¯c20¯x21+¯c02¯y21+¯c30¯x31+¯c12¯x1¯y21+¯c21¯x21¯y1+¯c40¯x41+¯c31¯x31¯y1+¯c22¯x21¯y21+o(|¯x1,¯y1|4)](1−¯c02¯x1). | (4.7) |
Making transformation ¯x2=¯x1 and ¯y2=¯y1(1−¯c02¯x1) once more, we obtain
˙¯x2=¯y2,˙¯y2=¯d20¯x22+¯d30¯x32+¯d21¯x22¯y2+¯d12¯x2¯y22+¯d40¯x42+¯d31¯x32¯y2+¯d22¯x22¯y22+o(|¯x2,¯y2|4), | (4.8) |
where
¯d20=¯c20,¯d30=¯c30−2¯c02¯c20,¯d12=¯c12−¯c202,¯d21=¯c21,¯d40=¯c40+¯c20¯c202−2¯c02¯c30,¯d22=¯c22−¯c202,¯d31=¯c31−¯c02¯c21. |
Similar to the analysis of e20, when √M<u∗<M+12, we have
¯d20=−u42∗(u2∗−1)2(u2∗−M)2(u32∗−3Mu2∗+M2+M)(u22∗−M)2<0. |
Making the change of variable
¯x3=−¯x2,¯y3=¯y2−√−¯d20,τ=√−¯d20t, |
and rewriting τ as t, system (4.8) turns to
˙¯x3=¯y3,˙¯y3=¯x23+¯e30¯x33+¯e40¯x43+¯y3(¯e21¯x23+¯e31¯x33)+¯y23(¯e12¯x3+¯e22¯x23)+o(|¯x3,¯y3|4), | (4.9) |
where
¯e30=−¯d30¯d20,¯e12=¯d12,¯e21=¯d21√−¯d20,¯e40=¯d40¯d20,¯e22=−¯d22,¯e31=−¯d31√−¯d20. |
By Lemma 2.2, system (4.9) is equivalent to
˙¯x3=¯y3,˙¯y3=¯x23+G¯x23¯y3+o(|¯x3,¯y3|4), | (4.10) |
where G=¯e31−¯e30¯e21. After a brief calculation, we have
G=−R1u2∗(u2∗−1)2(u2∗−M)2(u32∗−3u2∗M+M2+M)32 |
with
R1=8u72∗−3(M+1)u62∗−48Mu52∗+37M(M+1)u42∗−8M(M2−5M+1)u32∗−57M2(M+1)u22∗+20M2(M+1)2u2∗−M2(2M+1)(M+2)(M+1). |
Note that
−1u2∗(u2∗−1)2(u2∗−M)2(u32∗−3u2∗M+M2+M)32≠0, |
when M∈(0,7−4√3) and √M<u2∗<M+12. Therefore the sign of G is related to R1. As we observed in Figure 2, we have R1<0 if M∈(0,7−4√3), that is G≠0. Our results demonstrate that E∗ is a cusp of codimension 3 if M∈(0,7−4√3) and u∗=u2∗ (see Figures 1(c) and 1(d)). The proof is completed.
Proof of Theorem 3.2. The equilibrium E1 is a hyperbolic saddle is driven by Det(JE1)<0. Notice that Det(JE2)>0 and
Tr(JE2)=u2(u2+A)(S∗−S). |
When S∗≤0, it is clear Tr(JE2)<0, which implies E2 is a hyperbolic stable node. When S∗>0, obviously, E2 is unstable (stable, a center or fine focus, respectively) if S<S∗ (>S∗, =S∗, respectively). The proof is completed.
Proof of Theorem 3.4. Obviously,
ddSTr(J¯E2)=−(A+1)≠0, |
which satisfies the condition for the occurrence of Hopf bifurcation. Next we will calculate the first-order Lyapunov number which can determine the stability of limit cycle around ¯E2.
First, we make the change to convert ¯E2 to the origin by ˜x=u−1 and ˜y=v−1. We have a Taylor expansion at the origin and system (3.3) becomes
˙˜x=˜a10˜x+˜a01˜y+˜a20˜x2+˜a11˜x˜y+˜a02˜y2+˜a30˜x3+˜a21˜x2˜y+˜a12˜x˜y2+˜a03˜y3+(o|˜x,˜y|3),˙˜y=˜b10˜x+˜b01˜y+˜b20˜x2+˜b11˜x˜y+˜b02˜y2+˜b30˜x3+˜b21˜x2˜y+˜b12˜x˜y2+˜b03˜y3+(o|˜x,˜y|3), | (4.11) |
where the coefficients are given in Appendix B.
On account of
E=˜a10˜b01−˜a01˜b10=S∗(1+A)(A+2−a−M(1+Aa))>0, |
we make a change of variables
(˜x,˜y)=(−˜a01√E˜a210+E˜x1−˜a10˜a01˜a210+E˜y1,˜y1). |
System (4.11) becomes the following system
˙˜x1=−√E˜y1+˜c20˜x21+˜c11˜x1˜y1+˜c02˜y21+˜c30˜x31+˜c21˜x21˜y1+˜c12˜x1˜y21+˜c03˜y31+(o|˜x1,˜y1|3),˙˜y1=√E˜x1+˜d20˜x21+˜d11˜x1˜y1+˜d02˜y21+˜d30˜x31+˜d21˜x21˜y1+˜d12˜x1˜y21+˜d03˜y31+(o|˜x1,˜y1|3), | (4.12) |
where the coefficients are given in Appendix B.
Subsequently, the first-order Lyapunov number in [32] at ¯E2 is
l1=−R28(1+A)2(A+2−a−M(1+Aa)). |
The sign of l1 is depends on R2 since 8(1+A)2(A+2−a−M(1+Aa))>0. For specific conclusions, we can refer to Theorem 3.4. The proof is completed.
Proof of Theorem 3.5. Denote (S0,A0,Q0)=((1−u∗)(u∗−M),u2∗(M+1−2u∗)u2∗−M,(u∗−1)2(u∗−M)2u2∗−M). Replacing Q0 and S0 with Q0+λ1 and S0+λ2, and substituting them into (1.5), we can obtain a new system
˙u=u2[(u+A0)(1−u)(u−M)−(Q0+λ1)v],˙u=(S0+λ2)(u+A0)(u−v)v, | (4.13) |
where (λ1,λ2) is a parameter vector in a small neighborhood of (0,0).
The first step, in order to move E∗ to the origin, we make a transformation ˆx=u−u∗ and ˆy=v−u∗, and obtain
˙ˆx=ˆa00+ˆa10ˆx+ˆa01ˆy+ˆa20ˆx2+ˆa11ˆxˆy+ˆa02ˆy2+P1(ˆx,ˆy,λ),˙ˆy=ˆb00+ˆb10ˆx+ˆb01ˆy+ˆb20ˆx2+ˆb11ˆxˆy+ˆb02ˆy2+P2(ˆx,ˆy,λ), | (4.14) |
where the coefficients are given in Appendix C and P1(ˆx,ˆy,λ),P2(ˆx,ˆy,λ) are C∞ functions at least of third with respect to (ˆx,ˆy).
The second step, letting
ˆx1=ˆx,ˆy1=ˆa00+ˆa10ˆx+ˆa01ˆy+ˆa20ˆx2+ˆa11ˆxˆy+ˆa02ˆy2+P1(ˆx,ˆy,λ), |
system (4.14) can be written as
˙ˆx1=ˆy1,˙ˆy1=ˆc00+ˆc10ˆx1+ˆc01ˆy1+ˆc20ˆx21+ˆc11ˆx1ˆy1+ˆc02ˆy21+P3(ˆx1,ˆy1,λ), | (4.15) |
where the coefficients are given in Appendix C and P3(ˆx1,ˆy1,λ) is a C∞ function at least of third with respect to (ˆx1,ˆy1).
The third step, taking dt=(1−ˆc02ˆx1)dτ, ˆx2=ˆx1 and ˆy2=(1−ˆc02ˆx1)ˆy1, system (4.15) is equivalent to
˙ˆx2=ˆy2,˙ˆy2=ˆd00+ˆd10ˆx2+ˆd01ˆy2+ˆd20ˆx22+ˆd11ˆx2ˆy2+P4(ˆx2,ˆy2,λ), | (4.16) |
where
ˆd00=ˆc00,ˆd10=ˆc10−2ˆc00ˆc02,ˆd01=ˆc01,ˆd20=ˆc20+ˆc00ˆc202−2ˆc02ˆc10,ˆd11=ˆc11−ˆc01ˆc02, |
and P4(ˆx2,ˆy2,λ) is a C∞ function at least of third with respect to (ˆx2,ˆy2).
If √M<u∗<M+12, we have
ˆd20=−u4∗(u∗−M)2(u∗−1)2(u3∗−3u∗M+M2+M)(u2∗−M)2+O(λ)<0, |
where λ1 and λ2 are sufficiently small.
The fourth step, applying the following transformation
ˆx3=ˆx2,ˆy3=ˆy2√−ˆd20,τ=√−ˆd20t |
and still regarding τ as t, system (4.16) has the following form
˙ˆx3=ˆy3,˙ˆy3=ˆe00+ˆe10ˆx3+ˆe01ˆy3−ˆx23+ˆe11ˆx3ˆy3+P5(ˆx3,ˆy3,λ), | (4.17) |
where
ˆe00=−ˆd00ˆd20,ˆe10=−ˆd10ˆd20,ˆe01=ˆd01√−ˆd20,ˆe11=ˆd11√−ˆd20, |
and P5(ˆx3,ˆy3,λ) is a C∞ function at least of third with respect to (ˆx3,ˆy3).
The fifth step, making a transformations ˆx4=ˆx3−ˆe112 and ˆy4=ˆy3, system (4.17) turns to
˙ˆx4=ˆy4,˙ˆy4=ˆf00+ˆf10ˆx4+ˆf01ˆy4−ˆx24+ˆf11ˆx4ˆy4+P6(ˆx4,ˆy4,λ), | (4.18) |
where
ˆf00=ˆe00+ˆe2104,ˆf01=ˆe01+ˆe10ˆe112,ˆf11=ˆe11, |
and P6(ˆx4,ˆy4,λ) is a C∞ function at least of third with respect to (ˆx4,ˆy4).
Noting that λ1 and λ2 are sufficiently small, we obtain
ˆf11=−3(M+1)u2∗−(M2+10M+1)u∗+3M(M+1)(u∗−M)√u3∗−3u∗M+M2+M+O(λ)≠0, |
when √M<u∗<M+12 and u∗≠u2∗.
The last step, replacing
ˆx5=−ˆf311ˆx4,ˆy5=ˆf311ˆy4,τ=−tˆf11 |
and rewriting τ as t, we get the universal unfolding of system (4.13)
˙ˆx5=ˆy5,˙ˆy5=μ1+μ2ˆy5+ˆx25+ˆx5ˆy5+P7(ˆx5,ˆy5,λ), | (4.19) |
where
μ1=−ˆf00ˆf411,μ2=−ˆf01ˆf11, |
and P7(ˆx5,ˆy5,λ) is a C∞ function at least of third with respect to (ˆx5,ˆy5).
We express μ1 and μ2 in terms of λ1 and λ2 as follows:
μ1=σ1λ1+σ2λ2+o(|λ1,λ2|),μ2=ψ1λ1+ψ2λ2+o(|λ1,λ2|), |
where the coefficients are given in Appendix C.
Note that
|∂(μ1,μ2)∂(λ1,λ2)|λ1=λ2=0=u∗(u2∗−M)[3(M+1)u2∗−(M2+10M+1)u∗+3M(M+1)]5(u∗−1)5(u∗−M)5(u3∗−3u∗M+M2+M)4≠0, |
when √M<u∗<M+12, for M∈(0,7−4√3) and u∗≠u2∗, or M∈[7−4√3,1).
Refer to [32], system (4.13) goes through a Bogdanov-Takens bifurcation of codimension 2 when (λ1,λ2) in a small neighborhood of (0,0). Trajectory topological classifications of Bogdanov-Takens bifurcation of codimension 2 of system (4.13), see Figure 5. The proof is completed.
Proof of Theorem 3.6. The local bifurcation curve as in [32] is given by the following expression.
(i) The saddle-node bifurcation curve:
SN+={(λ1,λ2):μ1(λ1,λ2)=0,μ2(λ1,λ2)>0}, |
SN−={(λ1,λ2):μ1(λ1,λ2)=0,μ2(λ1,λ2)<0}; |
(ii) The Hopf bifurcation curve:
H={(λ1,λ2):μ1(λ1,λ2)<0,μ2(λ1,λ2)=√−μ1(λ1,λ2)}; |
(iii) The homoclinic bifurcation curve:
HL={(λ1,λ2):μ1(λ1,λ2)<0,μ2(λ1,λ2)=57√−μ1(λ1,λ2)}. |
Using the implicit function theorem, we can write λ1 and λ2 from μ1=μ1(λ1,λ2,u∗,M) and μ2=μ2(λ1,λ2,u∗,M) in (4.19) as follows:
λ1=s1μ1+s2μ2+o(|μ1,μ2|),λ2=s3μ1+s4μ2+o(|μ1,μ2|), | (4.20) |
where
s1=(u∗−1)4(u∗−M)4(u3∗−3u∗M+M2+M)3u∗(u2∗−M)[3(M+1)u2∗−(M2+10M+1)u∗+3M(M+1)]4,s2=0,s3=−12(u∗−1)2(u∗−M)2(u3∗−3u∗M+M2+M)2Q9u∗[3(M+1)u2∗−(M2+10M+1)u∗+3M(M+1)]4,s4=(u∗−1)(u∗−M)(u3∗−3u∗M+M2+M)3(M+1)u2∗−(M2+10M+1)u∗+3M(M+1), |
where Q9 can be found in Theorem 3.5.
Now, we consider the case (1) of Theorem 3.6. When M∈(0,7−4√3) and u∗∈(u2∗,M+12), or M∈[7−4√3,1), we obtain s4>0.
We consider the saddle-node bifurcation curve Γ1≜μ1(λ1,λ2)=0. By the implicit function theorem, we obtain a unique function λ1(λ2)=0 which satisfies λ1(0)=0 and Γ1(λ1(λ2),λ2)=0 since
∂Γ1∂λ1|λ=0=u∗(u2∗−M)[3(M+1)u2∗−(M2+10M+1)u∗+3M(M+1)]4(u∗−1)4(u∗−M)4(u3∗−3u∗M+M2+M)3≠0. |
In addition, on the curve Γ1=0, it folllows from (4.20) that λ2=s4μ2+o(|μ2|). Then we obtain λ2>0(<0) if μ2>0(<0). Hence, the saddle-node bifurcation curve can be expressed as
SN+={(λ1,λ2)|λ1=0,λ2>0},SN−={(λ1,λ2)|λ1=0,λ2<0}. |
The Hopf bifurcation curve is Γ2≜μ1(λ1,λ2)+μ22(λ1,λ2)=0. Note that
∂Γ2∂λ1|λ=0=u∗(u2∗−M)[3(M+1)u2∗−(M2+10M+1)u∗+3M(M+1)]4(u∗−1)4(u∗−M)4(u3∗−3u∗M+M2+M)3≠0. |
Thus, from the implicit function theorem, we can obtain a unique function
λ1=−(u∗−1)2(u∗−M)2(u3∗−3u∗M+M2+M)u∗(u2∗−M)[3(M+1)u2∗−(M2+10M+1)u∗+3M(M+1)]2λ22+o(|λ2|2), |
which satisfies λ1(0)=0 and Γ2(λ1(λ2),λ2)=0. On the curve Γ2=0, by (4.20), we obtain λ2=s4μ2+o(|μ2|) and λ2>0 if μ2>0. Thus, it is easy to obtain a Hopf bifurcation curve
H={(λ1,λ2)|λ1=−(u∗−1)2(u∗−M)2(u3∗−3u∗M+M2+M)u∗(u2∗−M)[3(M+1)u2∗−(M2+10M+1)u∗+3M(M+1)]2λ22+o(|λ2|2),λ2>0}. |
Denote Γ3≜2549μ1(λ1,λ2)+μ22(λ1,λ2)=0 as the homoclinic bifurcation curve. Notice that
∂Γ3∂λ1|λ=0=2549u∗(u2∗−M)[3(M+1)u2∗−(M2+10M+1)u∗+3M(M+1)]4(u∗−1)4(u∗−M)4(u3∗−3u∗M+M2+M)3≠0. |
Using the implicit function theorem, there exists a unique function
λ1=−2549(u∗−1)2(u∗−M)2(u3∗−3u∗M+M2+M)u∗(u2∗−M)[3(M+1)u2∗−(M2+10M+1)u∗+3M(M+1)]2λ22+o(|λ2|2) |
satisfying λ1(0)=0 and Γ3(λ1(λ2),λ2)=0. Similarity, on the curve Γ3=0, we have λ2=s4μ2+o(|μ2|) and λ2>0 if μ2>0. The homoclinic bifurcation curve can be expressed as
HL={(λ1,λ2)|λ1=−4925(u∗−1)2(u∗−M)2(u3∗−3u∗M+M2+M)u∗(u2∗−M)[3(M+1)u2∗−(M2+10M+1)u∗+3M(M+1)]2λ22+o(|λ2|2),λ2>0}. |
The proof of Theorem 3.6 (2) is similar to the above proof, so we omit the detail proof here. The proof is completed.
Proof of Theorem 3.7. Denote (S1,A1,Q1)=(−(u2∗−1)(u2∗−M),u22∗(M+1−2u2∗)u22∗−M,(u2∗−1)2(u2∗−M)2u22∗−M). Replacing A1,Q1 and S1 with A1+ξ1,Q1+ξ2 and S1+ξ3 respectively, and substituting them into (1.5), we have the following system
˙u=u2[(u+A1+ξ1)(1−u)(u−M)−(Q1+ξ2)v],˙v=(S1+ξ3)(u+A1+ξ1)(u−v)v, | (4.21) |
where (ξ1,ξ2,ξ3) is a parameter vector in a small neighborhood of (0,0,0).
Next, inspired by [35] and [36], we intend to discuss the universal unfolding of a Bogdanov-Takens bifurcation of codimension 3.
The first step, moving the equilibrium E∗ of system (1.5) to the origin via the translation X=u−u2∗,Y=v−u2∗, system (4.21) is equivalent to
˙X=α00+α10X+α01Y+α20X2+α11XY+α30X3+α21X2Y+α40X4+O1(X,Y,ξ),˙Y=β10X+β01Y+β20X2+β11XY+β02Y2+β21X2Y+β12XY2, | (4.22) |
where the coefficients are given in Appendix D and O1(X,Y,ξ) is a C∞ function at least of fifth with respect to (X,Y).
The second step, letting
X1=X,Y1=α00+α10X+α01Y+α20X2+α11XY+α30X3+α21X2Y+α40X4+O1(X,Y,ξ), |
system (4.22) can be written as
˙X1=Y1,˙Y1=γ00+γ10X1+γ01Y1+γ20X21+γ11X1Y1+γ02Y21+γ30X31+γ21X21Y1+γ12X1Y21+γ40X41+γ31X31Y1+γ22X21Y21+O2(X1,Y1,ξ), | (4.23) |
where the coefficients are given in Appendix D and O2(X,Y,ξ) is a C∞ function at least of fifth with respect to (X1,Y1).
The third step, we let X1=X2+γ022 and Y1=Y2+γ02X2Y2 to remove Y21 from ˙Y1. Then system (4.23) can be converted to
˙X2=Y2,˙Y2=δ00+δ10X2+δ01Y2+δ20X22+δ11X2Y2+δ30X32+δ21X22Y2+δ12X2Y22+δ40X42+δ31X32Y2+R1(X2,Y2,ξ), | (4.24) |
where the coefficients are given in Appendix D and
R1(X2,Y2,ξ)=Y22O(|X2,Y2|2)+O(|X2,Y2|5)+O(ξ)[O(Y22)+O(|X2,Y2|3)]+O(ξ2)O(|X2,Y2|), | (4.25) |
which has no effect on the bifurcation phenomenon (see [35] and [36]).
The fourth step, letting X2=X3+δ126X33 and Y2=Y3+δ122X23Y3, system (4.24) turns into
˙X3=Y3,˙Y3=ϵ00+ϵ10X3+ϵ01Y3+ϵ20X23+ϵ11X3Y3+ϵ30X33+ϵ21X23Y3+ϵ40X43+ϵ31X33Y3+R2(X3,Y3,ξ), | (4.26) |
where the coefficients are given in Appendix D and R2(X3,Y3,ξ) has the same properties as (4.25). Here we find that X2Y22 disappears from ˙Y3 of system (4.25).
The fifth step, since
ε20=−u42∗(u2∗−1)2(u2∗−M)2(u32∗−3u2∗M+M2+M)(u22∗−M)2+O(ξ)≠0, |
when ξ1,ξ2 and ξ3 are sufficiently small, we make the following transformation
X3=X4−ϵ304ϵ20X24+15ϵ230−16ϵ20ϵ4080ϵ220X34,Y3=Y4,dτ=(1+ϵ302ϵ20X4+48ϵ20ϵ40−25ϵ23080ϵ220X24+48ϵ20ϵ30ϵ40−35ϵ23080ϵ320X34)dt. |
Let τ be represented by t. System (4.26) has a new expression
˙X4=Y4,˙Y4=ζ00+ζ10X4+ζ01Y4+ζ20X24+ζ11X4Y4+ζ30X34+ζ21X24Y4+ζ40X44+ζ31X34Y4+R3(X4,Y4,ξ), | (4.27) |
where the coefficients are given in Appendix D and R3(X4,Y4,ξ) has the same properties as (4.25).
The sixth step, since
ζ20=−u42∗(u2∗−1)2(u2∗−M)2(u32∗−3u2∗M+M2+M)(u22∗−M)2+O(ξ)≠0 |
when ξ1,ξ2 and ξ3 are sufficiently small, we introduce a new transformation as follows
X4=X5,Y4=Y5+ζ213ζ20Y25+ζ22136ζ220Y35,dτ=(1+ζ213ζ20Y5+ζ22136ζ220Y25)dt. |
Therefore, system (4.27) has the following form (τ is rewritten by t),
˙X5=Y5,˙Y5=η00+η10X5+η01Y5+η20X25+η11X5Y5+η31X35Y5+R4(X5,Y5,ξ), | (4.28) |
where the coefficients are given in Appendix D and R4(X5,Y5,ξ) has the same properties as (4.25). Compared with (4.27), X34,X44 and X24Y4 disappear from ˙Y4.
Clearly,
40(u22∗−M)(u2∗−1)2(u32∗−3u2∗M+M2+M)(u2∗−M)2>0, |
for √M<u∗<M+12. Figure 3(a) shows R3<0, where R3 is listed in Appendix D.
By calculating, we have
η20=−u42∗(u2∗−1)2(u2∗−M)2(u32∗−3u2∗M+M2+M)(u22∗−M)2+O(ξ)<0 |
and
η31=R340(u22∗−M)(u2∗−1)2(u2∗−M)2(u32∗−3u2∗M+M2+M)+O(ξ)<0 |
for ξ1,ξ2 and ξ3 are enough small.
The seventh step, we intend to convert η20 and η31 to −1 and −1 respectively. We denote
X5=−η1520η−2531X6,Y5=−η4520η−3531Y6,dτ=η−3520η1531dt. |
System (4.28) is rewritten as the following system
˙X6=Y6,˙Y6=θ00+θ10X6+θ01Y6+θ11X6Y6−X26−X35Y5+R5(X6,Y6,ξ), | (4.29) |
where the coefficients are given in Appendix D and R5(X6,Y6,ξ) has the same properties as (4.25).
The last step, we want to obtain the universal unfolding of the Bogdanov-Takens bifurcation of codimension 3. Our purpose is to remove X6 from ˙Y6 by letting X6=X7−θ102 and Y6=Y7. Hence, system (4.29) is equivalent to the following system
˙X7=Y7,˙Y7=ω1+ω2Y7+ω3X7Y7−X27−X37Y7+R6(X7,Y7,ξ), | (4.30) |
where the coefficients are given in Appendix D and R6(X7,Y7,ξ) has the same properties as (4.25).
After tedious calculations, we obtain
|∂(ω1,ω2,ω3)∂(ξ1,ξ2,ξ3)|ξ1=ξ2=ξ3=0=124004015R3(u22∗−M)3R154u1352∗[(u2∗−1)(u2∗−M)]225(u32∗−3u2∗+M2+M)6≠0. |
Actually,
124004015R3(u22∗−M)3u1352∗[(u2∗−1)(u2∗−M)]225(u32∗−3u2∗+M2+M)6≠0 |
for √M<u∗<M+12, and Figure 3(b) shows that R4<0 whose expression can be found in Appendix D. Therefore, the results indicates that system (4.13) undergoes a Bogdanov-Takens bifurcation of codimension 3 ([37,38,39]). The proof is completed.
Now, we give some numerical simulations to show the feasibility of Theorem 3.4.
Firstly, letting a=2,M=0.1,A=4,S=0.28, we obtain Tr(J¯E2)=0 and l1<0. Now we reduce S=0.28 to S=0.27 but do not change the other variables. Hence, system (3.3) undergoes a supercritical Hopf bifurcation and a stable limit cycle around ¯E2 (see Figure 4(a)). From Figure 4(a), assuming that the other positive equilibrium of system (3.3) is ¯E1, which is a saddle, we find the two stable manifolds of ¯E1 can be treated as a separation curve between the basins of attraction of the origin and stable limit cycle around ¯E2. In the biological sense, if the initial values above the separation curve, all trajectories converge to the origin. Thus the prey species and the predator species are all expected to be extinct. Additionally, if the initial values below the separation curve, all trajectories converge to the stable limit cycle. Hence the prey species and the predator species will oscillate and coexist.
Secondly, letting a=2,M=0.3,A=4,S=0.44, we have Tr(J¯E2)=0 and l1>0. Then, keeping the other variables without changing, we increase S=0.44 to S=0.45. Therefore, system (3.3) undergoes a subcritical Hopf bifurcation and an unstable limit cycle around ¯E2 (see Figure 4(b)). As illustrated in Figure 4(b), we find that all trajectories inside the unstable limit cycle converge to ¯E2, all trajectories outside the unstable limit cycle converge to the origin. Biologically, the two species will be extinct if the initial values lie outside the limit cycle, and the two species coexist if the initial values lie inside the limit cycle.
Thirdly, we give an example to show system (3.3) undergoes a degenerate Hopf bifurcation. When a=2,M=0.2,A=2.845,S=0.408, then we have Tr(J¯E2)=0 and l1=0. Keeping a,M without changing, we perturb A,S such that A=4,S=0.358. Hence, system (3.3) undergoes a degenerate Hopf bifurcation and two limit cycles (the inner one is stable and the outer one is unstable) around ¯E2 (see Figure 4(c)). Figure 4(c) shows that the outside unstable limit cycle can be treated as a separation curve between the basins of attraction of the origin and stable limit cycle. Thus the prey and predator will be extinct if the initial values lie outside the unstable limit cycle. However, the prey and predator will oscillate and coexist if the initial values lie inside the unstable limit cycle.
Using (3.1), we are able to obtain the coefficients of original system (1.5) corresponding to the coefficients of system (3.3). For example, according to the coefficients of system (3.3) in Figure 4(a), i.e. a=2,M=0.3,A=4,S=0.44, we obtain the coefficients of the original system (1.5) such as Q=0.875,M=0.15,A=2,S=0.11 and two positive equilibria E1(0.352,0.352) and E1(0.5,0.5), where E1 is a saddle and a stable limit cycle around E2. The phase diagram of the original system (1.5) is similar to Figure 4(a), so we omit it.
Next, we give some numerical simulations to show the feasibility of Theorems 3.5 and 3.6. When A=24.2,Q=5.0625,S=0.1125, and M=0.3, by Theorems 3.5 and 3.6, we obtain E∗ is a cusp of codimension two. and system (4.13) undergoes a Bogdanov-Takens bifurcation of codimension 2 (see Figure 5).
We analyse the bifurcation of a Holling-Tanner predator-prey model with strong Allee effect on pery. [30] showed that system (1.5) undergoes the Hopf bifurcation and Bogdanov-Takens bifurcation by numerical simulation. Hence, using the different method with [30], we further investigate the rigorous proof of stability and bifurcations of system (1.5).
Now, using numerical simulations, we show the influence of Allee effect on the dynamical behavior of system (1.5). Let A=0.2,Q=0.2,S=0.02. If M=0.5, system (1.5) has no positive equilibrium. Then the origin is globally asymptotically stable (see Figure 6(a)), which implies that the prey and predator will be extinct. If M=0.225, system (1.5) has two positive equilibria E1=(0.5591,0.5591) and E2=(0.6,0.6), where E1 is a saddle and E2 is unstable. From Figure 6(b), all solutions of system (1.5) tend to origin, which implies that the prey and predator is still extinct. If M=0.2, the equilibrium E2 changes from unstable to stable, and an unstable limit cycle occur. Form Figure 6(c), the unstable limit cycle becomes a separatrix curve. When the initial values lie outside of the limit cycle, the solutions will tend to origin. That is the prey and predator is still extinct. However if the initial values lie inside of the limit cycle, the solutions will tend to E2, which implies that the prey and predator can coexist. If M=0.1, system (1.5) has two positive equilibria E1=(0.2466,0.2466) and E2=(0.7601,0.7601), where E1 is a saddle and E2 is stable. From Figure 6(d), the unstable limit cycle disappears and the two stable manifolds of saddle of E1 becomes a separatrix curve. That is, if the initial values lie right of the stable manifolds of saddle E1, the solutions will tend to E2, which implies that the prey and predator will stabilize to the value of E2. If the initial values lie left of the stable manifolds of saddle E1, the solutions will tend to origin, which implies that the prey and predator will be extinct. Hence, the small Allee effect leads to bistable phenomena. Finally, if M=0, that is we consider the system (1.5) with out Allee effect, system has a unique positive equilibrium (0.8385,0.8385) which is globally asymptotically stable (see Figure 6(e)). Therefore, Allee effect is not conducive to the stability of the system (1.5). From Figure 6(e), the prey and predator will coexist if system (1.5) without the Allee effect. However, if the Allee effect is large, the system will be extinct (see Figure 6(a)). From Figures 6(b)-6(d), small Allee effect will lead to bistable phenomena. With the decrease of Allee effect, the region where prey and predator coexist becomes larger. Hence, compared to the larger Allee effect, the smaller Allee effect is beneficial to the survival of the prey and predator.
