
Mathematical Biosciences and Engineering, 2019, 16(6): 70857097. doi: 10.3934/mbe.2019355
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Modeling epidemic in metapopulation networks with heterogeneous diffusion rates
1 Department of Mathematics, North University of China Taiyuan, Shanxi 030051, P. R. China
2 School of Science, China University of Mining and Technology Xuzhou, Jiangsu, 221008, P. R. China
Received: , Accepted: , Published:
References
1. L. A. Rvachev and I. M. J. Longini, A mathematical model for global spread of influenza, Math. Bio., 75 (1985), 3–23.
2. O. Diekmann and J. A. P. Heesterbeek, Mathematical epidemiology of infectious diseases: Model building, analysis and interpretation, New York: Wiley, 2000.
3. W. Gu, R. Heikkilä and I. Hanski, Estimating the consequences of habitat fragmentation on extinction risk in dynamic landscapes, Landscape Ecol., 17 (2002), 699–710.
4. R. Levins, Some demographic and genetic consequences of environmental heterogeneity for biological control, Entomol. Soc. Amer. Bull., 15 (1969), 237–240.
5. B. Grenfell and B. M. Bolker, Cities and villages: Infection hierarchies in am easles metapopulation, Ecol. Lett., 1 (1998), 63–70.
6. B. Grenfell and J. Harwood, (Meta) population dynamics of infectious diseases, Trends Ecol. Evol., 12 (1997), 395–399.
7. M. J. Keeling and P. Rohani, Estimating spatial coupling in epidemiological systems: A mechanistic approach, Ecol. Lett., 5 (2002), 20–29.
8. R. M. May and R. M. Anderson, Population biology of infectious diseases: Part II, Nature, 280 (1979), 455–461.
9. R. M. May and R. M. Anderson, Spatial heterogeneity and the design of immunization programs, Math. Biosci., 72 (1984), 83–111.
10. V. Colizza, R. Pastorsatorras and A. Vespignani, Reactiondiffusion processes and metapopulation models in heterogeneous networks, Nat. Phys., 3 (2007), 276–282.
11. V. Colizza and A. Vespignani, Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations, J. Theor. Biol., 251 (2007), 450–467.
12. V. Colizza and A. Vespignani, Invasion threshold in heterogeneous metapopulation networks, Phys. Rev. Lett., 99 (2007), 148701.
13. V. Colizza, A. Barrat, M. Barthélemy, et al., Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions, Plos Med., 4 (2007), e13.
14. V. Colizza, A. Barrat, M. Barthélemy, et al., The modeling of global epidemics: Stochastic dynamics and predictability, Bulletin Math. Biol., 68 (2006), 1893–1921.
15. V. Colizza, A. Barrat, M. Barthélemy, et al., The role of the airline transportation network in the prediction and predictability of global epidemics, Proc. Natl. Acad. Sci., 103 (2006), 2015–2020.
16. V. Colizza and A. Vespignani, Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations, J. Theor. Biol., 251 (2008), 450–467.
17. D. Juher, J. Ripoll and J. Saldaña, Analysis and Monte Carlo simulations of a model for the spread of infectious diseases in heterogeneous metapopulations, Phys. Rev. E, 80 (2009), 041920.
18. D. Juher and V. Mañosa, Spectral properties of the connectivity matrix and the, SISepidemic threshold for midsize metapopulations, Math. Model. Natl. Phenomena, 9 (2014), 108–120.
19. J. Saldaña, Continuoustime formulation of reactiondiffusion processes on heterogeneous metapopulations, Phys. Rev. E, 78 (2008), 139–143.
20. A. Baronchelli, M. Catanzaro and R. PastorSatorras, Bosonic reactiondiffusion processes on scalefree networks, Phys. Rev. E, 78 (2008), 1302–1314.
21. K. Kuga and J. Tanimoto, Impact of imperfect vaccination and defense against contagion on vaccination behavior in complex networks, J. Stat. Mech.: Theory. Exp., 2018 (2018), 113402.
22. K. Kuga, J. Tanimoto and M. Jusup, To vaccinate or not to vaccinate: A comprehensive study of vaccinationsubsidizing policies with multiagent simulations and meanfield modeling, J. Theoretical Biol., 469 (2019), 107–126.
23. K. M. A. Kabir and J. Tanimoto, Evolutionary vaccination game approach in metapopulation migration model with information spreading on different graphs, Chaos, Solitons Fractals, 120 (2019), 41–55.
24. K. M. A. Kabir and J. Tanimoto, Dynamical Behaviors for Vaccination can Suppress Infectious DiseaseA Game Theoretical Approach, Chaos, Solitons Fractals, 123 (2019), 229–239.
25. M. Alam, K. Kuga and J. Tanimoto, Threestrategy and fourstrategy model of vaccination game introducing an intermediate protecting measure, Appl. Math. Comput. 346 (2019), 408–422.
26. N. Masuda, Effects of diffusion rates on epidemic spreads in metapopulation networks, New J. Phys., 12 (2010), 093009.
27. G. Tanaka, C. Urabe and K. Aihara, Random and targeted interventions for epidemic control in metapopulation models, Sci. Rep., 4 (2013), 5522.
28. V. Batagelj and A. Mrvar, Pajek dajek datasets, 2006. Available from: http://vlado.fmf.unilj.si/pub/networks/data/.
29. M. Zanin, On alternative formulations of the smallworld metric in complex networks, Comput. Sci., preprint, arXiv1505.03689.
30. A. Barrat, M. Barthélemy, R. PastorSatorras, et al., The architecture of complex weighted networks, Proc. Natl. Acad. Sci. U. S. A., 101 (2004), 3747–3752.
31. S. Meloni, A. Arenas, Y. Moreno, et al., Trafficdriven epidemic spreading in finiteSize scalefree networks, Proc. Natl. Acad. Sci. U. S. A., 106 (2009), 16897–16902.
32. B. Wang, G. Tanaka, H. Suzuki, et al., Epidemic spread on interconnected metapopulation networks, Phys. Rev. E, 90 (2014), 032806.
33. C. Poletto, M. Tizzoni and V. Colizza, Heterogeneous length of stay of hosts' movements and spatial epidemic spread, Sci. Rep., 2 (2012), 476.
34. Y. W. Gong, Y. R. Song and G. P. Jiang, Epidemic spreading in metapopulation networks with heterogeneous infection rates, Phys. A Stat. Mechan. Its Appl., 416 (2014), 208–218.
35. J. Anderson, A secular equation for the eigenvalues of a diagonal matrix perturbation, Linear Algebra Its Appl., 246 (1996), 49–70.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)