Citation: Niksa Praljak, Shawn D. Ryan, Andrew Resnick. Pulsatile flow through idealized renal tubules: Fluid-structure interaction and dynamic pathologies[J]. Mathematical Biosciences and Engineering, 2020, 17(2): 1787-1807. doi: 10.3934/mbe.2020094
[1] | I. Mnassri, A. El Baroudi, Vibrational frequency analysis of finite elastic tube filled with compressible viscous fluid, Acta Mech. Solida Sin., 30 (2017), 435-444. |
[2] | R. M. Terrill, An exact solution for flow in a porous pipe, Z. Angew. Math. Phys., 33 (1982), 547-552. |
[3] | O. San, A. E. Staples, Dynamics of pulsatile flows through elastic microtubes, Int. J. Appl. Mech., 4 (2012). |
[4] | S. Nag, A. Resnick, Biophysics and biofluid dynamics of primary cilia: Evidence for and against the flow-sensing function, Am. J. Physiol. Renal Physiol., 313 (2017), 706-720. |
[5] | M. J. Lighthill, Mathematical Biofluiddynamics, Society for Industrial and Applied Mathematics, Philadelphia, 1975. |
[6] | A. El Baroudi, F. Razafimahery, L. Rakotomanana, Fluid-structure interaction within three-dimensional models of an idealized arterial wall, Int. J. Eng. Sci., 84 (2014), 113-126. |
[7] | M. Zamir, The Physics of Pulsatile Flow, Springer-Verlag, New York, 2000. |
[8] | P. D. Cabral, J. L. Garvin, Luminal flow regulates no and o2(-) along the nephron, Am. J. Physiol. Renal Physiol., 300 (2011), 1047-1053. |
[9] | L. M. Satlin, S. Sheng, C. B. Woda, T. R. Kleyman, Epithelial Na(+) channels are regulated by flow, Am. J. Physiol. Renal Physiol., 280 (2001), 1010-1018. |
[10] | M. Essig, G. Friedlander, Tubular shear stress and phenotype of renal proximal tubular cells, J. Am. Soc. Nephrol, 14 (2003), S33-35. |
[11] | J. B. Freund, J. G. Goetz, K. L. Hill, J. Vermot, Fluid flows and forces in development: Functions, features and biophysical principles, Development, 139 (2012), 1229-1245. |
[12] | F. Kotsis, R. Nitschke, M. Doerken, G. WalzE, W, Kuehn, Flow modulates centriole movements in tubular epithelial cells, Pflugers Arch, 456 (2008), 1025-1035. |
[13] | A. B. Maunsbach, G. H. Giebisch, B. A. Stanton, Effects of flow rate on proximal tubule ultrastructure, Am. J. Physiol., 253 (1987), 582-587. |
[14] | H. A. Praetorius, K. R. Spring, Removal of the mdck cell primary cilium abolishes flow sensing, J. Membr. Biol., 191 (2002), 69-76. |
[15] | H. A. Praetorius, K. R. Spring, The renal cell primary cilium functions as a flow sensor, Curr. Opin. Nephrol Hypertens, 12 (2003), 517-520. |
[16] | D. J. Furley, J. S. Wilkie, Galen on Respiration and the Arteries: an Edition with English Translation and Commentary of De usu Respirationis, An in Arteriis Natura Sanguis Contineatur, De usu Pulsum, and De Causis Respirationis, Princeton University Press, Guildford, 1984. |
[17] | W. Harvey, On the Motion of the Heart and Blood in Animals; and on the Circulation of the Blood; and on the Generation of Animals, William Benton, Chicago, 1952. |
[18] | J. R. Womersley, Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known, J. Physiol., 127 (1955), 553-563. |
[19] | J. R. Womersley, Xxiv. oscillatory motion of a viscous liquid in a thin-walled elastic tubei: The linear approximation for long waves, London, Edinburgh, Dublin Philos. Mag. J. Sci., 46 (1955), 199-221. |
[20] | J. Womersley, An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries, 1957. |
[21] | R. I. Macey, Pressure flow patterns in a cylinder with reabsorbing walls, Bull. Math. Biophy., 25 (1963), 1-9. |
[22] | E. A. Marshall, E. A. Trowbridge, Flow of a newtonian fluid through a permeable tube - application to proximal renal tubule, Bull. Math. Bio., 36 (1974), 457-476. |
[23] | C. Pozrikidis, Stokes flow through a permeable tube, Arch. Appl. Mech., 80 (2010), 323-333. |
[24] | A. M. Weinstein, Nonequilibrium thermodynamic model of the rat proximal tubule epithelium, Biophys. J., 44 (1983), 153-70. |
[25] | A. M. Weinstein, A mathematical model of the rat proximal tubule, Am. J. Physiol., 250 (1986), 860-873. |
[26] | A. M. Weinstein, A mathematical model of rat ascending henle limb. i. cotransporter function, Am. J. Physiol. Renal Physiol., 298 (2010), 512-524. |
[27] | A. M. Weinstein, A mathematical model of rat ascending henle limb. iii. tubular function, Am. J. Physiol. Renal Physiol., 298 (2010), 543-556. |
[28] | A. M. Weinstein, T. A. Krahn, A mathematical model of rat ascending henle limb. ii. epithelial function, Am. J. Physiol. Renal Physiol., 298 (2010), 525-542. |
[29] | A. M. Weinstein, A mathematical model of rat collecting duct. i. flow effects on transport and urinary acidification, Am. J. Physiol. Renal Physiol., 283 (2002), 1237-1251. |
[30] | M. E. Downs, A. M. Nguyen, F. A. Herzog, D. A. Hoey, C. R. Jacobs, An experimental and computational analysis of primary cilia deflection under fluid flow, Comput. Methods Biomech. Biomed. Eng., 17 (2014), 2-10. |
[31] | W. Liu, S. Xu, C. Woda, P. Kim, S. Weinbaum, L. M. Satlin, Effect of flow and stretch on the [Ca2+] i response of principal and intercalated cells in cortical collecting duct, Am. J. Physiol. Renal Physiol., 285 (2003), 998-1012. |
[32] | A. K. O'Connor, E. B. Malarkey, N. F. Berbari, M. J. Croyle, C. J. Haycraft, P. D. Bell, et al., An inducible ciliagfp mouse model for in vivo visualization and analysis of cilia in live tissue, Cilia, 2 (2013), 8. |
[33] | A. T. Layton, L. C. Moore, H. E. Layton, Signal transduction in a compliant thick ascending limb, Am. J. Physiol. Renal Physiol., 302 (2012), 1188-1202. |
[34] | D. J. Marsh, O. V. Sosnovtseva, E. Mosekilde, N. H. Holstein-Rathlou, Vascular coupling induces synchronization, quasiperiodicity, and chaos in a nephron tree, Chaos, 17 (2007), 015114. |
[35] | A. T. Layton, H. E. Layton, A computational model of epithelial solute and water transport along a human nephron, PLoS Comput. Biol., 15 (2019), e1006108. |
[36] | COMSOL Multiphysics^{®} v. 5.4. www.comsol.com. COMSOL AB, Stockholm, Sweden. |
[37] | M. Dejam, Dispersion in non-newtonian fluid flows in a conduit with porous walls, Chem. Eng. Sci., 189 (2018), 296-310. |
[38] | M. Dejam, H. Hassanzadeh, Z. X. Chen, Shear dispersion in combined pressure-driven and electro-osmotic flows in a channel with porous walls, Chem. Eng. Sci., 137 (2015), 205-215. |
[39] | M. Zamir, Hemo-Dynamics, Springer International Publishing, 2015. |
[40] | A. T. Layton, Modeling transport and flow regulatory mechanisms of the kidney, ISRN Biomath., 2012 (2012). |
[41] | A. T. Layton, L. C. Moore, H. E. Layton, Multistable dynamics mediated by tubuloglomerular feedback in a model of coupled nephrons, Bull. Math. Bio., 71 (2009). |
[42] | H. B. Atabek, Wave propagation through a viscous fluid contained in a tethered, initially stresses, orthotropic elastic tube, Biophys. J., 8 (1968), 626-649. |