It follows from Theorem 2.1 that system (1.5) has no positive equilibria, a unique equilibrium E∗, or two positive equilibria E1 and E2 under some corresponding conditions. We confirm that the degenerate equilibrium E∗ of system can be a cusp of codimension 2 or 3. Further, Under some parameter perturbations, we also prove that system undergoes a Bogdanov-Takens bifurcation of codimension 2 or 3, and give the expressions of the saddle-node bifurcation curve, homoclinic bifurcation curve and the Hopf bifurcation curve. By translating E2 to ¯E2(1,1) (see [33] and [34]), we prove that system (1.5) undergoes a supercritical and subcritical Hopf bifurcation. Specially, system (1.5) undergoes a degenerate Hopf bifurcation and two limit cycles (the inner one is stable and the outer one is unstable) appear around ¯E2 (see Figure 4(c)). There exists bistable phenomena, that is the stable manifold of the saddle or unstable limit cycle can be treated as a separation curve between the basins of attraction of the origin and stable limit cycle or ¯E2. Hence, the main results of this paper complement and improve the previous paper [30]. In summary, the analysis about bifurcation enriches the dynamical behaviors of a Holling-Tanner predator-prey model with strong Allee effect. For the Holling-Tanner predator-prey model with strong Allee effect and Beddington-DeAngelis functional response, the dynamic properties of the system are worth further study by the method presented in this paper.
This work was supported by the Natural Science Foundation of Fujian Province (2021J01613, 2021J011032) and the Scientific Research Foundation of Minjiang University (MJY22027).
The authors declare there is no conflict of interest.
a10=u2∗(u∗−1)2(u∗−M)2u2∗−M,a01=−u2∗(u∗−1)2(u∗−M)2u2∗−M,a11=−2u∗(u∗−1)2(u∗−M)2u2∗−M,a20=u5∗−4(M+1)u4∗+(2M2+11M+2)u3∗−5M(M+1)u2∗+2M2u∗u2∗−M,a02=0,b10=u2∗(u∗−1)2(u∗−M)2u2∗−M,b01=−u2∗(u∗−1)2(u∗−M)2u2∗−M,b20=(1−u∗)(u∗−M)u∗,b11=u2∗(u∗−1)(u∗−M)(2u∗−M−1)u2∗−M,b02=−u∗(u∗−1)2(u∗−M)2u2∗−M,c20=u4∗(u∗−1)2(u∗−M)2(u3∗−3Mu∗+M2+M)(u2∗−M)2,c11=−2u∗(u∗−1)2(u∗−M)2u2∗−M,c02=0,d20=u6∗(u∗−1)4(u∗−M)4(u3∗−3Mu∗+M2+M)(u2∗−M)3,d11=u4∗(u∗−1)3(u∗−M)3(M+1−2u∗)(u2∗−M)2,d02=−u∗(u∗−1)2(M−u∗)2u2∗−M,¯a10=u22∗(u2∗−1)2(u2∗−M)2u22∗−M,¯a01=−u22∗(u2∗−1)2(u2∗−M)2u22∗−M,¯a20=u52∗−4(M+1)u42∗+(2M2+11M+2)u32∗−5M(M+1)u22∗+2M2u2∗u22∗−M,¯a11=−2u2∗(u2∗−1)2(u2∗−M)2u22∗−M,¯a21=−(u2∗−1)2(u2∗−M)2u22∗−M,¯a30=−2u42∗+2(M+1)u32∗−(M2+11M+1)u22∗+4M(M+1)u2∗−M2u22∗−M,¯a40=−3u32∗−5Mu2∗+M2+Mu22∗−M,¯b10=u22∗(u2∗−1)2(u2∗−M)2u22∗−M,¯b01=−u22∗(u2∗−1)2(u2∗−M)2u22∗−M,¯b11=u22∗(u2∗−1)(u2∗−M)(2u2∗−M−1)u22∗−M,¯b02=−u2∗(u2∗−1)2(u2∗−M)2u22∗−M,¯b20=−(u2∗−1)(u2∗−M)u2∗,¯b21=−(u2∗−1)(u2∗−M),¯b12=(u2∗−1)(u2∗−M),¯c20=−u42∗(u2∗−1)2(u2∗−M)2(u32∗−3Mu2∗+M2+M)(u22∗−M)2,¯c02=3u2∗,¯c21=−3u22∗, |
¯c30=Q1u32∗(u2∗−M)(1−u2∗)(u22∗−M)2,¯c12=5u22∗−4(M+1)u2∗+3Mu22∗(1−u2∗)(u2∗−M),¯c40=−Q2u22∗(u22∗−M)2,¯c31=−2Q3u2∗(u2∗−1)(u2∗−M)(u22∗−M),¯c22=7u22∗−5(M+1)u2∗+3Mu32∗(u2∗−M)(u2∗−1),Q1=3u52∗−4(M+1)u42∗−2Mu32∗+12M(M+1)u22∗−M(3M2+19M+3)u2∗+4M2(M+1),Q2=u72∗−8(M+1)u62∗+(6M2+28M+6)u52∗−4M(M+1)u42∗−(15M3+53M2+15M)u32∗+[3M(M3+1)+55M2(M+1)]u22∗−2M2(5M2+21M+5)u2∗+6M3(M+1),Q3=4u42∗−3M(M+1)u32∗−6Mu22∗+7M(M+1)u2∗−M(M2+4M+1). |
˜a10=S∗(1+A),˜a01=−(1+A)(a−1)(M−1),˜a20=2S∗(1+A)−A+M+a−3,˜a11=2(1+A)(a−1)(M−1),˜a02=0,˜a30=S∗(1+A)+2(M−A+a)−7,˜a12=0,˜a21=−(1+A)(a−1)(M−1),˜a03=0,˜b10=S∗(1+A),˜b01=−S∗(1+A),˜b20=S∗,˜b11=S∗A,˜b02=−S∗(1+A),˜b30=0,˜b21=S∗,˜b12=−S∗,˜b03=0,˜c20=3+A−a−M,˜c11=2√E,˜c02=0,˜c30=2(M−A+a)−7,˜c21=−√E,˜c12=0,˜c03=0,˜d20=S∗Q4√E(a−1)(1−M),˜d11=S∗[(3AM+2−A)a+2M−AM−A−4](a−1)(1−M),˜d02=S∗√E(a−1)(1−M),˜d30=S∗Q5√E(a−1)(M−1),˜d21=−S∗Q6(1+A)(a−1)(M−1),˜d12=−S∗√E(1+A)(a−1)(M−1),˜d03=0Q4=k(Ma−2)A2+[2k(Ma−6)+2(M+a)2−2Ma(Ma−2)]A−k(3Ma+14)+4(M+a)2+4Ma−3,Q5=2(Ma−k)A3−[(Ma+14)k−2(M+a)2−8Ma+1]A2−[2(Ma+13)k−5(M+a)2]A+[(Ma−6)2−12]A−(3Ma+16)k+4(M+a)2+3(2Ma−1),Q6=(Ma−k)A2+(3Ma−M−a−1)A+2(k−1). |
ˆa00=−u3∗λ1,ˆa10=u2∗[(A0+u∗)(1−u∗)+(−A0−2u∗+1)(u∗−M)−2λ1],ˆa01=−u2∗(Q0+λ1),ˆa20=u2∗(−A0−3u∗+1+M)+2u∗[(A0+u∗)(1−u∗)+(−A0−2u∗+1)(u∗−M)]−λ1u∗,ˆa02=0,ˆa11=−2u∗(Q0+λ1),ˆb00=0,ˆb10=u∗(S0+λ2)(A0+u∗),ˆb01=−u∗(S0+λ2)(A0+u∗),ˆb20=u∗(S0+λ2),ˆb11=(S0+λ2)A0,ˆb02=−(S0+λ2)(A0+u∗),ˆc00=ˆa200ˆb02ˆa01−ˆb01, |
ˆc10=ˆb02(2ˆa00ˆa01ˆa10−ˆa200ˆa11)ˆa201−ˆa00ˆb11+ˆa01ˆb10−ˆa10ˆb01,ˆc01=ˆa10+ˆb01−ˆa00(ˆa11+2ˆb02)ˆa01,ˆc20=ˆb02(−2ˆa00ˆa01ˆa10ˆa11+ˆa200ˆa211+2ˆa00ˆa201ˆa20+ˆa201ˆa210)ˆa301+ˆa01ˆb20−ˆa10ˆb11+ˆa11ˆb10−ˆa20ˆb01,ˆc11=ˆa00ˆa11(ˆa11+2ˆb02)−ˆa01ˆa10(ˆa11−2ˆb02)ˆa201+2ˆa20+ˆb11,ˆc02=ˆa11+ˆb02ˆa01,σ1=u∗(u2∗−M)[3(M+1)u2∗−(M2+10M+1)u∗+3M(M+1)]4(u∗−1)4(u∗−M)4(u3∗−3u∗M+M2+M)3,σ2=0,ψ1=12(u2∗−M)[3(M+1)u2∗−(M2+10M+1)u∗+3M(M+1)]Q9(u∗−1)3(u∗−M)3(u3∗−3u∗M+M2+M)2,ψ2=3(M+1)u2∗−(M2+10M+1)u∗+3M(M+1)(u∗−1)(u∗−M)(u3∗−3u∗M+M2+M),Q9=4u5∗−13(M+1)u4∗+[9(M2+1)+34M]u3∗−[2(M3+1)+18M(M+1)]u2∗+M[3(M2+1)+2M]u∗+M2(M+1). |
α00=−(u2∗−1)(u2∗−M)u22∗ξ1−u32∗ξ2,α01=−u22∗(Q1+ξ2),α10=u22∗[(u2∗+A1)(1−u2∗)+(1−2u2∗−A1)(u2∗−M)]−[4u32∗−3(M+1)u22∗+2Mu2∗]ξ1−2u22∗ξ2,α20=−9u32∗+5(1+M−A1)u22∗+2(A1+A1M−M)u2∗+[−6u22∗+3(M+1)u2∗−M]ξ1−u2∗ξ2,α11=−2u2∗(Q1+ξ2),α30=−10u22∗+4(M+1−A1)u2∗+A1+A1M−M+(1+M−4u2∗)ξ1,α21=−(Q1+ξ2),α40=1+M−A1−5u2∗−ξ1,β10=(S1+ξ3)(u2∗+A1+ξ1)u2∗,β01=−(S1+ξ3)(u2∗+A1+ξ1)u2∗,β20=(S1+ξ3)u2∗,β11=(S1+ξ3)(A1+ξ1),β02=−(S1+ξ3)(u2∗+A1+ξ1),β21=S1+ξ3,β12=−(S1+ξ3),γ00=α200β02α01−α00β01,γ10=α00[α00(α01β12−α11β02)]+2α01α10β02α201−α00β11+α01β10−α10β01,γ01=−α00k1α01+α10+β01,γ20=α200α211β02α301−α00[α00(α11β12+α21β02)+2α10α11β02]α201+2α00(α10β12+β02α20)+α210β02α01+α11β10−α10β11+α01β20−α20β01−α00β21,γ11=α00α11k1α201−2α00k2+α10k1α01+2α20+β11,γ02=α11+β02α01, |
γ30=−α200α311β02α401+α00α11[α00α11β12+2β02(α00α21+α10α11]α301−β02[2α00(α10α21+α11α20)+α210α11]α201−α00β12(α00α21+2α10α11)α201+2β02(α00α30+α10α20)+β12(2α00α20+α210)α01−α10β12+α11β20−α20β11+α21β10−α30β01,γ21=−α00α211k1α301+α00(2α11k2+α21k1)+α11α10k1α201−2α10k2+α20k1α01+3α30+β21,γ12=−α211+α11β02α201+α21+k2α01,γ40=α200α411β02α501−α00α211[α00(α11β12+3α21β02)+2α10α11β02]α401+α211[2α00α10β12+β02(2α00α20+α210)]α301+α21α00[α00(2α11β12+α21β02)+4α10α11β02]α301−2α00[α21(α10β12+α20β12)+α11(α20β12+α30β02)]α201+α10[α10α11β12+β02(α10α21+2α11α20)]α201+2α00(α30β12+α40β02)+2α10(α20β12+α30β02)α01+α220β02α01−α20β21+α21β20−α30β11−α40β01,γ31=α00α311k1α401−α11k1(2α00α21+α10α11)+2α00α211k2α301+2k2(α00α21+α10α11)+(α10α21+α11α20)k1α201−2α20k2+α30k1α01+4α40,γ22=α211(α11+β02)α301−α11(3α21+β12)+α21β02α201,k1=α11+2β02,k2=α21+β12,δ00=γ00,δ10=γ10−γ00γ02,δ01=γ01,δ20=γ20+γ00γ202−γ10γ022,δ11=γ11,δ30=γ30−γ302γ00+γ202γ102,δ21=γ21+γ11γ022,δ12=γ12+2γ202,δ40=γ40+γ402γ00+γ02(γ30−γ202γ10)2+γ20γ2024,δ31=γ31+γ02γ21,ϵ00=δ00,ϵ10=δ10,ϵ01=δ01,ϵ20=δ20−δ00δ122,ε11=δ11,ε30=δ30−δ10δ123,ϵ21=δ21,ϵ40=δ40−δ20δ126+δ00δ2124,ϵ31=δ31+δ11δ126,ζ00=ϵ00,ζ10=ϵ10−ϵ00ϵ302ϵ20,ζ01=ϵ01,ζ20=ϵ20−3204ϵ00ϵ40+5ϵ10ϵ30ϵ20+916ϵ00ϵ230ϵ220, |
ζ11=ϵ11−ϵ01ϵ302ϵ20,ζ30=78ϵ230ϵ10ϵ220−45ϵ10ϵ40ϵ20,ζ21=ϵ21−3204ϵ01ϵ40+5ϵ11ϵ30ϵ20+916ϵ01ϵ230ϵ220,ζ40=1100ϵ40(36ϵ00ϵ40+25ϵ10ϵ30)ϵ220−3320ϵ230(24ϵ00ϵ40+25ϵ10ϵ30)ϵ320−11256ϵ00ϵ430ϵ420,ζ31=ϵ31−154ϵ11ϵ40+5ϵ21ϵ30ϵ20+78ϵ11ϵ230ϵ220,η00=ζ00,η10=ζ10,η01=ζ01−ζ00ζ21ζ20,η20=ζ20,η11=ζ11−ζ10ζ21ζ20,η31=ζ31−ζ21ζ30ζ20,θ00=−ζ00ζ4531ζ−7520,θ10=ζ10ζ2531ζ−6520,θ01=ζ01ζ1531ζ−3520,θ11=−ζ11ζ−1531ζ−2520,ω1=ζ00+ζ2104,ω2=ζ01−ζ3108+ζ11ζ102,ω3=ζ11−3ζ2104,R3=g1u132∗+g2u122∗+g3u112∗+g4u102∗+g5u92∗+g6u82∗+g7u72∗+g8u62∗+g9u52∗+g10u42∗+g11u32∗+g12u22∗+g13u2∗+g14,R4=h1u202∗+h2u192∗+h3u182∗+h4u172∗+h5u162∗+h6u152∗+h7u142∗+h8u132∗+h9u122∗+h10u112∗+h11u102∗+h12u92∗+h13u82∗+h14u72∗+h15u62∗+h16u52∗+h17u42∗+h18u32∗+h19u22∗+h20u2∗+h21,g1=−320,g2=311k3,g3=−173k4+2558M,g4=k3(56k4−3349M),g5=−8(−k5298Mk4+486M2),g6=−2Mk3(605k4−3409M),g7=2M(187k5−1415Mk4+3428M2),g8=−2Mk3(26k5−623Mk4+6315M2),g9=−4M2(118k5−1115Mk4−346M2),g10=M2k3(111k5−486Mk4+9913M2),g11=−M2(9k6+120Mk5+6116M2k4+11346M3),g12=M3k3(19k5+1470Mk4+2309M2),g13=−12M4k23(11k4+9M),g14=−12M5k33,h1=11520k3,h2=3(60883k4+15018M),h3=−6k3(25129k4+167002M),h4=182649k5+1736028Mk4+3321606M2,h5=−2k3(53164k5+245921Mk4−1612974M2),h6=29268k6−1050541Mk5−15072068M2k4−32265990M3,h7=−2k3(1532k6−654501Mk5−8849259M2k4−16958428M3),h8=−609623Mk6−9723065M2k5−20756221M3k4−10504310M4,h9=2Mk3(66036k6+50527Mk5−16280665M2k4−45185232M3),h10=−11156Mk7+1924279M2k6+46178665M3k5+207988363M4k4+314062810M5,h11=−6M2k3(141651k6+3796436Mk5+19095742M2k4+29359122M3),h12=152079M2k7+4622238M3k6+19710519M4k5+12868326M5k4+10044732M6,h13=−2M2k3(5048k7−230821Mk6−12324784M2k5−84339640M3k4−151455250M4),h14=−367715M3k7−16480950M4k6−170511559M5k5−622946226M6k4−958625532M7,h15=2M3k3(30339k7+2210707Mk6+33411415M2k5+162933602M3k4+292106446M4), |
h16=−3369M3k8−596029M4k7−16375136M5k6−140312707M6k5−484562419M7k4−723045944M8,h17=2M4k3(15881k7+982239Mk6+13527481M2k5+62415498M3k4+102449718M4),h18=−101269M5k7−3242277M6k6−27666533M7k5−87108930M8k4−125166810M9,h19=12M6k33(12631k5+185808Mk4+467593M2),h20=−108M7k43(977k4+4393M),h21=19008M8k53,k3=M+1,k4=M2+1,k5=M4+1,k6=M6+1,k7=M8+1,k8=M10+1. |
[1] |
S. X. Yan, D. X. Jia, T. H. Zhang, S. L. Yuan, Pattern dynamic in a diffusive predator-prey model with hunting cooperations, Chaos Solitons Fract., 130 (2020), 109428. https://doi.org/10.1016/j.chaos.2019.109428 doi: 10.1016/j.chaos.2019.109428
![]() |
[2] |
D. Tang, Y. M. Chen, Predator-prey systems in open advective heterogeneous environments with Holling-Tanner interaction term, J. Differ. Equations, 334 (2022), 280–308. https://doi.org/10.1016/j.jde.2022.06.022 doi: 10.1016/j.jde.2022.06.022
![]() |
[3] |
W. Ding, W. Z. Huang, Global dynamics of a ratio-dependent Holling-Tanner predator-prey system, J. Math. Anal. Appl., 460 (2018), 458–475. https://doi.org/10.1016/j.jmaa.2017.11.057 doi: 10.1016/j.jmaa.2017.11.057
![]() |
[4] |
S. L. Yuan, D. M. Wu, G. J. Lan, H. Wang, Noise-induced transitions in a nonsmooth predator-prey model with stoichiometric constraints, Bull. Math. Biol., 55 (2020), 2250086. https://doi.org/10.1007/s11538-020-00733-y doi: 10.1007/s11538-020-00733-y
![]() |
[5] |
S. Q. Zhang, T. H. Zhang, S. L. Yuan, Dynamics of a stochastic predator-prey model with habitat complexity and prey aggregation, Ecol. Compl., 45 (2021), 100889. https://doi.org/10.1016/j.ecocom.2020.100889 doi: 10.1016/j.ecocom.2020.100889
![]() |
[6] |
A. A. Berryman, A. P. Gutierrez, R. Arditi, Credible, parsimonious and useful predator-prey models-A reply to Abrams, Gleeson, and Sarnelle, Ecology, 76 (1995), 1980–1985. https://doi.org/10.2307/1940728 doi: 10.2307/1940728
![]() |
[7] | P. Turchin, Complex Population Dynamics: A Theoretical/Empirical Synthesis, Princeton University Press, 2003. https://doi.org/10.1515/9781400847280 |
[8] |
J. X. Zhao, Y. F. Shao, Bifurcations of a prey-predator system with fear, refuge and additional food, Math. Biosci. Eng., 20 (2023), 3700–3720. https://doi.org/10.3934/mbe.2023173 doi: 10.3934/mbe.2023173
![]() |
[9] |
Z. L. Zhu, M. X. He, Z. Li, F. D. Chen, Stability and bifurcation in a Logistic model with Allee effect and feedback control, Int. J Bifurcat. Chaos, 30 (2020), 2050231. https://doi.org/10.1142/s0218127420502314 doi: 10.1142/s0218127420502314
![]() |
[10] |
M. A. Han, J. Llibre, J. M. Yang, On uniqueness of limit cycles in general Bogdanov-Takens Bifurcation, Int. J. Bifurcat. Chaos, 28 (2018), 1850115. https://doi.org/10.1142/s0218127418501158 doi: 10.1142/s0218127418501158
![]() |
[11] |
T. Qiao, Y. L. Cai, S. M. Fu, W. M. Wang, Stability and Hopf bifurcation in a predator-prey model with the cost of anti-predator behaviors, Int. J. Bifurcat. Chaos, 29 (2019), 1950185. https://doi.org/10.1142/s0218127419501852 doi: 10.1142/s0218127419501852
![]() |
[12] |
P. H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika, 35 (1948), 213–245. https://doi.org/10.2307/2332342 doi: 10.2307/2332342
![]() |
[13] |
P. H. Leslie, J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219–234. https://doi.org/10.2307/2333294 doi: 10.2307/2333294
![]() |
[14] |
Z. L. Zhu, Y. M. Chen, Z. Li, F. D. Chen, Stability and bifurcation in a Leslie-Gower predator-prey model with Allee effect, Int. J. Bifurcat. Chaos, 32 (2022), 2250040. https://doi.org/10.1142/s0218127422500407 doi: 10.1142/s0218127422500407
![]() |
[15] |
W. Q. Yin, M. X. He, Z. Li, F. D. Chen, Modeling the Allee effect in the Lesile-Gower predator-prey system incorporating a prey refuge, Int. J. Bifurcat. Chaos, 32 (2022), 2250086. https://doi.org/10.1142/s0218127422500869 doi: 10.1142/s0218127422500869
![]() |
[16] |
C. Arancibia-Ibarra, J. Flores, Dynamics of a Leslie-Gower predator-prey model with Holling type II functional response, Allee effect and a generalist predator, Math. Comput. Simulat., 188 (2021), 1–22. https://doi.org/10.1016/j.matcom.2021.03.035 doi: 10.1016/j.matcom.2021.03.035
![]() |
[17] |
E. González-Olivares, C. Arancibia-Ibarra, A. Rojas-Palma, B. González-Ya˜nez, Bifurcations and multistability on the May-Holling-Tanner predation model considering alternative food for the predators, Math. Biosci. Eng., 16 (2019), 4274–4298. https://doi.org/10.3934/mbe.2019213 doi: 10.3934/mbe.2019213
![]() |
[18] |
R. Sivasamy, K. Sathiyanathan, K. Balachandran, Dynamics of a modified Leslie-Gower model with gestation effect and nonlinear harvesting, J. Appl. Anal. Comput., 9 (2019), 747–764. https://doi.org/10.11948/2156-907x.20180165 doi: 10.11948/2156-907x.20180165
![]() |
[19] |
J. Song, Qualitative analysis of a predator-prey system with ratio-dependent and modified Leslie-Gower functional response, J. Nonlinear Model. Anal., 2 (2020), 317–332. https://doi.org/10.12150/jnma.2020.317 doi: 10.12150/jnma.2020.317
![]() |
[20] |
C. Arancibia-Ibarra, The basins of attraction in a modified May-Holling-Tanner predator-prey model with Allee affect, Nonlinear Anal., 185 (2019), 15–28. https://doi.org/10.1016/j.na.2019.03.004 doi: 10.1016/j.na.2019.03.004
![]() |
[21] |
C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the European Pine Sawfly, Canad. Entomol., 91 (1959), 293–320. https://doi.org/10.4039/ent91293-5 doi: 10.4039/ent91293-5
![]() |
[22] |
E. Sáez, E. González-Olivares, Dynamics of a predator-prey model, SIAM J. Appl. Math., 59 (1999), 1867–1878. https://doi.org/10.1137/S0036139997318457 doi: 10.1137/S0036139997318457
![]() |
[23] | W. C. Allee, Animal Aggregations: A Study in General Sociology, University of Chicago Press, USA, 1931. https://doi.org/10.5962/bhl.title.7313 |
[24] |
Y. L. Cai, M. Banerjee, Y. Kang, W. M. Wang, Spatiotemporal complexity in a predator-prey model with weak Allee effects, Math. Biosci. Eng., 11 (2014), 1247–1274. https://doi.org/10.3934/mbe.2014.11.1247 doi: 10.3934/mbe.2014.11.1247
![]() |
[25] |
K. Manna, M. Banerjee, Stability of Hopf-bifurcating limit cycles in a diffusion-driven prey-predator system with Allee effect and time delay, Math. Biosci. Eng., 16 (2019), 2411–2446. https://doi.org/10.3934/mbe.2019121 doi: 10.3934/mbe.2019121
![]() |
[26] |
E. González-Olivares, J. Mena-Lorca, A. Rojas-Palma, J. Flores, Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey, Appl. Math. Model., 35 (2011), 366–381. https://doi.org/10.1016/j.apm.2010.07.001 doi: 10.1016/j.apm.2010.07.001
![]() |
[27] |
Y. J. Li, M. X. He, Z. Li, Dynamics of a ratio-dependent Leslie-Gower predator-prey model with Allee effect and fear effect, Math. Comput. Simulat., 201 (2022), 417–439. https://doi.org/10.1016/j.matcom.2022.05.017 doi: 10.1016/j.matcom.2022.05.017
![]() |
[28] |
N. Martínez-Jeraldo, P. Aguirre, Allee effect acting on the prey species in a Leslie-Gower predation model, Nonlinear Anal. Real World Appl., 45 (2019), 895–917. https://doi.org/10.1016/j.nonrwa.2018.08.009 doi: 10.1016/j.nonrwa.2018.08.009
![]() |
[29] |
C. Arancibia-Ibarra, J. Flores, Modelling and analysis of a modified May-Holling-Tanner predator-prey model with Allee effect in the prey and an alternative food source for the predator, Math. Biosci. Eng., 17 (2020), 8052–8073. https://doi.org/10.3934/mbe.2020408 doi: 10.3934/mbe.2020408
![]() |
[30] |
C. Arancibia-Ibarra, J. Flores, G. Pettet, P. Heijster, A Holling-Tanner predator-prey model with strong Allee effect, Int. J. Bifurcat. Chaos, 21 (2019), 1930032. https://doi.org/10.1142/s0218127419300325 doi: 10.1142/s0218127419300325
![]() |
[31] |
J. C. Huang, Y. J. Gong, J. Chen, Multiple bifurcations in a predator-prey system of Holling and Leslie type with constant-yield prey harvesting, Int. J. Bifurcat. Chaos, 10 (2013), 1350164. https://doi.org/10.1142/s0218127413501642 doi: 10.1142/s0218127413501642
![]() |
[32] | L. Perko, Differential Equations and Dynamical Systems, Springer, New York, 1996. https://doi.org/10.1007/978-1-4684-0392-3 |
[33] |
M. Lu, J. C. Huang, S. G. Ruan, P. Yu, Bifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence rate, J. Differ. Equations, 267 (2019), 1859–1898. https://doi.org/10.1016/j.jde.2019.03.005 doi: 10.1016/j.jde.2019.03.005
![]() |
[34] |
Y. F. Dai, Y. L. Zhao, B. Sang, Four limit cycles in a predator-prey system of Leslie type with generalized Holling type III functional response, Nonlinear Anal. Real World Appl., 50 (2019), 218–239. https://doi.org/10.1016/j.nonrwa.2019.04.003 doi: 10.1016/j.nonrwa.2019.04.003
![]() |
[35] |
J. C. Huang, S. H. Liu, S. G. Ruan, X. N. Zhang, Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting, Commun. Pure Appl. Anal., 15 (2016), 1041–1055. https://doi.org/10.3934/cpaa.2016.15.1041 doi: 10.3934/cpaa.2016.15.1041
![]() |
[36] |
C. Z. Li, J. Q. Li, Z. E. Ma, Codimension 3 B-T bifurcations in an epidemic model with a nonlinear incidenc, Discrete Contin. Dynam. Systems, 20 (2015), 1107–1116. https://doi.org/10.3934/dcdsb.2015.20.1107 doi: 10.3934/dcdsb.2015.20.1107
![]() |
[37] | S. N. Chow, C. Li, D. Wang, Normal Forms and Bifurcation of Planar Vector, Cambridge University Press, Cambridge, 1994. https://doi.org/10.1017/CBO9780511665639 |
[38] | F. Dumortier, R. Roussarie, J. Sotomayor, K. Zoladek, Bifurcation of Planar Vector Fields, Nilpotent Singularities and Abelian Integrals, Lect. Notes Math., vol. 1480, Springer-Verlag, Berlin, 1991. https://doi.org/10.1007/BFb0098353 |
[39] | F. Dumortier, R. Roussarie, J. Sotomayor, Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3, Ergod. Theory Dyn. Syst. 7 (1987), 375–413. https://doi.org/10.1017/s0143385700004119 |
1. | Fidadelfo Mondragón-Sánchez, Gamaliel Blé, Miguel Angel Dela-Rosa, Zero Hopf Bifurcation and Chaotic Behavior in a Leslie Tritrophic Model, 2023, 9, 2349-5103, 10.1007/s40819-023-01613-4 | |
2. | Yue Xia, Lijuan Chen, Vaibhava Srivastava, Rana D. Parshad, Stability and bifurcation analysis of a two-patch model with the Allee effect and dispersal, 2023, 20, 1551-0018, 19781, 10.3934/mbe.2023876 | |
3. | Xiaoyue Yuan, Wenjun Liu, Guangying Lv, Ali Moussaoui, Pierre Auger, Sustainable management of predatory fish affected by an Allee effect through marine protected areas and taxation, 2024, 373, 00255564, 109220, 10.1016/j.mbs.2024.109220 | |
4. | Mengyun Xing, Mengxin He, Zhong Li, Dynamics of a modified Leslie-Gower predator-prey model with double Allee effects, 2023, 21, 1551-0018, 792, 10.3934/mbe.2024034 | |
5. | Fengde Chen, Zhong Li, Qin Pan, Qun Zhu, Bifurcations in a Leslie–Gower predator–prey model with strong Allee effects and constant prey refuges, 2025, 192, 09600779, 115994, 10.1016/j.chaos.2025.115994 | |
6. | Zhenliang Zhu, Qun Zhu, Lingling Liu, Bifurcations of higher codimension in a Leslie–Gower predator–prey model with Holling II functional response and weak Allee effect, 2025, 382, 00255564, 109405, 10.1016/j.mbs.2025.109405 |