Stability of a delay equation arising from a juvenile-adult model

  • Received: 01 May 2010 Accepted: 29 June 2018 Published: 01 October 2010
  • MSC : Primary: 34A34, 34D20, 92D25.

  • We consider a delay equation that has been formulated from a juvenile-adult population model. We give respective conditions on the vital rates to ensure local stability of the positive equilibrium and global stability of the trivial equilibrium. We also show that under certain conditions the equation undergoes a Hopf bifurcation. We then study global asymptotic stability and present bifurcation diagrams for two special cases of the model.

    Citation: Azmy S. Ackleh, Keng Deng. Stability of a delay equation arising from ajuvenile-adult model[J]. Mathematical Biosciences and Engineering, 2010, 7(4): 729-737. doi: 10.3934/mbe.2010.7.729

    Related Papers:

    [1] Edoardo Beretta, Dimitri Breda . Discrete or distributed delay? Effects on stability of population growth. Mathematical Biosciences and Engineering, 2016, 13(1): 19-41. doi: 10.3934/mbe.2016.13.19
    [2] Cristeta U. Jamilla, Renier G. Mendoza, Victoria May P. Mendoza . Explicit solution of a Lotka-Sharpe-McKendrick system involving neutral delay differential equations using the r-Lambert W function. Mathematical Biosciences and Engineering, 2020, 17(5): 5686-5708. doi: 10.3934/mbe.2020306
    [3] Rinaldo M. Colombo, Mauro Garavello . Stability and optimization in structured population models on graphs. Mathematical Biosciences and Engineering, 2015, 12(2): 311-335. doi: 10.3934/mbe.2015.12.311
    [4] J. M. Cushing, Simon Maccracken Stump . Darwinian dynamics of a juvenile-adult model. Mathematical Biosciences and Engineering, 2013, 10(4): 1017-1044. doi: 10.3934/mbe.2013.10.1017
    [5] Wei Feng, Michael T. Cowen, Xin Lu . Coexistence and asymptotic stability in stage-structured predator-prey models. Mathematical Biosciences and Engineering, 2014, 11(4): 823-839. doi: 10.3934/mbe.2014.11.823
    [6] Anthony Tongen, María Zubillaga, Jorge E. Rabinovich . A two-sex matrix population model to represent harem structure. Mathematical Biosciences and Engineering, 2016, 13(5): 1077-1092. doi: 10.3934/mbe.2016031
    [7] John Cleveland . Basic stage structure measure valued evolutionary game model. Mathematical Biosciences and Engineering, 2015, 12(2): 291-310. doi: 10.3934/mbe.2015.12.291
    [8] Abhyudai Singh, Roger M. Nisbet . Variation in risk in single-species discrete-time models. Mathematical Biosciences and Engineering, 2008, 5(4): 859-875. doi: 10.3934/mbe.2008.5.859
    [9] Moatlhodi Kgosimore, Edward M. Lungu . The Effects of Vertical Transmission on the Spread of HIV/AIDS in the Presence of Treatment. Mathematical Biosciences and Engineering, 2006, 3(2): 297-312. doi: 10.3934/mbe.2006.3.297
    [10] Bruno Buonomo, Marianna Cerasuolo . The effect of time delay in plant--pathogen interactions with host demography. Mathematical Biosciences and Engineering, 2015, 12(3): 473-490. doi: 10.3934/mbe.2015.12.473
  • We consider a delay equation that has been formulated from a juvenile-adult population model. We give respective conditions on the vital rates to ensure local stability of the positive equilibrium and global stability of the trivial equilibrium. We also show that under certain conditions the equation undergoes a Hopf bifurcation. We then study global asymptotic stability and present bifurcation diagrams for two special cases of the model.


  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2554) PDF downloads(485) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog