Using nonlinear model predictive control to find optimal therapeutic strategies to modulate inflammation

  • Received: 01 March 2010 Accepted: 29 June 2018 Published: 01 October 2010
  • MSC : Primary: 92C50, 93C15; Secondary: 93C83.

  • Modulation of the inflammatory response has become a key focal point in the treatment of critically ill patients. Much of the computational work in this emerging field has been carried out with the goal of unraveling the primary drivers, interconnections, and dynamics of systemic inflammation. To translate these theoretical efforts into clinical approaches, the proper biological targets and specific manipulations must be identified. In this work, we pursue this goal by implementing a nonlinear model predictive control (NMPC) algorithm in the context of a reduced computational model of the acute inflammatory response to severe infection. In our simulations, NMPC successfully identifies patient-specific therapeutic strategies, based on simulated observations of clinically accessible inflammatory mediators, which outperform standardized therapies, even when the latter are derived using a general optimization routine. These results imply that a combination of computational modeling and NMPC may be of practical use in suggesting novel immuno-modulatory strategies for the treatment of intensive care patients.

    Citation: Judy Day, Jonathan Rubin, Gilles Clermont. Using nonlinear model predictive control to find optimal therapeutic strategies to modulate inflammation[J]. Mathematical Biosciences and Engineering, 2010, 7(4): 739-763. doi: 10.3934/mbe.2010.7.739

    Related Papers:

    [1] Gregory Zitelli, Seddik M. Djouadi, Judy D. Day . Combining robust state estimation with nonlinear model predictive control to regulate the acute inflammatory response to pathogen. Mathematical Biosciences and Engineering, 2015, 12(5): 1127-1139. doi: 10.3934/mbe.2015.12.1127
    [2] Jiashuai Li, Xiuyan Peng, Bing Li, Victor Sreeram, Jiawei Wu, Ziang Chen, Mingze Li . Model predictive control for constrained robot manipulator visual servoing tuned by reinforcement learning. Mathematical Biosciences and Engineering, 2023, 20(6): 10495-10513. doi: 10.3934/mbe.2023463
    [3] Laurenz Göllmann, Helmut Maurer . Optimal control problems with time delays: Two case studies in biomedicine. Mathematical Biosciences and Engineering, 2018, 15(5): 1137-1154. doi: 10.3934/mbe.2018051
    [4] Xingjia Li, Jinan Gu, Zedong Huang, Wenbo Wang, Jing Li . Optimal design of model predictive controller based on transient search optimization applied to robotic manipulators. Mathematical Biosciences and Engineering, 2022, 19(9): 9371-9387. doi: 10.3934/mbe.2022436
    [5] Jing Jia, Yanfeng Zhao, Zhong Zhao, Bing Liu, Xinyu Song, Yuanxian Hui . Dynamics of a within-host drug resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(2): 2219-2231. doi: 10.3934/mbe.2023103
    [6] Norbert Hungerbühler . Optimal control in pharmacokinetic drug administration. Mathematical Biosciences and Engineering, 2022, 19(5): 5312-5328. doi: 10.3934/mbe.2022249
    [7] Ben Sheller, Domenico D'Alessandro . Analysis of a cancer dormancy model and control of immuno-therapy. Mathematical Biosciences and Engineering, 2015, 12(5): 1037-1053. doi: 10.3934/mbe.2015.12.1037
    [8] Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier . On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences and Engineering, 2017, 14(1): 217-235. doi: 10.3934/mbe.2017014
    [9] Shuo Wang, Heinz Schättler . Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences and Engineering, 2016, 13(6): 1223-1240. doi: 10.3934/mbe.2016040
    [10] Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov . Parametrization of the attainable set for a nonlinear control model of a biochemical process. Mathematical Biosciences and Engineering, 2013, 10(4): 1067-1094. doi: 10.3934/mbe.2013.10.1067
  • Modulation of the inflammatory response has become a key focal point in the treatment of critically ill patients. Much of the computational work in this emerging field has been carried out with the goal of unraveling the primary drivers, interconnections, and dynamics of systemic inflammation. To translate these theoretical efforts into clinical approaches, the proper biological targets and specific manipulations must be identified. In this work, we pursue this goal by implementing a nonlinear model predictive control (NMPC) algorithm in the context of a reduced computational model of the acute inflammatory response to severe infection. In our simulations, NMPC successfully identifies patient-specific therapeutic strategies, based on simulated observations of clinically accessible inflammatory mediators, which outperform standardized therapies, even when the latter are derived using a general optimization routine. These results imply that a combination of computational modeling and NMPC may be of practical use in suggesting novel immuno-modulatory strategies for the treatment of intensive care patients.


  • This article has been cited by:

    1. Yoram Vodovotz, Gary An, Agent‐based models of inflammation in translational systems biology: A decade later, 2019, 11, 1939-5094, 10.1002/wsbm.1460
    2. Mohamed Ghalwash, Vladan Radosavljevic, Zoran Obradovic, 2013, Early Diagnosis and Its Benefits in Sepsis Blood Purification Treatment, 978-0-7695-5089-3, 523, 10.1109/ICHI.2013.81
    3. Gary An, Judy Day, 2021, 9780128160787, 318, 10.1016/B978-0-12-801238-3.11513-2
    4. Gregory Zitelli, Seddik M. Djouadi, Judy D. Day, Combining robust state estimation with nonlinear model predictive control to regulate the acute inflammatory response to pathogen, 2015, 12, 1551-0018, 1127, 10.3934/mbe.2015.12.1127
    5. Ivan Stojkovic, Zoran Obradovic, 2017, Predicting Sepsis Biomarker Progression under Therapy, 978-1-5386-1710-6, 19, 10.1109/CBMS.2017.16
    6. Jan Ewald, Patricia Sieber, Ravindra Garde, Stefan N. Lang, Stefan Schuster, Bashar Ibrahim, Trends in mathematical modeling of host–pathogen interactions, 2020, 77, 1420-682X, 467, 10.1007/s00018-019-03382-0
    7. Ivan Ramirez-Zuniga, Jonathan E. Rubin, David Swigon, Gilles Clermont, Mathematical modeling of energy consumption in the acute inflammatory response, 2019, 460, 00225193, 101, 10.1016/j.jtbi.2018.08.033
    8. O. Bara, S.M. Djouadi, J.D. Day, S. Lenhart, Immune therapeutic strategies using optimal controls with L 1 and L 2 type objectives, 2017, 290, 00255564, 9, 10.1016/j.mbs.2017.05.010
    9. Ouassim Bara, Michel Fliess, Cedric Join, Judy Day, Seddik M. Djouadi, 2016, Model-free immune therapy: A control approach to acute inflammation, 978-1-5090-2591-6, 2102, 10.1109/ECC.2016.7810602
    10. Gary An, Chase Cockrell, Judy Day, 2021, Chapter 5, 978-3-030-56509-1, 71, 10.1007/978-3-030-56510-7_5
    11. Ouassim Bara, Seddik M. Djouadi, Judy Day, 2016, Immune therapy using optimal control with L1 type objective, 978-1-4673-8682-1, 4895, 10.1109/ACC.2016.7526128
    12. Ouassim Bara, Judy Day, Seddik M. Djouadi, 2013, Nonlinear state estimation for complex immune responses, 978-1-4673-5717-3, 3373, 10.1109/CDC.2013.6760399
    13. Ouassim Bara, Judy Day, Seddik M. Djouadi, 2015, Optimal control of an inflammatory immune response model, 978-1-4799-7886-1, 1283, 10.1109/CDC.2015.7402388
    14. A. Bayani, J. L. Dunster, J. J. Crofts, M. R. Nelson, Mechanisms and Points of Control in the Spread of Inflammation: A Mathematical Investigation, 2020, 82, 0092-8240, 10.1007/s11538-020-00709-y
    15. Yuyang Chen, Kaiming Bi, Chih-Hang (John) Wu, David Ben-Arieh, A new evidence-based optimal control in healthcare delivery: A better clinical treatment management for septic patients, 2019, 137, 03608352, 106010, 10.1016/j.cie.2019.106010
    16. Vladan Radosavljevic, Kosta Ristovski, Zoran Obradovic, 2012, A data mining approach for optimization of acute inflammation therapy, 978-1-4673-2560-8, 1, 10.1109/BIBM.2012.6392659
    17. Judy D. Day, Diana M. Metes, Yoram Vodovotz, Mathematical Modeling of Early Cellular Innate and Adaptive Immune Responses to Ischemia/Reperfusion Injury and Solid Organ Allotransplantation, 2015, 6, 1664-3224, 10.3389/fimmu.2015.00484
    18. Yoram Vodovotz, Ashley Xia, Elizabeth L. Read, Josep Bassaganya-Riera, David A. Hafler, Eduardo Sontag, Jin Wang, John S. Tsang, Judy D. Day, Steven H. Kleinstein, Atul J. Butte, Matthew C. Altman, Ross Hammond, Stuart C. Sealfon, Solving Immunology?, 2017, 38, 14714906, 116, 10.1016/j.it.2016.11.006
    19. J. Tallon, B. Browning, F. Couenne, C. Bordes, F. Venet, P. Nony, F. Gueyffier, V. Moucadel, G. Monneret, M. Tayakout-Fayolle, Dynamical modeling of pro- and anti-inflammatory cytokines in the early stage of septic shock, 2020, 13, 13866338, 101, 10.3233/ISB-200474
