Citation: Magalí Giaroli, Rick Rischter, Mercedes P. Millán, Alicia Dickenstein. Parameter regions that give rise to 2[n/2] +1 positive steady states in the n-site phosphorylation system[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 7589-7615. doi: 10.3934/mbe.2019381
[1] | W. Lim, B. Meyer and T. Pawson, Cellular signaling: principles and mechanisms, Garland Science, 2014. |
[2] | A. Dickenstein, Biochemical reaction networks: an invitation for algebraic geometers, MCA 2013, Contemp. Math., 656 (2016), 65–83. |
[3] | N. I. Markevich, J. B. Hoek and B. N. Kholodenko, Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades, J. Cell Biol., 164 (2004), 353–359. |
[4] | L. Wang and E. Sontag, On the number of steady states in a multiple futile cycle, J. Math. Biol., 57 (2008), 29–52. |
[5] | J. Hell and A. D. Rendall, A proof of bistability for the dual futile cycle, Nonlinear Anal-Real., 24 (2015), 175–189. |
[6] | C. Conradi, E. Feliu, M. Mincheva, et al., Identifying parameter regions for multistationarity, PLOS Computat. Biol., 13 (2017), e1005751. |
[7] | C. Conradi and M. Mincheva, Catalytic constants enable the emergence of bistability in dual phosphorylation, J. R. Soc. Interface, 11 (2014), 20140158. |
[8] | D. Flockerzi, K. Holstein and C. Conradi, N-site phosphorylation systems with 2N-1 steady states, Bull. Math. Biol., 76 (2014), 1892–1916. |
[9] | K. Holstein, D. Flockerzi and C. Conradi, Multistationarity in Sequential Distributed Multisite Phosphorylation Networks, Bull. Math. Biol., 75 (2013), 2028–2058. |
[10] | C. Conradi, A. Iosif and T. Kahle, Multistationarity in the space of total concentrations for systems that admit a monomial parametrization, T. Bull. Math. Biol., 2019, 1–36. |
[11] | M. Thomson and J. Gunawardena, Unlimited multistability in multisite phosphorylation systems, Nature, 460 (2009), 274. |
[12] | E. Feliu, A. D. Rendall and C. Wiuf, A proof of unlimited multistability for phosphorylation cycles, preprint, arXiv:1904.02983. |
[13] | F. Bihan, A. Dickenstein and M. Giaroli, Lower bounds for positive roots and regions of multistationarity in chemical reaction networks, J. Algebra, (2019), to appear. |
[14] | E. Feliu and C. Wiuf, Simplifying biochemical models with intermediate species, J. R. Soc. Interface, 10 (2013), 20130484. |
[15] | E. Feliu and A. Sadeghimanesh, The multistationarity structure of networks with intermediates and a binomial core network, B. Math. Biol., 81 (2019), 2428–2462. |
[16] | M. P. Millán and A. Dickenstein, The structure of MESSI biochemical networks, SIAM J. Appl. Dyn. Syst., 17 (2018), 1650–1682. |
[17] | A. G. Kušnirenko, Newton polyhedra and Bezout's theorem, Funkcional. Anal. i Priložen, 10 (1976), 82–83. English translation: Funct. Anal. Appl., 10 (1977), 233–235. |
[18] | A. Dickenstein, M. Giaroli, M. P. Millán, et al., Detecting the multistationarity structure in enzymatic networks, work in progress. |
[19] | F. Bihan, F. Santos and P-J. Spaenlehauer, A polyhedral method for sparse systems with many positive solutions, SIAM J. Appl. Algebra Geom., 2 (2018), 620–645. |
[20] | M. Giaroli, F. Bihan and A. Dickenstein, Regions of multistationarity in cascades of Goldbeter-Koshland loops, J. Math. Biol., 78 (2019), 1115–1145. |
[21] | J. De Loera, J. Rambau and F. Santos, Triangulations: Structures for Algorithms and Applications, 2010, Series Algorithms and Computation in Mathematics, Springer, Berlin. |
[22] | W.A. Stein, et al., Sage Mathematics Software (Version 8.4), The Sage Development Team, 2018. Available from: http://www.sagemath.org. |
[23] | Maple 18 (2014) Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario. |
[24] | E. Feliu, On the reaction rate constants that enable multistationarity in the two-site phosphorylation cycle, preprint, arXiv:1809.07275. |
[25] | A. Cornish-Bowden, Fundamentals of Enzyme Kinetics, 4th Ed., Wiley-Blackwell, 2012. |