[43] | M. A. Day, The no-slip condition of fluid dynamics, Erkenntnis, 33 (1990), 285-296. |
[44] | B. J. Cox, J. M. Hill, Flow through a circular tube with a permeable navier slip boundary, Nanoscale Res. Lett., 6 (2011), 389. |
[45] | L. N. Reinking, B. Schmidt-Nielsen, Peristaltic flow of urine in the renal capillary collecting ducts of hamsters, Kidney Int., 20 (1981), 55-60. |
[46] | M. Pradella, R. M. Dorizzi, F. Rigolin, Relative density of urine: Methods and clinical significance, Crit. Rev. Clin. Lab. Sci., 26 (1988), 195-242. |
[47] | B. Vahidi, N. Fatouraee, A. Imanparast, A. N. Moghadam, A mathematical simulation of the ureter: Effects of the model parameters on ureteral pressure/flow relations, J. Biomech. Eng., 133 (2011), 031004. |
[48] | S. Cortell, F. J. Gennari, M. Davidman, W. H. Bossert, W. B. Schwartz, A definition of proximal and distal tubular compliance. Practical and theoretical implications, J. Clin. Invest., 52 (1973), 2330-2339. |
[49] | N. H. Holstein-Rathlou, D. J. Marsh, Oscillations of tubular pressure, flow, and distal chloride concentration in rats, Am. J. Physiol., 256 (1989), 1007-1014. |
[50] | E. Gonzalez, P. Carpi-Medina, G. Whittembury, Cell osmotic water permeability of isolated rabbit proximal straight tubules, Am. J. Physiol., 242 (1982), 321-330. |
[51] | E. Frömter, C. Mller, T. Wick, Permeability properties of the proximal tubular epithelium of the rat kidney studied with electrophysiological methods, Electrophysiol. Epithelial Cells, (1971), 119-146. |
[52] | J. A. Schafer, Transepithelial osmolality differences, hydraulic conductivities, and volume absorption in the proximal tubule, Annu. Rev. Physiol., 52 (1990), 709-726. |
[53] | J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, Sinauer, 2001. |
[54] | T. Sakai, D. A. Craig, A. S. Wexler, D. J. Marsh, Fluid waves in renal tubules, Biophys. J., 50 (1986), 805-813. |
[55] | M. Mahran, A. ELsabbagh, H. Negm, A comparison between different finite elements for elastic and aero-elastic analyses, J. Adv. Res., 8 (2017), 635-648. |
[56] | R. Carrisoza-Gaytan, Y. Liu, D. Flores, C. Else, H. G. Lee, G. Rhodes, et al., Effects of biomechanical forces on signaling in the cortical collecting duct (ccd), Am. J. Physiol. Renal Physiol., 307 (2014), 195-204. |
[57] | J. J. Kang, I. Toma, A. Sipos, F. McCulloch, J. Peti-Peterdi, Quantitative imaging of basic functions in renal (patho) physiology, Am. J. Physiol. Renal Physiol., 291 (2006), 495-502. |
[58] | A. T. Layton, L. C. Moore, H. E. Layton, Multistability in tubuloglomerular feedback and spectral complexity in spontaneously hypertensive rats, Am. J. Physiol. Renal Physiol., 291 (2006) 79-97. |
[59] | E. B. Pitman, R. M. Zaritski, K. J. Kesseler, L. C. Moore, H. E. Layton, Feedback-mediated dynamics in two coupled nephrons, Bul. Math. Bio., 66 (2004), 1463-1492. |
[60] | J. L. Laugesen, E. Mosekilde, N.-H. Holstein-Rathlou, Synchronization of period-doubling oscillations in vascular coupled nephrons, Chaos: Interdiscip. J. Nonlinear Sci., 21 (2011), 033128. |
[61] | D. J. Marsh, O. V. Sosnovtseva, E. Mosekilde, N. H. Holstein-Rathlou, Vascular coupling induces synchronization, quasiperiodicity, and chaos in a nephron tree, Chaos: Interdiscip. J. Nonlinear Sci., 17 (2007), 015114. |