    20. Meric CETİN, Selami BEYHAN, Robust Constrained Drug Dosage Regulation of Acute Inflammation Response Under Disturbances, 2020, 2147-8228, 256, 10.18100/ijamec.815606
    21. Olivier Joannes-Boyau, A. Dewitte, Patrick M. Honoré, 2019, 9780323449427, 1034, 10.1016/B978-0-323-44942-7.00171-0
    22. Kun Wang, Stanley Langevin, Corey S. O’Hern, Mark D. Shattuck, Serenity Ogle, Adriana Forero, Juliet Morrison, Richard Slayden, Michael G. Katze, Michael Kirby, Jieru Wang, Anomaly Detection in Host Signaling Pathways for the Early Prognosis of Acute Infection, 2016, 11, 1932-6203, e0160919, 10.1371/journal.pone.0160919
    23. Dulce Calçada, Dario Vianello, Enrico Giampieri, Claudia Sala, Gastone Castellani, Albert de Graaf, Bas Kremer, Ben van Ommen, Edith Feskens, Aurelia Santoro, Claudio Franceschi, Jildau Bouwman, The role of low-grade inflammation and metabolic flexibility in aging and nutritional modulation thereof: A systems biology approach, 2014, 136-137, 00476374, 138, 10.1016/j.mad.2014.01.004
    24. Ouassim Bara, Michel Fliess, Cédric Join, Judy Day, Seddik M. Djouadi, Toward a model-free feedback control synthesis for treating acute inflammation, 2018, 448, 00225193, 26, 10.1016/j.jtbi.2018.04.003
    25. Pantelis Sopasakis, Panagiotis Patrinos, Haralambos Sarimveis, Robust model predictive control for optimal continuous drug administration, 2014, 116, 01692607, 193, 10.1016/j.cmpb.2014.06.003
    26. Sebastian Jendrek, Xin Lai, Gabriela Riemekasten, Julio Vera-González, Bernd Schmeck, Wilhelm Bertrams, 2021, 9780128160787, 581, 10.1016/B978-0-12-801238-3.11643-5
    27. Laura D. Weinstock, James E. Forsmo, Alexis Wilkinson, Jun Ueda, Levi B. Wood, Experimental Control of Macrophage Pro-Inflammatory Dynamics Using Predictive Models, 2020, 8, 2296-4185, 10.3389/fbioe.2020.00666
    28. Vladan Radosavljevic, Kosta Ristovski, Zoran Obradovic, A data-driven acute inflammation therapy, 2013, 6, 1755-8794, 10.1186/1755-8794-6-S3-S7
    29. Ivan Ramirez-Zuniga, Jonathan. E. Rubin, David Swigon, Heinz Redl, Gilles Clermont, A data-driven model of the role of energy in sepsis, 2022, 533, 00225193, 110948, 10.1016/j.jtbi.2021.110948
    30. Rami A. Namas, Maxim Mikheev, Jinling Yin, Derek Barclay, Bahiyyah Jefferson, Qi Mi, Timothy R. Billiar, Ruben Zamora, Jorg Gerlach, Yoram Vodovotz, An adaptive, negative feedback circuit in a biohybrid device reprograms dynamic networks of systemic inflammation in vivo, 2023, 2, 2674-0702, 10.3389/fsysb.2022.926618
    31. Gary An, Chase Cockrell, Ruben Zamora, Yoram Vodovotz, 2021, 9780128214404, 251, 10.1016/B978-0-12-821440-4.00009-8
    32. Judy D. Day, Chase Cockrell, Rami Namas, Ruben Zamora, Gary An, Yoram Vodovotz, Inflammation and disease: Modelling and modulation of the inflammatory response to alleviate critical illness, 2018, 12, 24523100, 22, 10.1016/j.coisb.2018.08.008
    33. Daniel Jonas, Michael Kirby, Alan R. Schenkel, Gerhard Dangelmayr, Modeling of adaptive immunity uncovers disease tolerance mechanisms, 2023, 00225193, 111498, 10.1016/j.jtbi.2023.111498
    34. Robert Parker, Justin Hogg, Anirban Roy, John Kellum, Thomas Rimmelé, Silvia Daun-Gruhn, Morgan Fedorchak, Isabella Valenti, William Federspiel, Jonathan Rubin, Yoram Vodovotz, Claudio Lagoa, Gilles Clermont, Modeling and Hemofiltration Treatment of Acute Inflammation, 2016, 4, 2227-9717, 38, 10.3390/pr4040038
    35. Panteleimon D. Mavroudis, Jeremy D. Scheff, John C. Doyle, Yoram Vodovotz, Ioannis P. Androulakis, The Impact of Stochasticity and Its Control on a Model of the Inflammatory Response, 2018, 7, 2079-3197, 3, 10.3390/computation7010003
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3426) PDF downloads(506) Cited by(35)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog