A model of varicella-zoster reactivation

  • Received: 01 January 2010 Accepted: 29 June 2018 Published: 01 October 2010
  • MSC : Primary: 92C99; Secondary: 34C25, 34C23.

  • Mathematical models have been used to study the dynamic interaction of many infectious diseases with the host's immune system. In this paper, we study Varicella Zoster Virus, which is responsible for chicken pox (varicella), and after a long period of latency, herpes zoster (shingles). After developing the model and demonstrating that is exhibits the type of periodic behavior necessary for long term latency and reactivation, we examine the implications of the model for vaccine booster programs aimed at preventing herpes zoster.

    Citation: Jonathan E. Forde, Bailey Meeker. A model of varicella-zoster reactivation[J]. Mathematical Biosciences and Engineering, 2010, 7(4): 765-777. doi: 10.3934/mbe.2010.7.765

    Related Papers:

    [1] Bruce Pell, Matthew D. Johnston, Patrick Nelson . A data-validated temporary immunity model of COVID-19 spread in Michigan. Mathematical Biosciences and Engineering, 2022, 19(10): 10122-10142. doi: 10.3934/mbe.2022474
    [2] Ayako Suzuki, Hiroshi Nishiura . Transmission dynamics of varicella before, during and after the COVID-19 pandemic in Japan: a modelling study. Mathematical Biosciences and Engineering, 2022, 19(6): 5998-6012. doi: 10.3934/mbe.2022280
    [3] Islam A. Moneim, David Greenhalgh . Use Of A Periodic Vaccination Strategy To Control The Spread Of Epidemics With Seasonally Varying Contact Rate. Mathematical Biosciences and Engineering, 2005, 2(3): 591-611. doi: 10.3934/mbe.2005.2.591
    [4] Zimeng Lv, Xinyu Liu, Yuting Ding . Dynamic behavior analysis of an SVIR epidemic model with two time delays associated with the COVID-19 booster vaccination time. Mathematical Biosciences and Engineering, 2023, 20(4): 6030-6061. doi: 10.3934/mbe.2023261
    [5] Chang Gong, Jennifer J. Linderman, Denise Kirschner . A population model capturing dynamics of tuberculosis granulomas predicts host infection outcomes. Mathematical Biosciences and Engineering, 2015, 12(3): 625-642. doi: 10.3934/mbe.2015.12.625
    [6] Ugo Avila-Ponce de León, Angel G. C. Pérez, Eric Avila-Vales . Modeling the SARS-CoV-2 Omicron variant dynamics in the United States with booster dose vaccination and waning immunity. Mathematical Biosciences and Engineering, 2023, 20(6): 10909-10953. doi: 10.3934/mbe.2023484
    [7] Kai Zhang, Xinwei Wang, Hua Liu, Yunpeng Ji, Qiuwei Pan, Yumei Wei, Ming Ma . Mathematical analysis of a human papillomavirus transmission model with vaccination and screening. Mathematical Biosciences and Engineering, 2020, 17(5): 5449-5476. doi: 10.3934/mbe.2020294
    [8] Anthony Morciglio, R. K. P. Zia, James M. Hyman, Yi Jiang . Understanding the oscillations of an epidemic due to vaccine hesitancy. Mathematical Biosciences and Engineering, 2024, 21(8): 6829-6846. doi: 10.3934/mbe.2024299
    [9] Jinliang Wang, Jingmei Pang, Toshikazu Kuniya . A note on global stability for malaria infections model with latencies. Mathematical Biosciences and Engineering, 2014, 11(4): 995-1001. doi: 10.3934/mbe.2014.11.995
    [10] Avner Friedman, Chuan Xue . A mathematical model for chronic wounds. Mathematical Biosciences and Engineering, 2011, 8(2): 253-261. doi: 10.3934/mbe.2011.8.253
  • Mathematical models have been used to study the dynamic interaction of many infectious diseases with the host's immune system. In this paper, we study Varicella Zoster Virus, which is responsible for chicken pox (varicella), and after a long period of latency, herpes zoster (shingles). After developing the model and demonstrating that is exhibits the type of periodic behavior necessary for long term latency and reactivation, we examine the implications of the model for vaccine booster programs aimed at preventing herpes zoster.


  • This article has been cited by:

    1. Giorgio Guzzetta, Denise Kirschner, Andrew J. Yates, The Roles of Immune Memory and Aging in Protective Immunity and Endogenous Reactivation of Tuberculosis, 2013, 8, 1932-6203, e60425, 10.1371/journal.pone.0060425
    2. M. Comba, S. Martorano-Raimundo, E. Venturino, A Cost-Effectiveness-Assessing Model of Vaccination for Varicella and Zoster, 2012, 7, 0973-5348, 62, 10.1051/mmnp/20127306
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3482) PDF downloads(586) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog