
We investigated the effects of cross-border equity flow volatility (EFV) on equity market returns (EMR) in SANEK countries (South Africa, Nigeria, Egypt, and Kenya) using the nonlinear autoregressive distributed lag (NARDL) model from 2000Q1 to 2021Q4. This model includes macro-finance variables such as stock price volatility, market capitalization, interest rates, exchange rate risk, and inflation risk. Our findings revealed that cross-border equity flow volatility has a significant impact on equity market returns in SANEK countries, with both short-term and long-term effects observed. The NARDL model revealed that positive shocks have a greater impact on South Africa, while negative shocks have a positive effect on Nigeria. In Kenya, positive shocks have a negative impact on the equity market, whereas in Egypt, they have a positive effect. These findings suggested that cross-border equity flow volatility affects equity market returns differently across SANEK countries. Investors and policymakers should therefore develop customized strategies to deal with global financial market complexities. South African investors should be cautious during positive shocks, while Nigerians may benefit from economic downturns. Kenyan policymakers should stabilize the equity market during positive shocks, while Egypt could leverage the positive effects. Understanding these market dynamics can help investors and policymakers make informed decisions to maximize returns and ensure stability, despite cross-border equity flow volatility.
Citation: Dumisani Pamba, Sophia Mukorera, Peter Moores-Pitt. The asymmetric effects of cross-border equity flow volatility on equity market returns in SANEK countries[J]. Quantitative Finance and Economics, 2025, 9(1): 40-75. doi: 10.3934/QFE.2025002
[1] | Wedad Albalawi, Muhammad Imran Liaqat, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Qualitative study of Caputo Erdélyi-Kober stochastic fractional delay differential equations. AIMS Mathematics, 2025, 10(4): 8277-8305. doi: 10.3934/math.2025381 |
[2] | Wei Zhang, Jifeng Zhang, Jinbo Ni . New Lyapunov-type inequalities for fractional multi-point boundary value problems involving Hilfer-Katugampola fractional derivative. AIMS Mathematics, 2022, 7(1): 1074-1094. doi: 10.3934/math.2022064 |
[3] | Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions. AIMS Mathematics, 2024, 9(1): 218-239. doi: 10.3934/math.2024013 |
[4] | Karim Guida, Lahcen Ibnelazyz, Khalid Hilal, Said Melliani . Existence and uniqueness results for sequential ψ-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(8): 8239-8255. doi: 10.3934/math.2021477 |
[5] | Murugesan Manigandan, R. Meganathan, R. Sathiya Shanthi, Mohamed Rhaima . Existence and analysis of Hilfer-Hadamard fractional differential equations in RLC circuit models. AIMS Mathematics, 2024, 9(10): 28741-28764. doi: 10.3934/math.20241394 |
[6] | Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of ψ-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122 |
[7] | Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas . On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704 |
[8] | Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244 |
[9] | Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Nantapat Jarasthitikulchai, Marisa Kaewsuwan . A generalized Gronwall inequality via ψ-Hilfer proportional fractional operators and its applications to nonlocal Cauchy-type system. AIMS Mathematics, 2024, 9(9): 24443-24479. doi: 10.3934/math.20241191 |
[10] | Muhammad Imran Liaqat, Fahim Ud Din, Wedad Albalawi, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Analysis of stochastic delay differential equations in the framework of conformable fractional derivatives. AIMS Mathematics, 2024, 9(5): 11194-11211. doi: 10.3934/math.2024549 |
We investigated the effects of cross-border equity flow volatility (EFV) on equity market returns (EMR) in SANEK countries (South Africa, Nigeria, Egypt, and Kenya) using the nonlinear autoregressive distributed lag (NARDL) model from 2000Q1 to 2021Q4. This model includes macro-finance variables such as stock price volatility, market capitalization, interest rates, exchange rate risk, and inflation risk. Our findings revealed that cross-border equity flow volatility has a significant impact on equity market returns in SANEK countries, with both short-term and long-term effects observed. The NARDL model revealed that positive shocks have a greater impact on South Africa, while negative shocks have a positive effect on Nigeria. In Kenya, positive shocks have a negative impact on the equity market, whereas in Egypt, they have a positive effect. These findings suggested that cross-border equity flow volatility affects equity market returns differently across SANEK countries. Investors and policymakers should therefore develop customized strategies to deal with global financial market complexities. South African investors should be cautious during positive shocks, while Nigerians may benefit from economic downturns. Kenyan policymakers should stabilize the equity market during positive shocks, while Egypt could leverage the positive effects. Understanding these market dynamics can help investors and policymakers make informed decisions to maximize returns and ensure stability, despite cross-border equity flow volatility.
Numerous fractional operators are discussed in the literature [1,2,3], with the Caputo and Riemann-Liouville derivatives being the most significant and widely used [4,5,6]. In 2000, Hilfer [7] generalized the Riemann-Liouville derivative, introducing what is now referred to as the Hilfer fractional derivative (HFrD).
In literature, various authors used HFrD in their research work with fractional differential and integro-differential models; for example, Raghavan et al. [8] found solutions of the fractional differential equations (FrDEs) with HFrD applying the Laplace transform. Li et al. [9] developed results on the existence and uniqueness and also developed solutions for FrDEs by HFrD. Zhu et al. [10] extracted the solutions of fractional integro-differential models with HFrD. Bedi et al. [11] developed results of the existence and uniqueness of solutions for Hilfer FrDEs. Kasinathan et al. [12] developed results related to mild solutions for FrDEs. Lv and Yang [13] established results for the existence and uniqueness of mild solutions for stochastic models applying semigroup theory. Jin et al. [14] researched the existence and uniqueness of mild solutions to the diffusion model. Karthikeyan et al. [15] discussed results about the controllability of delayed FrDEs. Hegade and Bhalekar [16] developed results of stability for FrDEs. For more studies related to work with HFrD, see [17,18].
In recent years, many scholars have actively worked on various topics related to different classes of fractional stochastic differential equations (FSDEs). In [19], Batiha et al. proposed an innovative approach for solving FSDEs. They obtained approximate solutions for these equations and compared the results with solutions obtained by other methods. Chen et al. [20] established the existence and uniqueness of solutions to FSDEs and presented results related to stability. The authors also found solutions using the Euler-Maruyama technique for FSDEs. Moualkia and Xu [21] undertook a theoretical analysis of variable-order FSDEs. They determined approximate solutions for these equations and assessed their accuracy by comparing them with solutions from alternative methods. In [22], Ali et al. investigated the coupled system of FSDEs regarding the existence and uniqueness of solutions and stability and found solutions. Li et al. carried out a stability investigation of a system of FSDEs in [23]. The research analyzes the interaction between fractional calculus, stochastic processes, and time delays to provide a better understanding of system stability. It sheds light on the effective solution of these equations via several numerical methods. Moreover, the paper examined various types of stability in FSDEs. Albalawi et al. [24] conducted existence and uniqueness of solution and stability analysis for FSDEs with conformable derivatives. In [25], Doan et al. established the convergence of the Euler-Maruyama approach for FSDEs, found solutions using this technique, and presented stability results. In [26], Umamaheswari et al. discussed the existence and uniqueness of solutions using the Picard scheme for FSDEs with Lévy noise. In [27], Li et al. studied Hilfer FSDEs with delay concerning the existence and uniqueness of solutions using the Picard method. Moreover, they investigated finite-time stability using various inequalities. For further information on FSDEs, refer to [28,29,30,31,32].
Stochastic fractional delay differential equations (SFDDEs) are a mathematical model that includes fractional derivatives to take into account memory effects, delays in the display of time layer interactions, and stochastic processes for recording randomness or noise. These equations are particularly suitable for systems where past conditions, delay effects, and random variations have a significant impact on dynamics. SFDDEs find applications in various real-life scenarios, such as modeling biological systems with delayed feedback and environmental noise (e.g., population dynamics), engineering systems with memory and delays (e.g., control systems in robotics), finance (e.g., asset pricing with time-lagged market responses), and physics (e.g., viscoelastic materials with delayed stress-strain relationships). By integrating these complex factors, SFDDEs provide a robust framework for analyzing and predicting the behavior of time-dependent, uncertain systems.
The average principle is a valuable way to analyze various systems. Focusing on averaged equations instead of the original complex time-dependent system provides an effective way to simplify the analysis and reduce complexity. The effectiveness of the average principle depends on the identification of conditions in which the system averaged in a particular context corresponds to the original system. Various authors have presented results on the average principle from different perspectives, such as Zou et al. [33], who established the average principle for FSDEs with impulses. Zou and Luo [34] established a novel result regarding the average principle for SFDDEs with the Caputo operator. The authors [35] established a result on the average principle with the Caputo derivative for neutral FSDEs. Mao et al. [36] established averaging principle results for stochastic delay differential equations with jumps. Xu et al. [37] also worked to prove an averaging principle theorem for FSDEs. Guo et al. [38] studied the averaging principle for stochastic differential equations under a general averaging condition, which is weaker than the traditional case. In [39,40], the authors proved the averaging principle for impulsive FSDEs. Ahmed and Zhu [41] presented results regarding the averaging principle for Hilfer FSDEs with Poisson jumps. Xu et al. [42] presented an averaging principle for Caputo FSDEs driven by Brownian motion in the mean square sense. Jing and Li [43] worked on the averaging principle for backward stochastic differential equations. Djaouti et al. [44] presented some generalizations of the averaging principle for neutral FSDEs. Mouy et al. [45] also proved the averaging principle for Caputo-Hadamard FSDEs with a pantograph term. Liu et al. [46] presented results for Caputo FSDEs with Brownian motion and Lévy noise [47]. Yang et al. [48] presented results for FSDEs with Poisson jumps regarding the averaging principle.
Motivated by the above discussion, this paper presents significant findings on the existence and uniqueness of solutions, continuous dependence (Con-D), regularity, and average principle for Hilfer SFDDEs of the pth moment. The pth moment is a crucial tool for studying stochastic systems, helping assess the system's behavior and stability by providing a measure of its response over time. The pth moment can be applied to study the behavior of a stochastic system by analyzing its expected value. Moreover, the pth moment is an essential tool in probability analysis, offering a convenient framework for investigating and verifying the stability of stochastic systems.
This research study uses the contraction mapping principle to determine the existence and uniqueness results of the Hilfer SFDDES solution. Next, we present the Con-D results by assuming that the coefficients correspond to the global Lipschitz condition. Additionally, various inequalities are used to describe regularity and determine average principle results. Finally, examples and graphic illustrations are included to support the results derived from this study.
Remark 1.1. By proving the outcomes of the theoretical analysis regarding well-posedness, regularity, and average principle, we conclude that these results can be generalized to SFDDEs with the Hadamard fractional operator.
Remark 1.2. Unlike traditional fractional models, SFDDEs with HFrD present a fundamental challenge due to the interaction of memory, randomness, and time delay effects. These complexities make it even more difficult to derive analytical or approximate solutions and ensure stability. Furthermore, the relationship between HFrD and probabilistic properties requires careful treatment of functional spaces, noise structures, and solution methods.
Listed below are the main contributions of our study:
(1) This research work establishes results on the well-posedness, regularity, and average principle for SFDDEs concerning HFrD.
(2) Most of the findings related to existence, uniqueness, and average principle for FSDEs have been established in the mean-square sense; however, we obtained these results using the pth moment. Consequently, our study extended the results on well-posedness and average principle for SFDDEs to the case where p=2.
(3) We provide several numerical examples along with their graphical representations to verify the accuracy and reliability of our theoretical findings.
(4) We provide results for FSDEs with a delay term.
In this research, we study the following SFDDEs driven by Brownian motions:
{Dϑ,a0+ϖ(c)=f(c,ϖ(c),ϖ(c−s))+g(c,ϖ(c),ϖ(c−s))dw(c)dc,ϖ(c)=σ(c),−s≤c≤0,I(1−ϑ)(1−a)0+ϖ(0)=σ′, | (1.1) |
where s∈R+ is the delay time, σ(c) is the history function for all c∈[−s,0], and Dϑ,a0+ represents HFrD with orders 0≤ϑ≤1, 12<a<1. The f:[0,M]×Rm×Rm→Rm and g:[0,M]×Rm×Rm→Rm×b are the m-dimensional measurable functions. The stochastic process (wc)c∈[0,∞) follows a standard Brownian trajectory within the b-dimensional complete probability space (Ω,F,P). σ:[−s,0]→Rm is a continuous function. Assume that the norm of Rm is ‖⋅‖ and E‖σ(c)‖p<∞. The operator I(1−ϑ)(1−a)0+ is the Riemann-Liouville fractional integral operator.
The structure of the paper is as follows: The next section, Preliminary, discusses definitions, a lemma, and some assumptions. Section 3 presents the main results regarding Hilfer SFDDEs. Section 4 provides results related to average principle. Then, we present examples to illustrate our established theoretical results in Section 5. Section 6 contains the conclusion, and we discuss future directions.
First, we discuss the most important part of the paper, which serves as the foundation of our established results.
Definition 2.1. [49] Considering a function ϖ(c), the fractional integral operator of order a can be expressed as
Iaϖ(c)=1Γ(a)∫c0ϖ(φ)(c−φ)1−adφ,c>0. |
Definition 2.2 [50] The HFrD of order 0≤ϑ≤1 and 0<a<1 is given as follows:
Dϑ,a0+ϖ(c)=Iϑ(1−a)0+ddcI(1−ϑ)(1−a)0+ϖ(c), |
here, D=ddc.
Lemma 2.1. [50] When a>12 and c>0, we have
ηΓ(2a−1)∫c0(c−φ)2a−2E2a−1(ηφ2a−1)dφ≤E2a−1(ηφ2a−1). |
Definition 2.3. For p≥2 and c∈[0,∞), assume Apc=Lp(Ω,F,P) consists of all Fcth measurable with pth integrable ϖ=(ϖ1,ϖ2,⋯,ϖm)T:Ω→Rm as
‖ϖ‖p=(m∑ȷ=1E(|ϖȷ|p))1p. |
The ϖ(c):[0,M]→Lp(Ω,F,P) is an F−adapted process when ϖ(c)∈Apc and c≥0. For σ′∈Ap0, the ϖ(c) is a solution of Eq (1.1) if
ϖ(c)=σc(ϑ−1)(1−a)Γ(ϑ(1−a)+a)+1Γ(a)∫c0(c−φ)a−1f(φ,ϖ(φ),ϖ(φ−s))dφ+1Γ(a)∫c0(c−φ)a−1g(φ,ϖ(φ),ϖ(φ−s))dw(φ). | (2.1) |
For f and g, assume the following:
● (H1) When ∀ℓ1,ℓ2,ζ1,ζ2∈Rm, there are U1 and U2 such as
‖f(c,ℓ1,ℓ2)−f(c,ζ1,ζ2)‖p≤U1(‖ℓ1−ζ1‖p+‖ℓ2−ζ2‖p). |
‖g(c,ℓ1,ℓ2)−g(c,ζ1,ζ2)‖p≤U2(‖ℓ1−ζ1‖p+‖ℓ2−ζ2‖p). |
● (H2) For f(c,0,0) and g(c,0,0), we have
esssupc∈[0,M]‖f(c,0,0)‖p<ψ,esssupc∈[0,M]‖g(c,0,0)‖p<ψ. |
Now, assume the following:
● (H3) When ∀ℓ1,ℓ2,ζ1,ζ2,ℓ,ζ∈Rm, c∈[0,M], there is U3>0 such as
‖f(c,ℓ1,ℓ2)−f(c,ζ1,ζ2)‖∨‖g(c,ℓ1,ℓ2)−g(c,ζ1,ζ2)‖≤U3(‖ℓ1−ζ1‖+‖ℓ2−ζ2‖). |
● (H4) For f and g in system Eq (1.1), for ℓ,ζ∈Rm, and c∈[0,M], we can find a constant U4>0 such that it satisfies the following:
‖f(c,ℓ,ζ)‖∨‖g(c,ℓ,ζ)‖≤U4(1+‖ℓ‖+‖ζ‖). |
● (H5) There exist functions ˜f and ˜g, along with positive bounded functions ℵ1(M1) and ℵ2(M1) defined for M1∈[0,M], such that for all c∈[0,M], ℓ,ζ∈Rm, and p≥2, the following holds:
1M1∫M10‖f(c,ℓ,ζ)−˜f(ℓ,ζ)‖pdc≤ℵ1(M1)(1+‖ℓ‖p+‖ζ‖p), |
1M1∫M10‖g(c,ℓ,ζ)−˜g(ℓ,ζ)‖pdc≤ℵ2(M1)(1+‖ℓ‖p+‖ζ‖p), |
where lim, \lim_{\mathbb{M}_{1}\rightarrow \infty}\aleph_{2}(\mathbb{M}_{1}) = 0 and \aleph_{1}(\mathbb{M}_{1}) , \aleph_{2}(\mathbb{M}_{1}) are positively bound functions.
This section establishes the well-posedness and regularity of the solutions to SFDDEs.
First, we present the important results regarding well-posedness for SFDDEs.
We have \hbar_{\sigma}: \mathscr{H}^{\mathrm{p}}(0, \mathbb{M}) \rightarrow \mathscr{H}^{\mathrm{p}}(0, \mathbb{M}) with \hbar_{\sigma}(\varpi(0)) = \sigma^{\prime} . Then,
\begin{align} \hbar_{\sigma}(\varpi(\mathfrak{c})) = &\frac{\sigma^{\prime}\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}+ \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \mathfrak{f}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)\mathrm{d}\varphi \\&+ \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \mathfrak{g}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big) \mathrm{d}\mathrm{w}{(\varphi)}. \end{align} | (3.1) |
The main tool for establishing the key results is as follows:
\begin{equation} \big\Vert\varpi_{1}+\varpi_{2}\Vert_{\mathrm{p}}^{\mathrm{p}} \leq2^{\mathrm{p}-1}\big(\Vert\varpi_{1}\Vert_{\mathrm{p}}^{\mathrm{p}} +\big(\Vert\varpi_{2}\Vert_{\mathrm{p}}^{\mathrm{p}}\big),\; \forall\varpi_{1},\varpi_{2}\in\mathbb{R}^{\mathfrak{m}}. \end{equation} | (3.2) |
Lemma 3.1. Assume that (\mathbb{H}_{1}) and (\mathbb{H}_{2}) hold; then \hbar_{\sigma} is well-defined.
Proof. For \varpi(\mathfrak{c}) \in \mathscr{H}^{\mathrm{p}}[0, \mathbb{M}] and \mathfrak{c} \in [0, \mathbb{M}] , the following results are derived using Eqs (3.1) and (3.2):
\begin{align} \big\Vert\hbar_{\sigma}(\varpi(\mathfrak{c}))\big\Vert_{\mathrm{p}}^{\mathrm{p}} \leq& 2^{\mathrm{p}-1}\bigg\Vert\frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}\bigg\Vert_{\mathrm{p}}^{\mathrm{p}}+ \frac{2^{2\mathrm{p}-2}}{\Gamma^{\mathrm{p}}(\mathfrak{a})}\bigg\Vert\int_{0}^{\mathfrak{c}} (\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \mathfrak{f}\big(\varphi,\varpi(\varphi), \varpi(\varphi-\mathrm{s})\big) \mathrm{d}\varphi \bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\&+ \frac{2^{2\mathrm{p}-2}} {\Gamma^{\mathrm{p}}(\mathfrak{a})}\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \mathfrak{g}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s}) \big) \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert_{\mathrm{p}}^{\mathrm{p}}. \end{align} | (3.3) |
By Hölder's inequality, we have
\begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\mathfrak{f}\big(\varphi,\varpi (\varphi),\varpi(\varphi-\mathrm{s})\big) \mathrm{d}\varphi\bigg \Vert_{\mathrm{p}}^{\mathrm{p}} \\ \leq & \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathrm{E}\bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\big|\mathfrak{f}_{\imath} \big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)\big| \mathrm{d}\varphi\bigg)^{\mathrm{p}} \\ \leq & \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathrm{E}\Biggl( \bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^\frac{(\mathfrak{a}-1) \mathrm{p}}{(\mathrm{p}-1)} \mathrm{d}\varphi\bigg)^{\mathrm{p}-1} \int_{0}^{\mathfrak{c}}\big|\mathfrak{f}_{\imath}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s}) \big)\big|^{\mathrm{p}}\mathrm{d}\varphi\Biggl) \\ \leq& \mathbb{M}^{\mathfrak{a}\mathrm{p}-1} \bigg(\frac{\mathrm{p}-1}{\mathfrak{a}\mathrm{p}-1}\bigg)^{\mathrm{p}-1} \int_{0}^{\mathfrak{c}}\big\Vert\mathfrak{f}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big) \big\Vert^{\mathrm{p}}_{\mathrm{p}}\mathrm{d}\varphi. \end{align} | (3.4) |
From (\mathbb{H}_{1}) , we obtain
\begin{align} \big\Vert\mathfrak{f}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)\big\Vert^{\mathrm{p}}_{\mathrm{p}}\leq&2^{\mathrm{p}-1} \bigg(\big\Vert\mathfrak{f} \big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)- \mathfrak{f}(\varphi,0,0)\big\Vert^{\mathrm{p}}_{\mathrm{p}}+ \big\Vert\mathfrak{f}(\varphi,0,0)\big\Vert^{\mathrm{p}}_{\mathrm{p}}\bigg) \\\leq&2^{\mathrm{p}-1}\bigg(2^{\mathrm{p}-1}\mathscr{U}_{1}^{\mathrm{p}}\bigg(\big\Vert\varpi(\varphi)\big\Vert^{\mathrm{p}}_{\mathrm{p}}+ \big\Vert\varpi(\varphi-\mathrm{s})\big\Vert^{\mathrm{p}}_{\mathrm{p}}\bigg)+ \big\Vert\mathfrak{f}(\varphi,0,0)\big\Vert^{\mathrm{p}}_{\mathrm{p}}\bigg). \end{align} | (3.5) |
Accordingly, we obtain
\begin{align} &\; \; \; \; \int_{0}^{\mathfrak{c}}\big\Vert\mathfrak{f}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big) \big\Vert^{\mathrm{p}}_{\mathrm{p}}\mathrm{d}\varphi\\ &\leq2^{\mathrm{p}-1}\mathscr{U}_{1}^{\mathrm{p}}\bigg(\bigg(\underset{\varphi \in[0,\mathbb{M}]}{esssup} \Vert\varpi(\varphi) \Vert_{\mathrm{p}}\bigg)^{\mathrm{p}}+\bigg( \underset{\varphi\in[0,\mathbb{M}]}{esssup} \big\Vert\varpi({\varphi-\mathrm{s}})\big\Vert_{\mathrm{p}}\bigg)^{\mathrm{p}}\bigg) \int_{0}^{\mathfrak{c}}1\mathrm{d}\varphi +2^{\mathrm{p}-1}\big\Vert\mathfrak{f}(\varphi,0,0)\big\Vert_{\mathrm{p}}^{\mathrm{p}}\int_{0}^{\mathfrak{c}}1\mathrm{d}\varphi \\&\leq 2^{\mathrm{p}-1}\mathbb{M}\mathscr{U}_{1}^{\mathrm{p}}\bigg(\big\Vert\varpi(\varphi)\big\Vert^{\mathrm{p}}_{\mathscr{H}^{\mathrm{p}}} +\big\Vert\varpi(\varphi-\mathrm{s})\big\Vert^{\mathrm{p}}_{\mathscr{H}^{\mathrm{p}}}\bigg) + 2^{\mathrm{p}-1} \big\Vert\mathfrak{f}(\varphi,0,0)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \int_{0}^{\mathfrak{c}}1\mathrm{d}\varphi. \end{align} | (3.6) |
By Eqs (3.4) and (3.6), we get the following:
\begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \mathfrak{f} \big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\ \leq& \mathbb{M}^{\mathfrak{a}\mathrm{p}-1} \bigg(\frac{\mathrm{p}-1}{\mathfrak{a}\mathrm{p}-1}\bigg)^{\mathrm{p}-1} 2^{\mathrm{p}-1} \bigg(\mathscr{U}_{1}^{\mathrm{p}}\mathbb{M} \bigg(\big\Vert\varpi(\varphi)\big\Vert^{\mathrm{p}}_{\mathscr{H}^{\mathrm{p}}} + \big\Vert\varpi(\varphi-\mathrm{s})\big\Vert^{\mathrm{p}}_{\mathscr{H}^{\mathrm{p}}}\bigg)+\int_{0}^{\mathfrak{c}} \big\Vert\mathfrak{f}(\varphi,0,0)\big\Vert_{\mathrm{p}}^{\mathrm{p}}\mathrm{d}\varphi\bigg). \end{align} | (3.7) |
By (\mathbb{H}_{2}) , we obtain
\begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\mathfrak{f}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\\leq& \mathbb{M}^{\mathfrak{a}\mathrm{p}-1} \bigg(\frac{\mathrm{p}-1}{\mathfrak{a}\mathrm{p}-1}\bigg)^{\mathrm{p}-1} 2^{\mathrm{p}-1} \bigg(\mathscr{U}_{1}^{\mathrm{p}}\mathbb{M} \bigg(\big\Vert\varpi(\varphi)\big\Vert^{\mathrm{p}}_{\mathscr{H}^{\mathrm{p}}} + \big\Vert\varpi(\varphi-\mathrm{s})\big\Vert^{\mathrm{p}}_{\mathscr{H}^{\mathrm{p}}}\bigg)+\mathbb{M} \psi^{\mathrm{p}}\bigg). \end{align} | (3.8) |
By Burkholder-Davis-Gundy inequality and Hölder's inequality, we obtain
\begin{align} &\; \; \; \; \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\mathfrak{g}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big) \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\& = \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathrm{E}\bigg|\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \big(\mathfrak{g}_{\imath}(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big) \mathrm{d}\mathrm{w}{(\varphi)}\bigg|^{\mathrm{p}} \\&\leq \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathscr{C}_{\mathrm{p}}\mathrm{E}\bigg|\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \bigg|\mathfrak{g}_{\imath}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big) \bigg|^{2} \mathrm{d}\varphi\bigg|^\frac{\mathrm{p}}{2} \\&\leq \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathscr{C}_{\mathrm{p}}\mathrm{E}\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \bigg|\mathfrak{g}_{\imath}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)\bigg|^{\mathrm{p}} \mathrm{d}\varphi \bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi\bigg)^\frac{\mathrm{p}-2}{2} \mathrm{d}\varphi \\&\leq \mathscr{C}_{\mathrm{p}}\bigg(\frac{\mathbb{M}^{2\mathfrak{a}-1}}{2\mathfrak{a}-1}\bigg)^\frac{\mathrm{p}-2}{2} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\big\Vert \mathfrak{g}\big(\varphi,\varpi(\varphi,\varpi(\varphi-\mathrm{s})\big) \big\Vert_{\mathrm{p}}^{\mathrm{p}} \mathrm{d}\varphi. \end{align} | (3.9) |
By utilizing (\mathbb{H}_{1}) and (\mathbb{H}_{2}) , we obtain
\begin{align} \big\Vert\mathfrak{g}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \leq&2^{\mathrm{p}-1}\mathscr{U}_{2}^{\mathrm{p}} \bigg(\big\Vert\varpi(\varphi)\big\Vert_{\mathrm{p}}^{\mathrm{p}}+\big\Vert\varpi(\varphi-\mathrm{s})\big\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg)+ 2^{\mathrm{p}-1}\big\Vert\mathfrak{g}(\varphi,0,0)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \\\leq& 2^{\mathrm{p}-1}\mathscr{U}_{2}^{\mathrm{p}}\bigg(\big\Vert\varpi(\varphi)\big\Vert_{\mathrm{p}}^{\mathrm{p}}+ \big\Vert\varpi(\varphi-\mathrm{s})\big\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg)+2^{\mathrm{p}-1}\psi^{\mathrm{p}}. \end{align} | (3.10) |
So, we get
\begin{align} &\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\big\Vert\mathfrak{g}\big(\varphi,\varpi(\varphi),\varpi (\varphi-\mathrm{s})\big)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \mathrm{d}\varphi \\ \leq&2^{\mathrm{p}-1}\mathscr{U}_{2}^{\mathrm{p}} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \Biggl(\bigg(\underset{\varphi\in[0,\mathbb{M}]}{esssup}\big\Vert\varpi(\varphi)\big\Vert_{\mathrm{p}}\bigg)^{\mathrm{p}} + \bigg(\underset{\varphi\in[0,\mathbb{M}]}{esssup}\big\Vert\varpi(\varphi-\mathrm{s})\big\Vert_{\mathrm{p}}\bigg)^{\mathrm{p}}\Biggl) \mathrm{d}\varphi + 2^{\mathrm{p}-1}\psi^{\mathrm{p}}\int_{0}^{\mathfrak{c}} (\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi \\\leq& \frac{2^{\mathrm{p}-1}\mathbb{M}^{(2\mathfrak{a}-1)}}{2\mathfrak{a}-1} \Biggl(\mathscr{U}_{2}^{\mathrm{p}} \bigg(\Vert\varpi(\varphi)\Vert^{\mathrm{p}}_{\mathscr{H}_{\mathrm{p}}}+ \Vert\varpi(\varphi-\mathrm{s})\Vert^{\mathrm{p}}_{\mathscr{H}_{\mathrm{p}}}\bigg)+\psi^{\mathrm{p}}\Biggl). \end{align} | (3.11) |
So, from above, we have
\begin{align} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \big\Vert\mathfrak{g}\big(\varphi,\varpi(\varphi),\varpi (\varphi-\mathrm{s})\big)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \mathrm{d}\varphi \leq \frac{2^{\mathrm{p}-1}\mathbb{M}^{2\mathfrak{a}-1}}{2\mathfrak{a}-1} \Biggl(\mathscr{U}_{2}^{\mathrm{p}} \bigg(\Vert\varpi(\varphi)\Vert^{\mathrm{p}}_{\mathscr{H}_{\mathrm{p}}}+ \Vert\varpi(\varphi-\mathrm{s})\Vert^{\mathrm{p}}_{\mathscr{H}_{\mathrm{p}}}\bigg)+\psi^{\mathrm{p}}\Biggl). \end{align} | (3.12) |
By using Eq (3.12) in Eq (3.9), we obtain
\begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \mathfrak{g}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big) \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert_{\mathrm{p}}^{\mathrm{p}}\\ \leq& \mathscr{C}_{\mathrm{p}}\bigg(\frac{\mathbb{M}^{2\mathfrak{a}-1}}{2\mathfrak{a}-1}\bigg)^\frac{\mathrm{p}-2}{2} \frac{2^{\mathrm{p}-1}\mathbb{M}^{2\mathfrak{a}-1}}{2\mathfrak{a}-1} \Biggl(\mathscr{U}_{2}^{\mathrm{p}} \bigg(\Vert\varpi(\varphi)\Vert^{\mathrm{p}}_{\mathscr{H}_{\mathrm{p}}}+ \Vert\varpi(\varphi-\mathrm{s})\Vert^{\mathrm{p}}_{\mathscr{H}_{\mathrm{p}}}\bigg)+\psi^{\mathrm{p}}\Biggl). \end{align} | (3.13) |
By putting Eqs (3.8) and (3.13) into Eq (3.3), we find that \Vert\hbar_{\sigma}(\varpi(\mathfrak{c}))\Vert_{\mathscr{H}{\mathrm{p}}} < \infty . So, the \hbar_{\sigma} is well-defined.
Now, we establish the result regarding existence and uniqueness.
Theorem 3.1. If (\mathbb{H}_{1}) and (\mathbb{H}_{2}) are satisfied, then Eq (1.1) with \varpi(0) = \sigma^{\prime} has a unique solution.
Proof. Taking \eta > 0 :
\begin{equation} \eta > 2^{\mathrm{p}-1}\delta\Gamma(2\mathfrak{a}-1), \end{equation} | (3.14) |
where
\begin{align} \delta = \frac{2^{\mathrm{p}-1}}{\Gamma^{\mathrm{p}}(\mathfrak{a})} &\bigg( 2^{\mathrm{p}-1} \frac{\mathscr{U}_{1}^{\mathrm{p}}\mathbb{M}^{(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)}(\mathrm{p}-1)^{\mathrm{p}-1}} {(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)^{\mathrm{p}-1}} + 2^{\mathrm{p}-1} \bigg(\frac{{\mathbb{M}}^{(2\mathfrak{a}-1)}}{2\mathfrak{a}-1}\bigg)^{\frac{\mathrm{p}-2}{2}}\mathscr{U}_{2}^{\mathrm{p}}\mathscr{C}_{\mathrm{p}}\bigg). \end{align} | (3.15) |
The weighted norm \Vert\cdot\Vert_{\eta} is
\begin{equation} \Vert\varpi(\mathfrak{c})\Vert_{\eta} = \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\bigg(\frac{\Vert\varpi(\mathfrak{c})\Vert_{\mathrm{p}}^{\mathrm{p}}} {\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)}\bigg)^{\frac{1}{\mathrm{p}}},\; \forall\varpi(\mathfrak{c})\in\mathscr{H}^{\mathrm{p}}([0,\mathbb{M}]). \end{equation} | (3.16) |
For \varpi(\mathfrak{c}) and \widetilde{\varpi}(\mathfrak{c}) , we obtain
\begin{align} &\Vert\hbar_{\sigma}\big(\varpi(\mathfrak{c}))-\hbar_{\sigma}\big(\widetilde{\varpi}(\mathfrak{c}))\Vert_{\mathrm{p}}^{\mathrm{p}} \\\leq& \frac{2^{\mathrm{p}-1}}{\Gamma^{\mathrm{p}}(\mathfrak{a})} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)-\mathfrak{f}\big(\varphi,\widetilde{\varpi}(\varphi), \widetilde{\varpi}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\& +\frac{2^{\mathrm{p}-1}}{\Gamma^{\mathrm{p}}(\mathfrak{a})} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)-\mathfrak{g}\big(\varphi, \widetilde{\varpi}(\varphi),\widetilde{\varpi}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert_{\mathrm{p}}^{\mathrm{p}}. \end{align} | (3.17) |
Using the Hölder's inequality and (\mathbb{H}_{1}) , we obtain
\begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)-\mathfrak{f}\big(\varphi, \widetilde{\varpi}(\varphi),\widetilde{\varpi}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\ = & \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathrm{E}\bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}_{\imath}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big) -\mathfrak{f}_{\imath}\big(\varphi,\widetilde{\varpi}(\varphi),\widetilde{\varpi}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\varphi\bigg)^{\mathrm{p}} \\\leq& \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathrm{E}\Biggl(\bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\frac{(\mathfrak{a}-1) (\mathrm{p}-2)}{\mathrm{p}-1}} \mathrm{d}\varphi\bigg)^{\mathrm{p}-1} \bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \big|\mathfrak{f}_{\imath}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)- \mathfrak{f}_{\imath}\big(\varphi,\widetilde{\varpi}(\varphi), \widetilde{\varpi}(\varphi-\mathrm{s}))\big|^{\mathrm{p}} \mathrm{d}\varphi\bigg)\Biggl) \\\leq& 2^{\mathrm{p}-1} \frac{\mathscr{U}_{1}^{\mathrm{p}}\mathbb{M}^{(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)}(\mathrm{p}-1)^{\mathrm{p}-1}} {(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)^{\mathrm{p}-1}} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\bigg(\big\Vert \varpi(\varphi)-\widetilde{\varpi}(\varphi))\big\Vert_{\mathrm{p}}^{\mathrm{p}}+\big\Vert \varpi(\varphi-\mathrm{s})-\widetilde{\varpi}(\varphi-\mathrm{s}))\big\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg) \mathrm{d}\varphi. \end{align} | (3.18) |
Hence, we have
\begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)-\mathfrak{f}\big(\varphi, \widetilde{\varpi}(\varphi),\widetilde{\varpi}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\\leq& 2^{\mathrm{p}-1} \frac{\mathscr{U}_{1}^{\mathrm{p}}\mathbb{M}^{(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)}(\mathrm{p}-1)^{\mathrm{p}-1}} {(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)^{\mathrm{p}-1}} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\bigg(\big\Vert \varpi(\varphi)-\widetilde{\varpi}(\varphi))\big\Vert_{\mathrm{p}}^{\mathrm{p}}+\big\Vert \varpi(\varphi-\mathrm{s})-\widetilde{\varpi}(\varphi-\mathrm{s}))\big\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg) \mathrm{d}\varphi. \end{align} | (3.19) |
However, using (\mathbb{H}_{1}) and the Burkholder-Davis-Gundy inequality, we have
\begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)- \mathfrak{g}\big(\varphi,\widetilde{\varpi}(\varphi),\widetilde{\varpi}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\ = & \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathrm{E}\bigg|\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}_{\imath}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)- \mathfrak{g}_{\imath}\big(\varphi,\widetilde{\varpi}(\varphi),\widetilde{\varpi} (\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\mathrm{w}{(\varphi)}\bigg|^{\mathrm{p}} \\\leq& \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathscr{C}_{\mathrm{p}}\mathrm{E}\bigg|\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\big| \mathfrak{g}_{\imath}\big(\varphi,\varpi(\varphi), \varpi(\varphi-\mathrm{s})\big)- {\mathfrak{g}}_{\imath}\big(\varphi,\widetilde{\varpi}(\varphi),\widetilde{\varpi}(\varphi-\mathrm{s})\big)\big|^{2} \mathrm{d}\varphi\bigg|^{\frac{\mathrm{p}}{2}} \\\leq& \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathscr{C}_{\mathrm{p}}\mathrm{E}\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\big|\mathfrak{g}_{\imath} \big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)- {\mathfrak{g}}_{\imath}\big(\varphi,\widetilde{\varpi}(\varphi),\widetilde{\varpi}(\varphi-\mathrm{s})\big)\big|^{\mathrm{p}} \mathrm{d}\varphi \bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi \bigg)^{\frac{\mathrm{p}-2}{2}} \\\leq& 2^{\mathrm{p}-1} \bigg(\frac{\mathbb{M}^{(2\mathfrak{a}-1)}} {2\mathfrak{a}-1}\bigg)^{\frac{\mathrm{p}-2}{2}}\mathscr{U}_{2}^{\mathrm{p}}\mathscr{C}_{\mathrm{p}} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\bigg(\big\Vert\varpi(\varphi)- \widetilde{\varpi}(\varphi)\Vert_{\mathrm{p}}^{\mathrm{p}}+\big\Vert\varpi(\varphi-\mathrm{s})- \widetilde{\varpi}(\varphi-\mathrm{s})\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg) \mathrm{d}\varphi. \end{align} | (3.20) |
So, from above
\begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\varpi(\varphi),\varpi(\varphi-\mathrm{s})\big)- \mathfrak{g}\big(\varphi,\widetilde{\varpi}(\varphi),\widetilde{\varpi}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\\leq& 2^{\mathrm{p}-1} \bigg(\frac{{\mathbb{M}}^{(2\mathfrak{a}-1)}}{2\mathfrak{a}-1}\bigg)^{\frac{\mathrm{p}-2}{2}}\mathscr{U}_{2}^{\mathrm{p}}\mathscr{C}_{\mathrm{p}} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\bigg(\big\Vert\varpi(\varphi)- \widetilde{\varpi}(\varphi)\Vert_{\mathrm{p}}^{\mathrm{p}}+\big\Vert\varpi(\varphi-\mathrm{s})- \widetilde{\varpi}(\varphi-\mathrm{s})\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg) \mathrm{d}\varphi. \end{align} | (3.21) |
Thus, \forall\mathfrak{c}\in[0, \mathbb{M}] , we have
\begin{align} \Vert\hbar_{\sigma}\big(\varpi(\mathfrak{c})\big)-\hbar_{\sigma}\big(\widetilde{\varpi}(\mathfrak{c})\big)\big\Vert_{\mathrm{p}}^{\mathrm{p}}\leq\delta \int_{0}^{\mathfrak{c}}\bigg(\big\Vert\varpi(\varphi)- \widetilde{\varpi}(\varphi)\Vert_{\mathrm{p}}^{\mathrm{p}}+\big\Vert\varpi(\varphi-\mathrm{s})- \widetilde{\varpi}(\varphi-\mathrm{s})\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg)(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi. \end{align} | (3.22) |
So,
\begin{align} &\frac{\Vert\hbar_{\sigma}\varpi(\mathfrak{c})-\hbar_{\sigma}\widetilde{\varpi}(\mathfrak{c})\Vert_{\mathrm{p}}^{\mathrm{p}}} {\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)}\\ \leq& \frac{1}{\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)} \delta \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \\& \Bigg(\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)\frac{\Vert\varpi(\varphi)- \widetilde{\varpi}(\varphi)\Vert_{\mathrm{p}}^{\mathrm{p}}}{\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)} +\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta(\mathfrak{c}-\mathrm{s})^{2\mathfrak{a}-1}\big) \frac{ \Vert\varpi(\varphi-\mathrm{s})-\widetilde{\varpi}(\varphi-\mathrm{s})\Vert_{\mathrm{p}}^{\mathrm{p}}} {\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta(\mathfrak{c}-\mathrm{s})^{2\mathfrak{a}-1}\big)} \Bigg) \mathrm{d}\varphi \\\leq& \frac{1}{\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)} \delta \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \Bigg(\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big) \underset{{\varphi}\in[0,\mathbb{M}]}{esssup}\bigg(\frac{\Vert\varpi(\varphi)- \widetilde{\varpi}(\varphi)\Vert_{\mathrm{p}}^{\mathrm{p}}} {\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)}\bigg) \\&+ \mathfrak{E}_{2\mathfrak{a}-1}\big(\eta(\mathfrak{c}-\mathrm{s})^{2\mathfrak{a}-1}\big) \underset{{\varphi}\in[0,\mathbb{M}]}{esssup}\bigg(\frac{ \Vert\varpi(\varphi-\mathrm{s})-\widetilde{\varpi}(\varphi-\mathrm{s})\Vert_{\mathrm{p}}^{\mathrm{p}}} {\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta(\mathfrak{c}-\mathrm{s})^{2\mathfrak{a}-1}\big)}\bigg) \Bigg) \mathrm{d}\varphi \\\leq& \frac{\Vert\varpi(\varphi)- \widetilde{\varpi}(\varphi)\Vert_{\eta}^{\mathrm{p}}}{\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)} \delta \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \big(\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)+\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta(\mathfrak{c}-\mathrm{s})^{2\mathfrak{a}-1}\big) \big) \mathrm{d}\varphi \\\leq& \frac{2\Vert\varpi(\varphi)- \widetilde{\varpi}(\varphi)\Vert_{\eta}^{\mathrm{p}}}{\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)} \delta \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big) \mathrm{d}\varphi. \end{align} | (3.23) |
Now, we use the following:
\begin{equation*} \frac{1}{\Gamma(2\mathfrak{a}-1)} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big) \mathrm{d}\varphi \leq \frac{1} {\eta} \mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big). \end{equation*} |
We obtain the required result from Eq (3.23).
\begin{align} \Vert\hbar_{\sigma}\big(\varpi(\mathfrak{c})\big)-\hbar_{\sigma}\big(\widetilde{\varpi}(\mathfrak{c})\big)\Vert_{\eta} \leq \bigg(\frac{2\delta\Gamma(2\mathfrak{a}-1)}{\eta}\bigg)^{\frac{1}{\mathrm{p}}}\Vert\varpi(\varphi)-\widetilde{\varpi} (\varphi)\Vert_{\eta}. \end{align} | (3.24) |
From Eq (3.14), we obtain \frac{2\delta\Gamma(2\mathfrak{a}-1)}{\eta} < 1 .
Theorem 3.2. If \xi_{\mathfrak{a}}(\mathfrak{c}, \sigma) is a solution that is Con-D on \mathfrak{a} , then
\begin{equation} \underset{\mathfrak{a}\rightarrow \tilde{\mathfrak{a}}} {\lim}\; \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)- \xi_{\tilde{\mathfrak{a}}}(\mathfrak{c},\sigma)\Vert_{\mathrm{p}} = 0. \end{equation} | (3.25) |
Proof. Assume \mathfrak{a} , \tilde{\mathfrak{a}}\in(\frac{1}{2}, 1) . Then,
\begin{align} &\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\tilde{\mathfrak{a}}}(\mathfrak{c},\sigma)\\ = & \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))- \mathfrak{f}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma))\bigg) \mathrm{d}\varphi \\&+ \int_{0}^{\mathfrak{c}}\bigg(\frac{1}{\Gamma(\mathfrak{a})}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}- \frac{1}{\Gamma(\tilde{\mathfrak{a}})} (\mathfrak{c}-\varphi)^{\tilde{\mathfrak{a}}-1}\bigg) \mathfrak{f}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\varphi \\&+ \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\bigg(\mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))- \mathfrak{g}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma))\bigg) \mathrm{d}\mathrm{w}{(\varphi)} \\&+ \int_{0}^{\mathfrak{c}} \bigg(\frac{1}{\Gamma(\mathfrak{a})}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}- \frac{1}{\Gamma(\tilde{\mathfrak{a}})} (\mathfrak{c}-\varphi)^{\tilde{\mathfrak{a}}-1}\bigg) \mathfrak{g}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\mathrm{w}{(\varphi)}. \end{align} | (3.26) |
We extract the subsequent outcome from Eq (3.26) by employing Eq (3.2).
\begin{align} &\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\tilde{\mathfrak{a}}}(\mathfrak{c},\sigma)\big\Vert_{\mathrm{p}}^{\mathrm{p}}\\ \leq& 2^{\mathrm{p}}\delta\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\tilde{\mathfrak{a}}} (\mathfrak{c},\sigma)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \mathrm{d}\varphi \\&+ 2^{2\mathrm{p}-2}\bigg\Vert\int_{0}^{\mathfrak{c}}\bigg(\frac{1}{\Gamma(\mathfrak{a})}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}- \frac{1}{\Gamma(\tilde{\mathfrak{a}})} (\mathfrak{c}-\varphi)^{\tilde{\mathfrak{a}}-1}\bigg)\mathfrak{f}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\&+ 2^{2\mathrm{p}-2} \bigg\Vert\int_{0}^{\mathfrak{c}}\bigg(\frac{1}{\Gamma(\mathfrak{a})}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}- \frac{1}{\Gamma(\tilde{\mathfrak{a}})} (\mathfrak{c}-\varphi)^{\tilde{\mathfrak{a}}-1}\bigg) \mathfrak{g}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\mathrm{w}(\varphi)\bigg\Vert_{\mathrm{p}}^{\mathrm{p}}. \end{align} | (3.27) |
Suppose the following:
\begin{equation} \Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}}) = \bigg|\frac{1}{\Gamma(\mathfrak{a})}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}- \frac{1}{\Gamma(\tilde{\mathfrak{a}})} (\mathfrak{c}-\varphi)^{\tilde{\mathfrak{a}}-1}\bigg|. \end{equation} | (3.28) |
By Hölder's inequality, (\mathbb{H}_{1}) , (\mathbb{H}_{2}) , and Eq (3.2), we have
\begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}\bigg(\frac{1}{\Gamma(\mathfrak{a})}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}- \frac{1}{\Gamma(\tilde{\mathfrak{a}})} (\mathfrak{c}-\varphi)^{\tilde{\mathfrak{a}}-1}\bigg) \mathfrak{f}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\\leq& \sum\nolimits_{\iota = 1}^{m}\mathrm{E}\bigg(\int_{0}^{\mathfrak{c}}\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}}) \big|\mathfrak{f}_{\imath}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma), \xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma))\big|\mathrm{d}\varphi\bigg)^{\mathrm{p}} \\\leq& \sum\nolimits_{\iota = 1}^{m}\mathrm{E}\Biggl(\bigg(\int_{0}^{\mathfrak{c}}\big(\Phi (\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\big)^{\frac{\mathrm{p}}{\mathrm{p}-1}}\mathrm{d}\varphi\bigg)^{\mathrm{p}-1} \int_{0}^{\mathfrak{c}}\bigl| \mathfrak{f}_{\imath}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma), \xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma))\big|^{\mathrm{p}}\mathrm{d}\varphi\bigg) \\\leq& \bigg(\int_{0}^{\mathfrak{c}}\big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\big)^{2}\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}}{2}} \bigg(\int_{0}^{\mathfrak{c}}1\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}-2}{2}} \int_{0}^{\mathfrak{c}}\bigl\Vert\mathfrak{f}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma), \xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)) \big\Vert^{\mathrm{p}}_{\mathrm{p}}\mathrm{d}\varphi \\\leq& \bigg(\int_{0}^{\mathfrak{c}}\big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\big)^{2}\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}}{2}} \mathbb{M}^{\frac{\mathrm{p}-2}{2}} \int_{0}^{\mathfrak{c}}2^{\mathrm{p}-1}\bigg(\mathscr{U}_{1}^{\mathrm{p}}(\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}}+ \Vert\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}}) +\Vert\mathfrak{f}(\varphi,0)\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg)\mathrm{d}\varphi \\\leq& \bigg(\int_{0}^{\mathfrak{c}}\big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\big)^{2}\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}}{2}} \mathbb{M}^{\frac{\mathrm{p}}{2}} 2^{\mathrm{p}-1}\bigg( 2^{\mathrm{p}-1} \mathscr{U}_{1}^{\mathrm{p}}(\underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}} + \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}}) +\psi^{\mathrm{p}}\bigg). \end{align} | (3.29) |
Now, by Burkholder-Davis-Gundy inequality, Eq (3.28), (\mathbb{H}_{1}) , and (\mathbb{H}_{2}) , we obtain
\begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}\bigg(\frac{1}{\Gamma(\mathfrak{a})}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}- \frac{1}{\Gamma(\tilde{\mathfrak{a}})} (\mathfrak{c}-\varphi)^{\tilde{\mathfrak{a}}-1}\bigg) \mathfrak{g}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\mathrm{w}(\varphi)\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\ = & \sum\nolimits_{\iota = 1}^{m}\mathrm{E}\bigg|\int_{0}^{\mathfrak{c}}\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}}) \mathfrak{g}_{\imath}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\mathrm{w}(\varphi)\bigg|^{\mathrm{p}} \\\leq& \sum\nolimits_{\iota = 1}^{m}\mathscr{C}_{\mathrm{p}}\mathrm{E}\big|\int_{0}^{\mathfrak{c}}\Phi^{2}(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}}) \big|\mathfrak{g}_{\imath}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma))\big|^{2} \mathrm{d}\mathrm{w}(\varphi)\big|^{\frac{\mathrm{p}}{2}} \\\leq& \sum\nolimits_{\iota = 1}^{m}\mathscr{C}_{\mathrm{p}}\mathrm{E}\bigg[\bigg(\int_{0}^{\mathfrak{c}}\Phi^{2}(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}}) \big|\mathfrak{g}_{\imath}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma))\big|^{\mathrm{p}} \mathrm{d}\varphi\bigg)^{\frac{2}{\mathrm{p}}} \bigg(\int_{0}^{\mathfrak{c}}\Phi^{2}(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}}) \mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}-2}{\mathrm{p}}}\bigg]^{\frac{\mathrm{p}}{2}} \\ = & \mathscr{C}_{\mathrm{p}}\int_{0}^{\mathfrak{c}}\Phi^{2}(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}}) \big\Vert\mathfrak{g}(\varphi,\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma),\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma))\big\Vert^{\mathrm{p}}_{\mathrm{p}} \mathrm{d}\varphi \bigg(\int_{0}^{\mathfrak{c}}\Phi^{2}(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}-2}{2}} \\\leq& \mathscr{C}_{\mathrm{p}}\bigg(\int_{0}^{\mathfrak{c}} \Phi^{2}(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}}{2}}2^{\mathrm{p}-1} \bigg( 2^{\mathrm{p}-1} \mathscr{U}_{2}^{\mathrm{p}}(\underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}} + \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}}) +\psi^{\mathrm{p}}\bigg). \end{align} | (3.30) |
Thus, we obtain the following:
\begin{align} &\frac{\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\tilde{\mathfrak{a}}}(\mathfrak{c},\sigma)\big \Vert_{\mathrm{p}}^{\mathrm{p}}}{\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)}\\ \leq& \frac{2^{\mathrm{p}}\delta\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \frac{\big\Vert\xi_{\mathfrak{a}}(\varphi,\sigma)-\xi_{\tilde{\mathfrak{a}}} (\varphi,\sigma)\big\Vert_{\mathrm{p}}^{\mathrm{p}}}{\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)} \mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)\mathrm{d}\varphi} {\mathfrak{E}_{2\mathfrak{a}-1}\big(\eta\mathfrak{c}^{2\mathfrak{a}-1}\big)} \\&+ 2^{3\mathrm{p}-3}\bigg( 2^{\mathrm{p}-1} \mathscr{U}_{1}^{\mathrm{p}}( \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}} +\underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}}) +\psi^{\mathrm{p}}\bigg)\bigg(\int_{0}^{\mathfrak{c}}\big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\big)^{2}\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}}{2}} \mathbb{M}^{\frac{\mathrm{p}}{2}} \\&+ 2^{3\mathrm{p}-3}\bigg( 2^{\mathrm{p}-1} \mathscr{U}_{2}^{\mathrm{p}}( \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}} +\underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}}) +\psi^{\mathrm{p}}\bigg)\mathscr{C}_{\mathrm{p}}\bigg(\int_{0}^{\mathfrak{c}} \big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\big)^{2}\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}}{2}} \\\leq& \frac{2^{\mathrm{p}}\delta\Gamma(2\mathfrak{a}-1)}{\eta}\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\tilde{\mathfrak{a}}} (\mathfrak{c},\sigma)\big\Vert_{\eta}^{\mathrm{p}} \\&+ 2^{3\mathrm{p}-3}\bigg( 2^{\mathrm{p}-1} \mathscr{U}_{1}^{\mathrm{p}}( \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}} +\underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}}) +\psi^{\mathrm{p}}\bigg)\bigg(\int_{0}^{\mathfrak{c}} \big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\big)^{2}\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}}{2}}\mathbb{M}^{\frac{\mathrm{p}}{2}} \\&+ 2^{3\mathrm{p}-3}\bigg( 2^{\mathrm{p}-1} \mathscr{U}_{2}^{\mathrm{p}}( \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}} + \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}}) +\psi^{\mathrm{p}}\bigg)\mathscr{C}_{\mathrm{p}} \bigg(\int_{0}^{\mathfrak{c}}\big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\big)^{2}\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}}{2}}. \end{align} | (3.31) |
From the above, we have
\begin{align} &\bigg(1-\frac{2^{\mathrm{p}}\delta\Gamma(2\mathfrak{a}-1)}{\eta}\bigg)\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\tilde{\mathfrak{a}}} (\mathfrak{c},\sigma)\big\Vert_{\eta}^{\mathrm{p}}\\ \leq& 2^{3\mathrm{p}-3} \bigg( 2^{\mathrm{p}-1} \mathscr{U}_{1}^{\mathrm{p}}( \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}} + \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}}) +\psi^{\mathrm{p}}\bigg) \bigg(\int_{0}^{\mathfrak{c}}\big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\big)^{2}\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}}{2}} \mathbb{M}^{\frac{\mathrm{p}}{2}}\\& + 2^{3\mathrm{p}-3}\bigg(2^{\mathrm{p}-1} \mathscr{U}_{2}^{\mathrm{p}}( \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}} + \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}}) +\psi^{\mathrm{p}}\bigg) \mathscr{C}_{\mathrm{p}}\bigg(\int_{0}^{\mathfrak{c}}\big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\big)^{2}\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}}{2}}. \end{align} | (3.32) |
Now, we prove the following:
\begin{equation*} \underset{\tilde{\mathfrak{a}}\rightarrow \mathfrak{a}}{lim}\underset{\mathfrak{c}\in[0,\mathbb{M}]}{sup}\int_{0}^{\mathfrak{c}} \big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}}) \big)^{2}\mathrm{d}\varphi = 0. \end{equation*} |
We possess the following:
\begin{align} \int_{0}^{\mathfrak{c}} \big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}}) \big)^{2}\mathrm{d}\varphi = & \int_{0}^{\mathfrak{c}}\frac{(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}}{\Gamma^{2}(\mathfrak{a})} \mathrm{d}\varphi + \int_{0}^{\mathfrak{c}}\frac{(\mathfrak{c}-\varphi)^{2\tilde{\mathfrak{a}}-2}} {{\Gamma^{2}(\tilde{\mathfrak{a}})}} \mathrm{d}\varphi - 2 \int_{0}^{\mathfrak{c}}\frac{(\mathfrak{c}-\varphi)^{\mathfrak{a}+\tilde{\mathfrak{a}}-2}}{{\Gamma(\mathfrak{a})}\Gamma(\tilde{\mathfrak{a}})} \mathrm{d}\varphi \\ = &\; \bigg(\frac{\mathbb{M}^{(2\mathfrak{a}-1)}}{(2\mathfrak{a}-1)}\bigg) \frac{1}{\Gamma^{2}(\mathfrak{a})} + \bigg(\frac{\mathbb{M}^{(2\tilde{\mathfrak{a}}-1)}}{(2\tilde{\mathfrak{a}}-1)}\bigg) \frac{1}{\Gamma^{2}(\tilde{\mathfrak{a}})} - \frac{2\mathbb{M}^{(\mathfrak{a}+\tilde{\mathfrak{a}}-1)}}{(\mathfrak{a}+\tilde{\mathfrak{a}}-1){\Gamma(\mathfrak{a})\Gamma(\tilde{\mathfrak{a}})}}. \end{align} | (3.33) |
It thereby demonstrated the necessary outcome.
Theorem 3.3. For \sigma, \Psi\in\mathbb{A}^{\mathrm{p}}_{0} , we have
\begin{equation} \Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\mathfrak{c},\Psi)\Vert_{\mathrm{p}}\leq \mathscr{U} \Vert\sigma-\Psi\Vert_{\mathrm{p}},\; \forall\; \mathfrak{c}\in[0,\; \mathbb{M}]. \end{equation} | (3.34) |
Proof. As we have
\begin{align} &\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\mathfrak{c},\Psi)\\ = & \frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}- \frac{\Psi\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})} \\&+ \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\bigg(\mathfrak{f}(\varphi, \xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) - \mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\bigg)\mathrm{d}\varphi \\& + \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\big(\mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) - \mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\big) \mathrm{d}\mathrm{w}{(\varphi)}. \end{align} | (3.35) |
By applying Eq (3.2), we obtain
\begin{align} &\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\mathfrak{c},\Psi) \big\Vert_{\mathrm{p}}^{\mathrm{p}}\\ \leq&2^{\mathrm{p}-1}\bigg\Vert\frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}- \frac{\Psi\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}\bigg\Vert _{\mathrm{p}}^{\mathrm{p}}\\&+ \frac{2^{2\mathrm{p}-2}}{\Gamma^{\mathrm{p}}(\mathfrak{a})}\bigg\Vert \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))- \mathfrak{f}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi)) \bigg) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\&+ \frac{2^{2\mathrm{p}-2}}{\Gamma^{\mathrm{p}}(\mathfrak{a})} \bigg\Vert \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) \big)-\mathfrak{g}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) \bigg) \mathrm{d}\mathrm{w}(\varphi)\bigg\Vert_{\mathrm{p}}^{\mathrm{p}}. \end{align} | (3.36) |
By Hölder's inequality and (\mathbb{H}_{1}) , we obtain
\begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))-\mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\bigg) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\ = & \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathrm{E}\bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}_{\imath}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) -\mathfrak{f}_{\imath}(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\bigg) \mathrm{d}\varphi\bigg)^{\mathrm{p}} \\\leq& \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathrm{E}\Biggl(\bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\frac{(\mathfrak{a}-1) (\mathrm{p}-2)}{\mathrm{p}-1}} \mathrm{d}\varphi\bigg)^{\mathrm{p}-1} \\& \bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\big|\mathfrak{f}_{\imath}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))- \mathfrak{f}_{\imath}(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\big| \mathrm{d}\varphi\bigg)\Biggl) \\\leq& 2^{\mathrm{p}-1} \frac{\mathscr{U}_{1}^{\mathrm{p}}\mathbb{M}^{(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)}(\mathrm{p}-1)^{\mathrm{p}-1}} {(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)^{\mathrm{p}-1}} \\& \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\bigg(\big\Vert \xi_{\mathfrak{a}}(\varphi,\sigma)-\xi_{\mathfrak{a}}(\varphi,\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}}+ \big\Vert \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)-\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \bigg) \mathrm{d}\varphi. \end{align} | (3.37) |
Hence, we have
\begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))-\mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\bigg) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\\leq& 2^{\mathrm{p}-1} \frac{\mathscr{U}_{1}^{\mathrm{p}}\mathbb{M}^{(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)}(\mathrm{p}-1)^{\mathrm{p}-1}} {(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)^{\mathrm{p}-1}} \\& \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \bigg(\big\Vert \xi_{\mathfrak{a}}(\varphi,\sigma)-\xi_{\mathfrak{a}}(\varphi,\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}}+ \big\Vert \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)-\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \bigg) \mathrm{d}\varphi. \end{align} | (3.38) |
Now, utilizing (\mathbb{H}_{1}) , Hölder's inequality, and Burkholder–Davis–Gundy inequality, we derive
\begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))- \mathfrak{g}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi)) \bigg) \mathrm{d}\mathrm{w}(\varphi)\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\ = & \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathrm{E}\bigg|\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}_{\imath}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))- \mathfrak{g}_{\imath}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\bigg) \mathrm{d}\mathrm{w}({\varphi})\bigg|^{\mathrm{p}} \\ \leq& \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathscr{C}_{\mathrm{p}}\mathrm{E}\bigg|\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\big| \mathfrak{g}_{\imath}\big(\varphi, \xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))- {\mathfrak{g}}_{\imath}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\big|^{2} \mathrm{d}\varphi\bigg|^{\frac{\mathrm{p}}{2}} \\\leq & \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathscr{C}_{\mathrm{p}}\mathrm{E}\int_{0}^{\mathfrak{c}}(\mathfrak{c}- \varphi)^{2\mathfrak{a}-2}\big|\mathfrak{g}_{\imath}\big(\varphi, \xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))- {\mathfrak{g}}_{\imath}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi)) \big|^{\mathrm{p}} \mathrm{d}\varphi \\& \bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}-2}{2}} \\ \leq& 2^{\mathrm{p}-1} \mathscr{U}_{2}^{\mathrm{p}}\mathscr{C}_{\mathrm{p}} \bigg(\big\Vert \xi_{\mathfrak{a}}(\varphi,\sigma)-\xi_{\mathfrak{a}}(\varphi,\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}}+ \big\Vert \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)-\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \bigg) \mathrm{d}\varphi. \end{align} | (3.39) |
By substituting Eqs (3.37) and (3.39) into Eq (3.36), we obtain
\begin{align} &\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\mathfrak{c},\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \\ \leq&2^{\mathrm{p}-1} \bigg\Vert\frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}- \frac{\Psi\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}\bigg\Vert _{\mathrm{p}}^{\mathrm{p}} +2^{\mathrm{p}}\delta \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\bigg(\big\Vert \xi_{\mathfrak{a}}(\varphi,\sigma)-\xi_{\mathfrak{a}}(\varphi,\Psi) \big\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg) \mathrm{d}\varphi. \end{align} | (3.40) |
By referring to the Grönwall inequality, we conclude
\begin{align*} \big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\mathfrak{c},\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}}\leq2^{\mathrm{p}-1}\exp\Bigg( 2^{\mathrm{p}}\delta \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi\Bigg)\bigg\Vert\frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}- \frac{\Psi\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}\bigg\Vert_{\mathrm{p}}^{\mathrm{p}}. \end{align*} |
Thus, we obtain the following result:
\begin{align*} \big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\mathfrak{c},\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \leq2^{\mathrm{p}-1}\mathbb{E}_{2\mathfrak{a}-1}\bigg( 2^{\mathrm{p}}\delta\Gamma(2\mathfrak{a}-1)\mathfrak{c}^{(2\mathfrak{a}-1)}\bigg) \bigg\Vert\frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}- \frac{\Psi\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}\bigg\Vert_{\mathrm{p}}^{\mathrm{p}}. \end{align*} |
Hence, we
\begin{align*} \underset{\sigma\rightarrow \Psi}{\lim}\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\mathfrak{c},\Psi)\big\Vert_{\mathrm{p}} = 0. \end{align*} |
The proof is so done.
The following result pertains to regularity.
Theorem 3.4. If (\mathbb{H}_{1}) and (\mathbb{H}_{2}) are valid, then for \mathscr{S} > 0 , we have
\begin{equation} \Vert\xi_{\mathfrak{a}}(\sigma,\mathfrak{c})-\xi_{\mathfrak{a}}(\sigma,\varsigma)\Vert_{\mathrm{p}}\leq\mathscr{S}|\mathfrak{c}-\varsigma|^{\mathfrak{a}-\frac{1}{2}},\; \forall\mathfrak{c},\varsigma\in[0,\mathbb{M}]. \end{equation} | (3.41) |
Proof. For \mathfrak{c} > \varsigma , then from Eq (3.2):
\begin{align} \label {eq300} &\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\varsigma,\sigma)\big\Vert_{\mathrm{p}}^{\mathrm{p}}\\ \leq& \frac{1}{\Gamma^{\mathrm{p}}(\mathfrak{a})2^{2-2\mathrm{p}}} \bigg\Vert\int_{\varsigma}^{\mathfrak{c}}(\mathfrak{c}- \varphi)^{\mathfrak{a}-1}\mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\&+ \frac{1}{\Gamma^{\mathrm{p}}(\mathfrak{a})2^{2-2\mathrm{p}}} \bigg\Vert\int_{\varsigma}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\mathrm{w}(\varphi)({\varphi})\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\&+ \frac{1}{\Gamma^{\mathrm{p}}(\mathfrak{a})2^{2-2\mathrm{p}}} \bigg\Vert\int_{0}^{\varsigma}\big\vert(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}- (\varsigma-\varphi)^{\mathfrak{a}-1}\big\vert \mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\&+ \frac{1}{\Gamma^{\mathrm{p}}(\mathfrak{a})2^{2-2\mathrm{p}}} \bigg\Vert\int_{0}^{\varsigma}\big\vert(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}- (\varsigma-\varphi)^{\mathfrak{a}-1}\big\vert\mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\mathrm{w}(\varphi)\bigg\Vert_{\mathrm{p}}^{\mathrm{p}}. \end{align} | (3.42) |
By Hölder's inequality and Burkholder-Davis-Gundy inequality, we obtain
\begin{align} &\Gamma^{\mathrm{p}}(\mathfrak{a})2^{2-2\mathrm{p}}\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)- \xi_{\mathfrak{a}}(\varsigma,\sigma)\big\Vert_{\mathrm{p}}^{\mathrm{p}}\\ \leq& \frac{(\mathrm{p}-1)^{\mathrm{p}-1}}{(\mathrm{p}\mathfrak{a}-1)^{\mathrm{p}-1}(\mathfrak{c}-\varsigma)^{1-\mathrm{p}}} \big\Vert \mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))\big\Vert_{\mathrm{p}}^{\mathrm{p}} \int_{\varsigma}^{\mathfrak{c}}1 \mathrm{d}\varphi \\&+ \mathscr{C}_{p} \bigg(\big\Vert\mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))\big\Vert_{\mathrm{p}}^{\mathrm{p}} \int_{\varsigma}^{\mathfrak{c}} (\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi\bigg) \bigg(\int_{\varsigma}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}-2}{2}} \\&+ \frac{\Vert\mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) \Vert_{\mathrm{p}}^{\mathrm{p}}}{\mathbb{M}^{\frac{2-\mathrm{p}}{2}}}\int_{0}^{\varsigma}1 \mathrm{d}\varphi \Big(\int_{0}^{\varsigma}\big\vert(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}-(\varsigma-\varphi)^{\mathfrak{a}-1}\big\vert^{2} \mathrm{d}\varphi\Big)^{\frac{\mathrm{p}}{2}} \\&+ \Vert\mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))\Vert_{\mathrm{p}}^{\mathrm{p}} \mathscr{C}_{p} \int_{0}^{\varsigma}\bigg((\mathfrak{c}-\varphi)^{\mathfrak{a}-1}-(\varsigma-\varphi)^{\mathfrak{a}-1}\bigg)^{2} \mathrm{d}\varphi \\&\times \Bigg(\int_{0}^{\varsigma}\bigg((\mathfrak{c}-\varphi)^{\mathfrak{a}-1}-(\varsigma-\varphi)^{\mathfrak{a}-1}\bigg)^{2} \mathrm{d}\varphi\Bigg)^{\frac{\mathrm{p}-2}{2}}. \end{align} |
We have
\begin{equation*} \big\Vert \mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma))\big\Vert_{\mathrm{p}}^{\mathrm{p}}\leq2^{\mathrm{p}-1}\bigg( 2^{\mathrm{p}-1}\mathscr{U}_{1}^{\mathrm{p}} \bigg(\big\Vert\xi_{\mathfrak{a}}(\varphi,\sigma)\big\Vert_{\mathrm{p}}^{\mathrm{p}}+ \big\Vert\xi_{\mathfrak{a}}(\varphi,\sigma-\mathrm{s}))\big\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg)+ \Vert \mathfrak{f}(\varphi,0)\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg)\leq2^{\mathrm{p}-1}\big(2^{\mathrm{p}}\mathscr{U}_{1}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big). \end{equation*} |
And also
\begin{equation*} \big\Vert\mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma))\big\Vert_{\mathrm{p}}^{\mathrm{p}}\leq2^{\mathrm{p}-1}\bigg( 2^{\mathrm{p}-1} \mathscr{U}_{2}^{\mathrm{p}}\bigg( \big\Vert \xi_{\mathfrak{a}}(\varphi,\sigma))\big\Vert_{\mathrm{p}}^{\mathrm{p}} +\big\Vert \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))\big\Vert_{\mathrm{p}}^{\mathrm{p}} \bigg)+\Vert\mathfrak{g}(\varphi,0) \Vert_{\mathrm{p}}^{\mathrm{p}}\bigg)\leq2^{\mathrm{p}-1}\big(2^{\mathrm{p}}\mathscr{U}_{2}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big). \end{equation*} |
Furthermore,
\begin{align} \int_{0}^{\varsigma}\bigg((\mathfrak{c}-&\varphi)^{\mathfrak{a}-1}-(\varsigma-\varphi)^{\mathfrak{a}-1}\bigg)^{2} \mathrm{d}\varphi \leq \frac{(\mathfrak{c}-\varsigma)^{(2\mathfrak{a}-1)}}{(2\mathfrak{a}-1)}. \end{align} | (3.43) |
So,
\begin{align} &\Gamma^{\mathrm{p}}(\mathfrak{a})2^{2-2\mathrm{p}}\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\varsigma,\sigma)\big\Vert_{\mathrm{p}}^{\mathrm{p}}\\ \leq& \frac{(2\mathrm{p}-2)^{\mathrm{p}-1}}{(2\mathfrak{a}-1)^{\mathrm{p}-1}}\big(\mathfrak{c}-\varsigma\big)^{\frac{(2\mathfrak{a}-1)\mathrm{p}}{2}} \big(2^{\mathrm{p}}\mathscr{U}_{1}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big)\mathbb{M}^{\frac{\mathrm{p}}{2}} + \frac{1}{(2\mathfrak{a}-1)^{\frac{\mathrm{p}}{2}}} \big(\mathfrak{c}-\varsigma\big)^{\frac{(2\mathfrak{a}-1)\mathrm{p}}{2}}\big( 2^{\mathrm{p}} \mathscr{U}_{2}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big) 2^{\mathrm{p}-1}\mathscr{C}_{\mathrm{p}} \\&+ \frac{2^{\mathrm{p}-1}}{(2\mathfrak{a}-1)^{\mathrm{p}-1}}\big(\mathfrak{c}-\varsigma\big)^{\frac{(2\mathfrak{a}-1)\mathrm{p}}{2}} \big(2^{\mathrm{p}}\mathscr{U}_{1}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big)\mathbb{M}^{\frac{\mathrm{p}}{2}} + \frac{1}{(2\mathfrak{a}-1)^{\frac{\mathrm{p}}{2}}} \big(\mathfrak{c}-\varsigma\big)^{\frac{(2\mathfrak{a}-1)\mathrm{p}}{2}}\big( 2^{\mathrm{p}} \mathscr{U}_{2}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big) 2^{\mathrm{p}-1}\mathscr{C}_{\mathrm{p}}. \end{align} |
Hence,
\begin{equation*} \big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\varsigma,\sigma)\big\Vert_{\mathrm{p}}\leq\mathscr{S}(\mathfrak{c}-\varsigma)^{\mathfrak{a}-\frac{1}{2}}, \end{equation*} |
where
\begin{align*} \mathscr{S}^{\mathrm{p}} = &2^{2\mathrm{p}-2}\bigg( \frac{(2\mathrm{p}-2)^{\mathrm{p}-1}}{(\mathrm{p}\mathfrak{a}-1)^{\mathrm{p}-1}} \big(2^{\mathrm{p}}\mathscr{U}_{1}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big)\mathbb{M}^{\frac{\mathrm{p}}{2}} + \frac{1}{(2\mathfrak{a}-1)^{\frac{\mathrm{p}}{2}}} \big(2^{\mathrm{p}}\mathscr{U}_{2}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big) 2^{\mathrm{p}-1}\mathscr{C}_{\mathrm{p}}\bigg)\frac{1}{\Gamma^{\mathrm{p}}(\mathfrak{a})} \nonumber\\&+ 2^{2\mathrm{p}-2}\bigg(\frac{2^{\mathrm{p}-1}}{(2\mathfrak{a}-1)^{\mathrm{p}-1}} \big(2^{\mathrm{p}}\mathscr{U}_{1}^{\mathrm{p}}K_{1}+K^{\mathrm{p}}\big)\mathbb{M}^{\frac{\mathrm{p}}{2}} + \frac{1}{(2\mathfrak{a}-1)^{\frac{\mathrm{p}}{2}}} \big(2^{\mathrm{p}}\mathscr{U}_{2}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big) 2^{\mathrm{p}-1}\mathscr{C}_{\mathrm{p}}\bigg){\Gamma^{\mathrm{p}}(\mathfrak{a})}. \end{align*} |
Thus, we obtain the following:
\begin{equation*} \underset{\varsigma\rightarrow \mathfrak{c}}{\lim} \big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\varsigma,\sigma)\big\Vert_{\mathrm{p}} = 0. \end{equation*} |
Now, we establish results concerning the average principle in the \mathrm{p} th moment for SFDDEs within the framework of the HFrD.
Lemma 4.1. For \widetilde{\mathfrak{g}} , when \mathbb{M}_{1}\in[0, \mathbb{M}] , we obtain
\begin{equation} \notag \Vert\widetilde{\mathfrak{g}}(\ell,\zeta)\Vert^{\mathrm{p}} \leq \mathscr{U}_{6}\left(1+\Vert\ell\Vert^{\mathrm{p}}+\Vert\zeta\Vert^{\mathrm{p}}\right), \end{equation} |
where \mathscr{U}_{6} = \left(2^{\mathrm{p}-1}\aleph_{2}\left(\mathbb{M}_{1}\right)+6^{\mathrm{p}-1}\mathscr{U}_{4}^{\mathrm{p}}\right) .
Proof. By \left(\mathbb{H}_{4}\right), \left(\mathbb{H}_{5}\right) , and Eq (3.2),
\begin{align*} \Vert\widetilde{\mathfrak{g}}(\ell,\zeta)\Vert^{\mathrm{p}} &\leq 2^{\mathrm{p}-1}\Vert\mathfrak{g}(\mathfrak{c},\ell,\zeta)-\widetilde{\mathfrak{g}}(\ell,\zeta)\Vert^{\mathrm{p}}+ 2^{\mathrm{p}-1}\Vert\mathfrak{g}(\mathfrak{c},\ell,\zeta)\Vert^{\mathrm{p}} \\&\leq 2^{\mathrm{p}-1}\aleph_{2}\left(\mathbb{M}_{1}\right)\left(1+\Vert\ell\Vert^{\mathrm{p}}+\Vert\zeta\Vert^{\mathrm{p}}\right)+ 2^{\mathrm{p}-1}\mathscr{U}_{4}^{\mathrm{p}}(1+\Vert\ell\Vert+\Vert\zeta\Vert )^{\mathrm{p}} \\&\leq \left(2^{\mathrm{p}-1}\aleph_{2}\left(\mathbb{M}_{1}\right)+6^{\mathrm{p}-1}\mathscr{U}_{4}^{\mathrm{p}}\right) \left(1+\Vert\ell\Vert^{\mathrm{p}}+\Vert\zeta\Vert ^{\mathrm{p}}\right). \end{align*} |
The following is a lemma regarding the time-scale property of the HFrD.
Lemma 4.2. Suppose the time scale \mathfrak{c} = \mu\gamma , then
\begin{equation*} \mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mu\gamma) = \mu^{\mathfrak{a}}\mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mathfrak{c}). \end{equation*} |
Proof. The HFrD of order 0\leq\vartheta\leq1 and 0 < \mathfrak{a} < 1 is defined as
\begin{equation*} \mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mu\gamma) = \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\gamma}\frac{1}{(\gamma-\varphi)^{1-\vartheta(1-\mathfrak{a})}} \frac{\mathrm{d}}{\mathrm{d}\varphi} \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\gamma}\frac{1}{(\gamma-\varphi)^{1-(1-\vartheta)(1-\mathfrak{a})}}\varpi(\mu\varphi)\mathrm{d}\varphi \mathrm{d}\varphi. \end{equation*} |
Let \mu\varphi = \mathscr{A} , and by the chain rule, \frac{\mathrm{d}}{\mathrm{d}\varphi} = \frac{\mathrm{d}}{\mathrm{d}\mathscr{A}}.\frac{\mathrm{d}\mathscr{A}}{\mathrm{d}\varphi} = \frac{\mathrm{d}}{\mathrm{d}\mathscr{A}}.\frac{\mathrm{d}}{\mathrm{d}\varphi}(\mu\varphi) = \mu\frac{\mathrm{d}}{\mathrm{d}\mathscr{A}} . So, we have
\begin{equation*} \mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mu\gamma) = \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\mu\gamma}\frac{1}{(\gamma-\frac{\mathscr{A}}{\mu})^{1-\vartheta(1-\mathfrak{a})}} \mu\frac{\mathrm{d}}{\mathrm{d}\mathscr{A}} \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\mu\gamma}\frac{1}{(\gamma-\frac{\mathscr{A}}{\mu})^{(1-\vartheta)(1-\mathfrak{a})}}\varpi(\mathscr{A}) \frac{\mathrm{d}\mathscr{A}}{\mu} \frac{\mathrm{d}\mathscr{A}}{\mu}. \end{equation*} |
From the above, we have
\begin{equation*} \mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mu\gamma) = \mu^{\mathfrak{a}} \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\mu\gamma}\frac{1}{(\mu\gamma-\mathscr{A})^{1-\vartheta(1-\mathfrak{a})}} \frac{\mathrm{d}}{\mathrm{d}\mathscr{A}} \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\mu\gamma}\frac{1}{(\mu\gamma-\mathscr{A})^{(1-\vartheta)(1-\mathfrak{a})}}\varpi(\mathscr{A}) \mathrm{d}\mathscr{A} \mathrm{d}\mathscr{A}, \end{equation*} |
likewise, we obtain
\begin{equation*} \mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mu\gamma) = \mu^{\mathfrak{a}} \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\mathfrak{c}}\frac{1}{(\mathfrak{c}-\mathscr{A})^{1-\vartheta(1-\mathfrak{a})}} \frac{\mathrm{d}}{\mathrm{d}\mathscr{A}} \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\mathfrak{c}}\frac{1}{(\mathfrak{c}-\mathscr{A})^{(1-\vartheta)(1-\mathfrak{a})}}\varpi(\mathscr{A}) \mathrm{d}\mathscr{A} \mathrm{d}\mathscr{A}. \end{equation*} |
So, we have the following result:
\begin{equation*} \mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mu\gamma) = \mu^{\mathfrak{a}} \mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mathfrak{c}). \end{equation*} |
Now, we establish an important result concerning average principle.
\begin{equation} \begin{cases} &\mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mathfrak{c}) = \mathfrak{f}\big(\frac{\mathfrak{c}}{\varepsilon},\varpi(\mathfrak{c}),\varpi(\mathfrak{c}-\mathrm{s})\big) + \mathfrak{g}\big(\frac{\mathfrak{c}}{\varepsilon},\varpi(\mathfrak{c}),\varpi(\mathfrak{c}-\mathrm{s})\big)\frac{\mathrm{d}\mathrm{w}(\mathfrak{c})}{\mathrm{d}\mathfrak{c}}, \\& \varpi(0) = \sigma^{\prime}. \end{cases} \end{equation} | (4.1) |
Suppose \frac{\mathfrak{c}}{\varepsilon} = \nu . By Lemma 4.2 and from Eq (4.1):
\begin{align*} &\varepsilon^{-\mathfrak{a}}\mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\varepsilon\nu) = \mathfrak{f}\big(\nu,\varpi(\varepsilon\nu),\varpi(\varepsilon\nu-\varepsilon\mathrm{s})\big) + \mathfrak{g}\big(\nu,\varpi(\varepsilon\nu),\varpi(\varepsilon\nu-\varepsilon\mathrm{s})\big) \frac{\mathrm{d}\mathrm{w}{(\varepsilon\nu)}}{\varepsilon\mathrm{d}\nu}. \end{align*} |
By considering \mathrm{d}\mathrm{w}{(\varepsilon\nu)} = \sqrt{\varepsilon}\mathrm{d}\mathrm{w}{(\nu)} and representing \varpi({\varepsilon\nu}) = \varpi_{\varepsilon}({\nu}) and \varpi(\varepsilon\nu-\varepsilon\mathrm{s}) = \varpi_{\varepsilon}(\nu-\mathrm{s}) , we get
\begin{align*} &\mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi_{\varepsilon}(\nu) = \varepsilon^{\mathfrak{a}} \mathfrak{f}\big(\nu,\varpi_{\varepsilon}(\nu),\varpi_{\varepsilon}(\nu-\mathrm{s})\big) + \varepsilon^{\mathfrak{a}-\frac{1}{2}}\mathfrak{g}\big(\nu,\varpi_{\varepsilon}(\nu),\varpi_{\varepsilon}(\nu-\mathrm{s})\big) \frac{\mathrm{d}\mathrm{w}{(\nu)}}{\mathrm{d}\nu}. \end{align*} |
Despite the loss of generality, \nu = \mathfrak{c} can be stated. The standard form of Eq (1.1) can be obtained by applying \frac{\mathfrak{c}}{\varepsilon} \rightarrow \mathfrak{c} .
\begin{equation} \begin{cases} &\mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi_{\varepsilon}(\mathfrak{c}) = \varepsilon^{\mathfrak{a}} \mathfrak{f}\big(\sigma,\varpi_{\varepsilon}(\mathfrak{c}),\varpi_{\varepsilon}(\mathfrak{c}-\mathrm{s})\big) + \varepsilon^{\mathfrak{a}-\frac{1}{2}}\mathfrak{g}\big(\sigma,\varpi_{\varepsilon}(\mathfrak{c}),\varpi_{\varepsilon}(\mathfrak{c}-\mathrm{s})\big) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{\mathrm{d}\mathfrak{c}}, \\& \varpi_{\varepsilon}(0) = \sigma. \end{cases} \end{equation} | (4.2) |
Thus, Eq (4.2) can be expressed integrally as
\begin{align} \varpi_{\varepsilon}(\mathfrak{c}) = & \frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})} + \varepsilon^{\mathfrak{a}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}} (\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \mathfrak{f}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)\mathrm{d}\varphi \\&+ \varepsilon^{\mathfrak{a}-\frac{1}{2}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}} (\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \mathfrak{g}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)\mathrm{d}\mathrm{w}(\varphi), \end{align} | (4.3) |
for \varepsilon\in(0, \varepsilon_{0}] . The average of Eq (3.35) is as
\begin{align} \varpi^{*}_{\varepsilon}(\sigma) = & \frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}+ \varepsilon^{\mathfrak{a}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\sigma} (\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \widetilde{\mathfrak{f}}\big(\varpi^{*}_{\varepsilon}(\varphi),\varpi^{*}_{\varepsilon}(\varphi-\mathrm{s})\big)\mathrm{d}\varphi \\&+ \varepsilon^{\mathfrak{a}-\frac{1}{2}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}} (\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \widetilde{\mathfrak{g}}\big(\varpi^{*}_{\varepsilon}(\varphi),\varpi^{*}_{\varepsilon}(\tau-\mathrm{s})\big) \mathrm{d}{\mathrm{w}}(\varphi), \end{align} | (4.4) |
where \widetilde{\mathfrak{f}}:\mathbb{R}^{\mathfrak{m}}\times\mathbb{R}^{\mathfrak{m}}\rightarrow \mathbb{R}^{\mathfrak{m}}, \widetilde{\mathfrak{g}}:\mathbb{R}^{\mathfrak{m}}\times\mathbb{R}^{\mathfrak{m}}\rightarrow \mathbb{R}^{\varkappa\times\mathfrak{b}} .
Theorem 4.1. When \mho > 0 and \varrho > 0 , and \varepsilon_{1} \in \left(0, \varepsilon_{0}\right] with \kappa \in \left(0, \mathfrak{a}\mathrm{p} - \frac{\mathrm{p}}{2}\right) , then
\begin{equation} \mathrm{E}\Big[\sup\limits_{\mathfrak{c}\in[-\mathrm{s},\; \varrho\varepsilon^{-\kappa}]} \big\Vert\varpi_{\varepsilon}(\mathfrak{c})-\varpi_{\varepsilon}^{*}(\mathfrak{c})\big\Vert^{\mathrm{p}}\Big] \leq\mho,\; \varepsilon\in(0,\varepsilon_{1}]. \end{equation} | (4.5) |
Proof. By Eqs (3.35) and (4.4), for \mathfrak{c} \in [0, \mathfrak{u}] \subseteq [0, \mathbb{M}] , we have
\begin{align} &\varpi_{\varepsilon}(\mathfrak{c})-\varpi_{\varepsilon}^{*}(\mathfrak{c}) \\ = & \varepsilon^{\mathfrak{a}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)- \widetilde{\mathfrak{f}}\big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\varphi \\&+ \varepsilon^{\mathfrak{a}-\frac{1}{2}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)-\widetilde{\mathfrak{g}} \big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\mathrm{w}({\varphi}). \end{align} | (4.6) |
Via Jensen's inequality, we have
\begin{align} &\big\Vert\varpi_{\varepsilon}(\mathfrak{c})-\varpi_{\varepsilon}^{*}(\mathfrak{c})\big\Vert^{\mathrm{p}} \\ \leq& 2^{\mathrm{p}-1} \bigg\Vert\varepsilon^{\mathfrak{a}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}\big(\varphi,\varpi_{\varepsilon}(\varphi), \varpi_{\varepsilon}(\varphi-\mathrm{s})\big)-\widetilde{\mathfrak{f}}\big(\varpi_{\varepsilon}^{*}(\varphi), \varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\varphi\bigg\Vert^{\mathrm{p}} \\&+ 2^{\mathrm{p}-1} \bigg\Vert \varepsilon^{\mathfrak{a}-\frac{1}{2}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\varpi_{\varepsilon}(\varphi), \varpi_{\varepsilon}(\varphi-\mathrm{s})\big)-\widetilde{\mathfrak{g}} \big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\mathrm{w}({\varphi})\bigg\Vert^{\mathrm{p}} \\ \leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{\mathrm{p}-1}\varepsilon^{\mathrm{p}\mathfrak{a}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)-\widetilde{\mathfrak{f}} \big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\varphi\bigg\Vert^{\mathrm{p}} \\&+ \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{\mathrm{p}-1}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)- \widetilde{\mathfrak{g}}\big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert^{\mathrm{p}}. \end{align} | (4.7) |
Utilizing Eq (4.7) in Eq (4.5),
\begin{align} &\mathrm{E}\bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \big\Vert\varpi_{\varepsilon}(\mathfrak{c})-\varpi_{\varepsilon}^{*}(\mathfrak{c})\big\Vert^{\mathrm{p}}\bigg] \\\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{\mathrm{p}-1}\varepsilon^{\mathrm{p}\mathfrak{a}} \mathrm{E}\Bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)- \widetilde{\mathfrak{f}}\big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\varphi \bigg\Vert^{\mathrm{p}}\Bigg] \\&+ \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{\mathrm{p}-1}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathrm{E}\Bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)- \widetilde{\mathfrak{g}} \big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*} (\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert^{\mathrm{p}}\Bigg] \\ = &\mathscr{Q}_{1}+\mathscr{Q}_{2}. \end{align} | (4.8) |
From \mathscr{Q}_{1} , we have
\begin{align} \mathscr{Q}_{1} \leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{\mathrm{p}\mathfrak{a}} \mathrm{E}\Bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \Big(\mathfrak{f}\big(\varphi,\varpi_{\varepsilon}(\varphi), \varpi_{\varepsilon}(\varphi-\mathrm{s})\big)-\mathfrak{f}\big(\varphi,\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\Big) \mathrm{d}\varphi\bigg\Vert^{\mathrm{p}}\Bigg] \\&+ \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{\mathrm{p}\mathfrak{a}} \mathrm{E}\Bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \Big(\mathfrak{f}\big(\varphi,\varpi_{\varepsilon}^{*}(\varphi), \varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)-\widetilde{\mathfrak{f}}\big(\varpi_{\varepsilon}^{*}(\varphi), \varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\Big) \mathrm{d}\varphi\bigg\Vert^{\mathrm{p}}\Bigg] \\ = &\mathscr{Q}_{11}+\mathscr{Q}_{12}. \end{align} | (4.9) |
By Hölder's inequality, Jensen's inequality, and (\mathbb{H}_{3}) applied to \mathscr{Q}_{11} :
\begin{align} \mathscr{Q}_{11} \leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{\mathrm{p}\mathfrak{a}} \left( \int_{0}^{\mathfrak{u}}(\mathfrak{u}-\varphi)^{\frac{(\mathfrak{a}-1)\mathrm{p}}{\mathrm{p}-1}} \mathrm{d}\varphi\right)^{\mathrm{p}-1} \\& \mathrm{E}\left[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \int_{0}^{\mathfrak{c}} \left\Vert\mathfrak{f}\left(\varphi, \varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\right)- \mathfrak{f}\left(\varphi,\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right)\right\Vert^{\mathrm{p}} \mathrm{d}\varphi\right] \\\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{3\mathrm{p}-3}\varepsilon^{\mathrm{p}\mathfrak{a}} \mathscr{U}_{3}^{\mathrm{p}} \big({\mathfrak{u}^{\frac{(\mathfrak{a}\mathrm{p}-1)}{\mathrm{p}-1}}}\big)^{\mathrm{p}-1} \bigg(\frac{\mathrm{p}-1}{(\mathfrak{a}\mathrm{p}-1)}\bigg)^{\mathrm{p}-1} \\& \Bigg(\mathrm{E}\bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \int_{0}^{\mathfrak{c}} \left\Vert \varpi_{\varepsilon}(\varphi)-\varpi_{\varepsilon}^{*}(\varphi)\right\Vert^{\mathrm{p}}\mathrm{d}\varphi\bigg]+\mathrm{E}\bigg[ \sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \int_{0}^{\mathfrak{c}}\left\Vert\varpi_{\varepsilon}(\varphi-\mathrm{s}) -\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right\Vert^{\mathrm{p}} \mathrm{d}\varphi\bigg]\Bigg) \\ = & \mathscr{Q}_{11}\varepsilon^{\mathrm{p}\mathfrak{a}}\mathfrak{u}^{(\mathfrak{a}\mathrm{p}-1)} \Bigg(\int_{0}^{\mathfrak{u}} \mathrm{E}\bigg[\sup\limits_{0\leq\Lambda\leq\varphi}\left\Vert \varpi_{\varepsilon}(\Lambda) -\varpi_{\varepsilon}^{*}(\Lambda)\right\Vert ^{\mathrm{p}} \bigg]\mathrm{d}\varphi \\&+ \int_{0}^{\mathfrak{u}} \mathrm{E}\bigg[\sup\limits_{0\leq\Lambda\leq\varphi} \Vert \varpi_{\varepsilon}(\Lambda-\mathrm{s}) -\varpi_{\varepsilon}^{*}(\Lambda-\mathrm{s})\Vert^{\mathrm{p}}\bigg] \mathrm{d}\varphi\Bigg), \end{align} | (4.10) |
here, \mathscr{Q}_{11} = \bigg(\frac{\mathrm{p}-1}{(\mathfrak{a}\mathrm{p}-1)}\bigg)^{\mathrm{p}-1}\big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{3\mathrm{p}-3}\mathscr{U}_{3}^{\mathrm{p}} .
By Hölder's inequality, Jensen's inequality, and (\mathbb{H}_{5}) on \mathscr{Q}_{12} ,
\begin{align} \mathscr{Q}_{12} \leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{\mathrm{p}\mathfrak{a}} \Big(\int_{0}^{\mathfrak{u}} (\mathfrak{u}-\varphi)^{\frac{(\mathfrak{a}-1)\mathrm{p}}{\mathrm{p}-1}} \mathrm{d}\varphi\Big)^{\mathrm{p}-1} \\& \mathrm{E}\bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \int_{0}^{\mathfrak{c}}\bigg\Vert\mathfrak{f} \big(\varphi,\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)- \widetilde{\mathfrak{f}} \big(\varpi_{\varepsilon}^{*}(\varphi), \varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg\Vert^{\mathrm{p}} \mathrm{d}\varphi\bigg] \\\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{\mathrm{p}\mathfrak{a}} \big({\mathfrak{u}^{\frac{(\mathfrak{a}\mathrm{p}-1)}{\mathrm{p}-1}}}\big)^{\mathrm{p}-1} \bigg(\frac{\mathrm{p}-1}{(\mathfrak{a}\mathrm{p}-1)}\bigg)^{\mathrm{p}-1} \aleph_{1}(\mathfrak{u}) \mathfrak{u}\big(1+\mathrm{E}\big\Vert\varpi_{\varepsilon}^{*}(\varphi)\big\Vert ^{\mathrm{p}}+ \mathrm{E}\big\Vert\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big\Vert^{\mathrm{p}}\big) \\ = & \mathscr{Q}_{12}\varepsilon^{\mathrm{p}\mathfrak{a}}\mathfrak{u}^{\mathfrak{a}\mathrm{p}}, \end{align} | (4.11) |
where \mathscr{Q}_{12} = \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2} \big(\frac{\mathrm{p}-1}{(\mathfrak{a}\mathrm{p}-1)}\big)^{\mathrm{p}-1} \aleph_{1}(\mathfrak{u}) \big(1+\mathrm{E}\big\Vert \varpi_{\varepsilon}^{*}(\varphi)\big\Vert^{\mathrm{p}}+ \mathrm{E}\big\Vert\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big\Vert^{\mathrm{p}}\big) .
The following is provided by \mathscr{Q}_{2} via Jensen's inequality:
\begin{align} \mathscr{Q}_{2}\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \\& \Bigg(\mathrm{E}\Bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\bigg[\mathfrak{g}\big(\varphi,\varpi_{\varepsilon}(\varphi), \varpi_{\varepsilon}(\varphi-\mathrm{s})\big)- \mathfrak{g}\big(\varphi,\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg] \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert ^{\mathrm{p}}\Bigg]\Bigg) \\+& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \\& \Bigg(\mathrm{E}\Bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\bigg[\mathfrak{g}\big(\varphi,\varpi^{*}_{\varepsilon}(\varphi), \varpi^{*}_{\varepsilon}(\varphi-\mathrm{s})\big)- \widetilde{\mathfrak{g}}\big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg] \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert ^{\mathrm{p}}\Bigg]\Bigg) \\ = & \mathscr{Q}_{21}+\mathscr{Q}_{22}. \end{align} | (4.12) |
By applying (\mathbb{H}_{3}) , Hölder's inequality, and Burkholder-Davis-Gundy inequality on \mathscr{Q}_{21} ,
\begin{align} \mathscr{Q}_{21}\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \left(2(\mathrm{p}-1)^{1-\mathrm{p}}\mathrm{p}^{\mathrm{p}+1}\right)^{\frac{\mathrm{p}}{2}} \\& \mathrm{E}\left[\int_{0}^{\mathfrak{u}}(\mathfrak{u}-\varphi)^{2\mathfrak{a}-2} \left\Vert\mathfrak{g}\left(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\right)- \mathfrak{g}\left(\varphi,\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right)\right\Vert^{2} \mathrm{d}\varphi\right]^{\frac{\mathrm{p}}{2}} \\\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{3\mathrm{p}-3}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{\frac{\mathrm{p}}{2}-1} \mathscr{U}_{3}^{\mathrm{p}} \big(\mathrm{p}^{\mathrm{p}+1}2(1-\mathrm{p})^{\mathrm{p}-1}\big)^{\frac{\mathrm{p}}{2}} \int_{0}^{\mathfrak{u}}(\mathfrak{u}-\varphi)^{(\mathfrak{a}-1)\mathrm{p}} \\& \mathrm{E} \bigg[\sup\limits_{0\leq\Lambda\leq\varphi}\left[\left\Vert\varpi_{\varepsilon}(\Lambda)-\varpi_{\varepsilon}^{*}(\Lambda)\right \Vert^{\mathrm{p}}+\left\Vert\varpi_{\varepsilon}(\Lambda-\mathrm{s})-\varpi_{\varepsilon}^{*}(\Lambda-\mathrm{s})\right\Vert^{\mathrm{p}}\right] \mathrm{d}\varphi\bigg] \\\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{3\mathrm{p}-3}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{\frac{\mathrm{p}}{2}-1} \mathscr{U}_{3}^{\mathrm{p}} \big(\mathrm{p}^{\mathrm{p}+1}2(1-\mathrm{p})^{\mathrm{p}-1}\big)^{\frac{\mathrm{p}}{2}} \int_{0}^{\mathfrak{u}}(\mathfrak{u}-\varphi)^{(\mathfrak{a}-1)\mathrm{p}} \\& \mathrm{E} \bigg[\sup\limits_{0\leq\Lambda\leq\varphi}\left[\left\Vert\varpi_{\varepsilon}(\Lambda)-\varpi_{\varepsilon}^{*}(\Lambda)\right \Vert^{\mathrm{p}}+\left\Vert\varpi_{\varepsilon}(\Lambda-\mathrm{s})-\varpi_{\varepsilon}^{*}(\Lambda-\mathrm{s})\right\Vert^{\mathrm{p}}\right] \mathrm{d}\varphi\bigg] \\ = &\mathscr{Q}_{21}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{\frac{\mathrm{p}}{2}-1} \Bigg(\int_{0}^{\mathfrak{u}}(\mathfrak{u}-\varphi)^{(\mathfrak{a}-1)\mathrm{p}} \mathrm{E} \bigg[\sup\limits_{0\leq\Lambda\leq\varphi}\left\Vert\varpi_{\varepsilon}(\Lambda)-\varpi_{\varepsilon}^{*}(\Lambda)\right\Vert^{\mathrm{p}}\bigg] \mathrm{d}\varphi \\& +\int_{0}^{\mathfrak{u}}(\mathfrak{u}-\varphi)^{(\mathfrak{a}-1)\mathrm{p}} \mathrm{E} \bigg[\sup\limits_{0\leq\Lambda\leq\varphi}\left\Vert\varpi_{\varepsilon}(\Lambda-\mathrm{s})-\varpi_{\varepsilon}^{*}(\Lambda-\mathrm{s})\right\Vert^{\mathrm{p}} \bigg] \mathrm{d}\varphi\Bigg), \end{align} | (4.13) |
where \mathscr{Q}_{21} = 2^{3\mathrm{p}-3}\mathscr{U}_{3}^{\mathrm{p}} \left(\frac{\mathrm{p}^{\mathrm{p}+1}}{2(\mathrm{p}-1)^{\mathrm{p}-1}}\right)^{\frac{\mathrm{p}}{2}} \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} .
By Hölder's inequality and Burkholder-Davis-Gundy inequality,
\begin{align} \mathscr{Q}_{22} \leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\big(2(\mathrm{p}-1)^{1-\mathrm{p}}\mathrm{p}^{\mathrm{p}+1}\big)^{\frac{\mathrm{p}}{2}} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \\& \mathrm{E}\left[\int_{0}^{\mathfrak{u}}\left\Vert\mathfrak{f} \left(\varphi,\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right)- \widetilde{\mathfrak{g}}\left(\varphi,\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right) \right\Vert^{2}(\mathfrak{u}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi\right]^{\frac{\mathrm{p}}{2}} \\\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{\frac{\mathrm{p}}{2}-1} \big(2(\mathrm{p}-1)^{\mathrm{p}-1}\mathrm{p}^{\mathrm{p}+1}\big)^{\frac{\mathrm{p}}{2}} \mathrm{E}\bigg[\int_{0}^{\mathfrak{u}}(\mathfrak{u}-\varphi)^{(\mathfrak{a}-1)\mathrm{p}} \\& \left(\left\Vert\mathfrak{g} \left(\varphi,\varpi_{\varepsilon}^{*}(\varphi), \varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right)\right\Vert^{\mathrm{p}}+ \big\Vert\widetilde{\mathfrak{g}} \left(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*} (\varphi-\mathrm{s})\right)\big\Vert^{\mathrm{p}}\right) \mathrm{d}\varphi\bigg] \\\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} \frac{2^{3\mathrm{p}-3}3^{\mathrm{p}-1} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{((\mathfrak{a}-1)\mathrm{p}+1)} \mathfrak{u}^{\frac{\mathrm{p}}{2}-1}\mathscr{U}_{4}^{\mathrm{p}}\left(\mathscr{U}_{4}^{\mathrm{p}}+ \mathscr{U}_{6}\right)^{\mathrm{p}}} {((\mathfrak{a}-1)\mathrm{p}+1)} \\& \big(2(\mathrm{p}-1)^{1-\mathrm{p}}\mathrm{p}^{\mathrm{p}+1}\big)^{\frac{\mathrm{p}}{2}} \big(1+\mathrm{E}[\left\Vert\varpi_{\varepsilon}^{*}(\varphi)\right\Vert^{\mathrm{p}}]+ \mathrm{E}[\left\Vert\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right\Vert^{\mathrm{p}}]\big) \\ = & \mathscr{Q}_{22} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}}, \end{align} | (4.14) |
where
\begin{align*} \mathscr{Q}_{22} = & 2^{3{\mathrm{p}}-3}3^{{\mathrm{p}}-1}\mathscr{U}_{4}^{\mathrm{p}} \left(\mathscr{U}_{4}^{\mathrm{p}}+ \mathscr{U}_{6}\right)^{\mathrm{p}} \frac{1} {(\vartheta(\mathfrak{a}-1)\mathrm{p}+1)} \big(2(\mathrm{p}-1)^{1-\mathrm{p}}\mathrm{p}^{\mathrm{p}+1}\big)^{\frac{\mathrm{p}}{2}}\\& \big(1+\mathrm{E}[\left\Vert\varpi_{\varepsilon}^{*}(\varphi)\right\Vert^{\mathrm{p}}]+\mathrm{E}[ \left\Vert\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right\Vert^{\mathrm{p}}]\big)\big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}}. \end{align*} |
Using Eqs (4.9) to (4.14) in (4.8),
\begin{align} &\mathrm{E} \bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \big\Vert\varpi_{\varepsilon}(\mathfrak{c})- \varpi_{\varepsilon}^{*}(\mathfrak{c})\big\Vert^{\mathrm{p}}\bigg]\\ \leq& \mathscr{Q}_{12}\varepsilon^{\mathrm{p}\mathfrak{a}} \mathfrak{u}^{\mathfrak{a}\mathrm{p}} + \mathscr{Q}_{22} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} + \int_{0}^{\mathfrak{u}} \bigg(\mathscr{Q}_{11}\varepsilon^{\mathrm{p}\mathfrak{a}}\mathfrak{u}^{(\mathfrak{a}\mathrm{p}-1)} + \mathscr{Q}_{21}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{\frac{\mathrm{p}}{2}-1} (\mathfrak{u}-\varphi)^{(\mathfrak{a}-1)\mathrm{p}} \mathrm{d}\varphi \bigg) \\& \mathrm{E}\bigg[\sup\limits_{0\leq\Lambda\leq\varphi}\left\Vert \varpi_{\varepsilon}(\Lambda) -\varpi_{\varepsilon}^{*}(\Lambda)\right\Vert^{\mathrm{p}} \bigg]\mathrm{d}\varphi\\& + \int_{0}^{\mathfrak{u}} \bigg( \mathscr{Q}_{11}\varepsilon^{\mathrm{p}\mathfrak{a}}\mathfrak{u}^{(\mathfrak{a}\mathrm{p}-1)} + \mathscr{Q}_{21}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{\frac{\mathrm{p}}{2}-1} (\mathfrak{u}-\varphi)^{(\mathfrak{a}-1)\mathrm{p}} \bigg) \mathrm{E} \bigg[\sup\limits_{0\leq\Lambda\leq\varphi}\left\Vert\varpi_{\varepsilon}(\Lambda-\mathrm{s})-\varpi_{\varepsilon}^{*}(\Lambda-\mathrm{s})\right\Vert^{\mathrm{p}} \bigg] \mathrm{d}\varphi. \end{align} | (4.15) |
From Eq (4.15),
\begin{align*} &\mathrm{E} \bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \big\Vert\varpi_{\varepsilon}(\mathfrak{c})-\varpi_{\varepsilon}^{*}(\mathfrak{c})\big\Vert^{\mathrm{p}}\bigg] \\\leq& \Bigg(\mathscr{Q}_{12}\varepsilon^{\mathrm{p}\mathfrak{a}}\mathfrak{u}^{\mathfrak{a}\mathrm{p}} + \mathscr{Q}_{22} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}}\Bigg) \exp\left(2\mathscr{Q}_{11} \varepsilon^{\mathrm{p}\mathfrak{a}} \mathfrak{u}^{\mathfrak{a}\mathrm{p}}+ \frac{2\mathscr{Q}_{21}}{((\mathfrak{a}-1)\mathrm{p}+1)} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}}\right). \end{align*} |
So, for \varrho > 0 and \kappa\in(0, \mathfrak{a}\mathrm{p}-\frac{\mathrm{p}}{2}) with \mathfrak{c}\in\left[-\mathrm{s}, \varrho\varepsilon^{-\kappa}\right]\subseteq[0, \mathbb{M}] , we obtain
\begin{equation} \mathrm{E}\left[\sup\limits_{-\mathrm{s}\leq\mathfrak{c}\leq \varrho\varepsilon^{-\kappa}}\left\Vert\varpi_{\varepsilon}(\mathfrak{c})- \varpi_{\varepsilon}^{*}(\mathfrak{c})\right\Vert^{\mathrm{p}}\right]\leq\mathscr{Z}\varepsilon^{1-\kappa}, \end{equation} | (4.16) |
where
\begin{align*} \mathscr{Z} = \varepsilon^{\kappa-1}&\Bigg(\mathscr{Q}_{12}\varepsilon^{\mathrm{p}\mathfrak{a}}(\varrho\varepsilon^{-\kappa})^{\mathfrak{a}\mathrm{p}} + \mathscr{Q}_{22} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} (\varrho\varepsilon^{-\kappa})^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}}\Bigg) \\& \exp\left(2\mathscr{Q}_{11} \varepsilon^{\mathrm{p}\mathfrak{a}} (\varrho\varepsilon^{-\kappa})^{\mathfrak{a}\mathrm{p}}+ \frac{2\mathscr{Q}_{21}}{((\mathfrak{a}-1)\mathrm{p}+1)} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} (\varrho\varepsilon^{-\kappa})^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}}\right). \end{align*} |
So, proved the required result.
To better understand the theoretical results established in this research, we present examples along with graphical comparisons of the original and averaged solutions. Figures 1–4 illustrate these comparisons, supporting the validity of our theoretical findings.
Example 1. Consider the following:
\begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.95}\varpi_{\varepsilon}(\mathfrak{c}) = 6\varepsilon^{0.95}\sin^{2}(\mathfrak{c})\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{2})+\varepsilon^{0.95}\varpi_{\varepsilon} (\mathfrak{c}-\frac{1}{2})\cos^{2}(\mathfrak{c}) \\ \quad\quad\quad\quad\quad\quad+3\varepsilon^{0.95-\frac{1}{2}} \varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{2}) \cos^{2}(\mathfrak{c})\sin(\varpi_{\varepsilon}(\mathfrak{c})) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{d\mathfrak{c}},\; \mathfrak{c}\in[0,\pi], \\ \varpi(0) = \sigma, \end{array}\right. \end{align} | (5.1) |
where \mathfrak{a} = 0.95 , \mathrm{s} = \frac{1}{2} , and
\begin{align*} \mathfrak{f}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s})) & = 6\sin^{2}(\mathfrak{c})\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{2})+\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{2})\cos^{2}(\mathfrak{c}), \\ \mathfrak{g}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s}))& = 3\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{2})\cos^{2}(\mathfrak{c})\sin(\varpi_{\varepsilon}(\mathfrak{c})). \end{align*} |
The criteria of existence and uniqueness are fulfilled by \mathfrak{f}(\mathfrak{c}, \varpi(\mathfrak{c}), \varpi(\mathfrak{c}-\mathrm{s})) and \mathfrak{g}(\mathfrak{c}, \varpi(\mathfrak{c}), \varpi(\mathfrak{c}-\mathrm{s})) .
The averages of \mathfrak{f} and \mathfrak{g} are as
\begin{align*} \widetilde{\mathfrak{f}}(\varpi(\mathfrak{c}),\varpi(\mathfrak{c}-\mathrm{s})) & = \frac{1}{\pi}\int_{0}^{\pi} \bigg(6\sin^{2}(\mathfrak{c})\varpi_{\varepsilon}(\mathfrak{c})+\varpi_{\varepsilon}(\mathfrak{c})\cos^{2}\big(\frac{1}{2}\mathfrak{c}\big)\bigg)d\mathfrak{c} = \frac{7}{2}\varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{2}), \\ \widetilde{\mathfrak{g}}(\varpi(\mathfrak{c}),\varpi(\mathfrak{c}-\mathrm{s}))& = \frac{1}{\pi}\int_{0}^{\pi}3\varpi_{\varepsilon}(\mathfrak{c})\cos^{2}(\mathfrak{c})\sin(\varpi_{\varepsilon}(\mathfrak{c})) d\mathfrak{c} = \frac{3}{2}\varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{2})\sin(\varpi^{*}_{\varepsilon}(\mathfrak{c})). \end{align*} |
The corresponding average is
\begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.95}\varpi^{*}_{\varepsilon}(\mathfrak{c}) = \frac{7}{2}\varepsilon^{0.95}\varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{2})+ \frac{3}{2}\varepsilon^{0.95-\frac{1}{2}} \varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{2})\sin(\varpi^{*}_{\varepsilon}(\mathfrak{c})) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{d\mathfrak{c}}, \\ \varpi^{*}_{\varepsilon}(0) = \sigma. \end{array}\right. \end{align} | (5.2) |
All conditions in Theorem 4.1 are satisfied by system (5.1). As a result, solutions \varpi_{\varepsilon}(\mathfrak{c}) and \varpi^{*}_{\varepsilon}(\mathfrak{c}) are equivalent at the \mathrm{p} th moment in the limit as \varepsilon\rightarrow0 . Figure 1 presents a graphical comparison between solutions of the original system (5.1) and averaged system (5.2), demonstrating a strong agreement between solutions \varpi_{\varepsilon}(\mathfrak{c}) and \varpi^{*}_{\varepsilon}(\mathfrak{c}) and confirming the accuracy of our theoretical conclusions.
Example 2. Take the following:
\begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.90}\varpi_{\varepsilon}(\mathfrak{c}) = 3\varepsilon^{0.90}\sin\big(\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{3})\big)\sin^{2}(\mathfrak{c})\varpi_{\varepsilon}(\mathfrak{c})\\ \quad\quad\quad\quad\quad\quad+ \varepsilon^{0.90-\frac{1}{2}} \sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{d\mathfrak{c}},\; \mathfrak{c}\in[0,\pi], \\ \varpi(0) = \sigma^{\prime}, \end{array}\right. \end{align} | (5.3) |
where \mathfrak{a} = 0.90 , \mathrm{s} = \frac{1}{3} , and
\begin{align*} \mathfrak{f}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s})) & = 3\sin\big(\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{3})\big)\sin^{2}(\mathfrak{c})\varpi_{\varepsilon}(\mathfrak{c}), \\ \mathfrak{g}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s}))& = \sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big). \end{align*} |
The criteria of existence and uniqueness are fulfilled by \mathfrak{f}(\mathfrak{c}, \varpi(\mathfrak{c}), \varpi(\mathfrak{c}-\mathrm{s})) and \mathfrak{g}(\mathfrak{c}, \varpi(\mathfrak{c}), \varpi(\mathfrak{c}-\mathrm{s})) .
The averages of \mathfrak{f} and \mathfrak{g} are as
\begin{align*} \widetilde{\mathfrak{f}}(\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s})) & = \frac{1}{\pi}\int_{0}^{\pi}3\sin\big(\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{3})\big)\sin^{2}(\mathfrak{c})\varpi_{\varepsilon}(\mathfrak{c})d\mathfrak{c} = \frac{3}{2} \sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{3})\big)\varpi^{*}_{\varepsilon}(\mathfrak{c}), \\ \widetilde{\mathfrak{g}}(\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s}))& = \frac{1}{\pi}\int_{0}^{\pi}\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) d\mathfrak{c} = \sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big). \end{align*} |
The corresponding average is
\begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.90}\varpi^{*}_{\varepsilon}(\mathfrak{c}) = \frac{3}{2} \varepsilon^{0.90}\sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{3})\big)\varpi^{*}_{\varepsilon}(\mathfrak{c})+ \varepsilon^{0.90-\frac{1}{2}} \sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big){d\mathfrak{c}}, \\ \varpi^{*}_{\varepsilon}(0) = \sigma^{\prime}. \end{array}\right. \end{align} | (5.4) |
All requirements in Theorem 4.1 are fulfilled by Example 2. Consequently, solutions \varpi_{\varepsilon}(\mathfrak{c}) and \varpi^{*}_{\varepsilon}(\mathfrak{c}) are equivalent at the \mathrm{p} th moment in the limit as \varepsilon\rightarrow0 . Figure 2 provides a graphical comparison between solutions of the original system (5.3) and the averaged system (5.4), illustrating a strong agreement between \varpi_{\varepsilon}(\mathfrak{c}) and \varpi^{*}_{\varepsilon}(\mathfrak{c}) and validating the accuracy of our theoretical findings.
Example 3. Examine the following:
\begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.95}\varpi_{\varepsilon}(\mathfrak{c}) = \frac{1}{3}\varepsilon^{0.95}\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{4}) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big)\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \\ \quad\quad\quad\quad\quad\quad+ \frac{3\pi}{4} \varepsilon^{0.95-\frac{1}{2}} \sin^{3}\mathfrak{c} \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \varpi_{\varepsilon}(\mathfrak{c}) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{d\mathfrak{c}},\; \mathfrak{c}\in[0,\pi], \\ \varpi(0) = \sigma^{\prime}, \end{array}\right. \end{align} | (5.5) |
where \mathfrak{a} = 0.95 , \mathrm{s} = \frac{1}{4} , and
\begin{align*} \mathfrak{f}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s})) & = \frac{1}{3}\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{4}) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big)\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big), \\ \mathfrak{g}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s}))& = \frac{3\pi}{4} \sin^{3}\mathfrak{c} \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \varpi_{\varepsilon}(\mathfrak{c})\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big). \end{align*} |
\mathfrak{f}(\mathfrak{c}, \varpi(\mathfrak{c}), \varpi(\mathfrak{c}-\mathrm{s})) and \mathfrak{g}(\mathfrak{c}, \varpi(\mathfrak{c}), \varpi(\mathfrak{c}-\mathrm{s})) satisfy the needs of existence and uniqueness.
The following are the averages:
\begin{align*} \widetilde{\mathfrak{f}}(\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s})) & = \frac{1}{\pi}\int_{0}^{\pi}\frac{1}{3}\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{4}) \sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big)\cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big)d\mathfrak{c} = \frac{1}{3}\varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{4})\sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) , \\ \widetilde{\mathfrak{g}}(\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s}))& = \frac{1}{\pi}\int_{0}^{\pi} \frac{3\pi}{4} \sin^{3}\mathfrak{c} \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \varpi_{\varepsilon}(\mathfrak{c})\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) d\mathfrak{c} = \sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big)\cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big)\varpi^{*}_{\varepsilon}(\mathfrak{c}). \end{align*} |
Thus,
\begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.95}\varpi^{*}_{\varepsilon}(\mathfrak{c}) = \frac{1}{3}\varepsilon^{0.95}\varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{4})\sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big)\\ \quad\quad\quad\quad\quad\quad+\varepsilon^{0.95-\frac{1}{2}} \cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big)\varpi^{*}_{\varepsilon}(\mathfrak{c}) \sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{d\mathfrak{c}}, \\ \varpi_{\varepsilon}^{*}(0) = \sigma^{\prime}. \end{array}\right. \end{align} | (5.6) |
All conditions stated in Theorem 4.1 are satisfied by Example 3. As a result, solutions \varpi_{\varepsilon}(\mathfrak{c}) and \varpi^{*}_{\varepsilon}(\mathfrak{c}) are equivalent at the \mathrm{p} th moment in the limit as \varepsilon\rightarrow0 . Figure 3 depicts a graphical comparison between solutions of the original system (5.5) and the averaged system (5.6), demonstrating a strong agreement between \varpi_{\varepsilon}(\mathfrak{c}) and \varpi^{*}_{\varepsilon}(\mathfrak{c}) and confirming the accuracy of our theoretical results.
Example 4. Take the following:
\begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.95}\varpi_{\varepsilon}(\mathfrak{c}) = \frac{9}{2}\varepsilon^{0.95}\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big)\exp^{-\mathfrak{c}} \\\quad\quad\quad\quad\quad\quad+\varepsilon^{0.95-\frac{1}{2}} \sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \varpi_{\varepsilon}(\mathfrak{c}-\frac{2}{3}) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{d\mathfrak{c}},\; \mathfrak{c}\in[0,\pi], \\ \varpi(0) = \sigma^{\prime}, \end{array}\right. \end{align} | (5.7) |
where \mathfrak{a} = 0.95 , \mathrm{s} = \frac{2}{3} , and
\begin{align*} \mathfrak{f}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s})) & = \frac{9}{2}\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big)\exp^{-\mathfrak{c}}, \\ \mathfrak{g}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s}))& = \sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \varpi_{\varepsilon}(\mathfrak{c}-\frac{2}{3})\cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big). \end{align*} |
The \frac{9}{2}\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big)\exp^{-\mathfrak{c}} and \sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \varpi_{\varepsilon}(\mathfrak{c}-\frac{2}{3})\cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) satisfy the conditions of existence and uniqueness.
The averages of \mathfrak{f} and \mathfrak{g} :
\begin{align*} \widetilde{\mathfrak{f}}(\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s})) & = \frac{1}{\pi}\int_{0}^{\pi} \bigg(\frac{9}{2}\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big)\exp^{-\mathfrak{c}}\bigg)d\mathfrak{c} \nonumber\\& = \frac{9}{2\pi}\sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big)(1-\exp^{-\pi}), \\ \widetilde{\mathfrak{g}}(\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s}))& = \frac{1}{\pi}\int_{0}^{\pi}\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \varpi_{\varepsilon}(\mathfrak{c}-\frac{2}{3})\cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) d\mathfrak{c} = \sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{2}{3})\cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big). \end{align*} |
So, we get
\begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.95}\varpi^{*}_{\varepsilon}(\mathfrak{c}) = \varepsilon^{0.95}\frac{9}{2\pi}\sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c}))\big)(1-\exp^{-\pi})\\ \quad\quad\quad\quad\quad\quad+\varepsilon^{0.95-\frac{1}{2}} \sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{2}{3})\cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{d\mathfrak{c}}, \\ \varpi_{\varepsilon}^{*}(0) = \sigma^{\prime}. \end{array}\right. \end{align} | (5.8) |
Figure 4 presents the same results as in Examples 1–3.
Our research work is important as follows: First, by proving results of existence and uniqueness, Con-D, regularity, and average principle in the \mathrm{p} th moment, we extend the outcomes for \mathrm{p} = 2 . Secondly, for the first time in the literature, we construct well-posedness and average principle results in the context of HFrD of SFDDEs. Third, we consider SFDDEs, which represent a more generalized class of FSDEs, and we present some graphical results to prove the validity of our results.
The following are the main points we can work on in the future: We can explore the important concept of controllability for SFDDEs concerning HFrD. We can establish well-posedness, regularity, and average principle results for stochastic Volterra-Fredholm integral equations.
W. Albalawi, M. I. Liaqat, F. U. Din, K. S. Nisar and A. H. Abdel-Aty: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing–original draft preparation, Writing–review and editing, Visualization, Resources, Funding acquisition. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The research work was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2025R157), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The authors are thankful to the Deanship of Graduate Studies and Scientific Research at University of Bisha for supporting this work through the Fast-Track Research Support Program.
The authors declare no conflicts of interest.
[1] |
Acheampong P, Agalega E, Shibu AK (2014) The Effect of Financial Leverage and Market Size on Stock Returns on the Ghana Stock Exchange: Evidence from Selected Stocks in the Manufacturing Sector. Int J Financ Res 5: 125–134. https://doi.org/10.5430/ijfr.v5n1p125 doi: 10.5430/ijfr.v5n1p125
![]() |
[2] | Adegbesan E (2022) Foreign capital inflow rises 60% to $610m, outflow rises faster. Available from: https://www.vanguardngr.com/2022/06/foreign-capital-inflow-rises-60-to-610m-outflow-rises-faster/(accessed on 15-05-2023). |
[3] |
Adra, SS, Hamadi M, Yuan J (2023) Top-tier advisors and the market feedback dynamics in cross-border M&As. Int Rev Financ Anal 86: 102495. https://doi.org/10.1016/j.irfa.2023.102495 doi: 10.1016/j.irfa.2023.102495
![]() |
[4] |
Ahmed S, Zlate A (2014) Capital flows to emerging market economies: A brave new world? J Int Mon Financ 48: 221–248. https://doi.org/10.1016/j.jimonfin.2014.05.015 doi: 10.1016/j.jimonfin.2014.05.015
![]() |
[5] |
Assefa TA, Esqueda, OA, Mollick AV (2017) Stock returns and interest rates around the World: A panel data approach. J Econ Bus 89: 20–35. https://doi.org/10.1016/j.jeconbus.2016.10.001 doi: 10.1016/j.jeconbus.2016.10.001
![]() |
[6] | Babecky J, Komarek L, Komarkova Z (2013) Financial integration at times of financial (in)stability. Czech J Econ Financ 63: 25–45. |
[7] |
Baele L, Inghelbrecht K (2009) Time-varying integration and international diversification strategies. J Emp Financ 16: 368–387. https://doi.org/10.1016/j.jempfin.2008.11.001 doi: 10.1016/j.jempfin.2008.11.001
![]() |
[8] |
Bathia D, Bouras C, Demirer R, et al. (2020) Cross-border capital flows and return dynamics in emerging stock markets: Relative roles of equity and debt flows. J Inter Mon Financ 109: 102258. https://doi.org/10.1016/j.jimonfin.2020.102258 doi: 10.1016/j.jimonfin.2020.102258
![]() |
[9] |
Bathia D, Demirer R, Ferrer R, et al. (2023) Cross-border capital flows and information spillovers across the equity and currency markets in emerging economies. J Int Mon Financ 139: 102948. https://doi.org/10.1016/j.jimonfin.2023.102948 doi: 10.1016/j.jimonfin.2023.102948
![]() |
[10] |
Bekhet, HA, Matar A (2013) Co-integration and causality analysis between stock market prices and their determinates in Jordan. Econ Model 35: 508–514. https://doi.org/10.1016/j.econmod.2013.07.012 doi: 10.1016/j.econmod.2013.07.012
![]() |
[11] | Brooks C (2008) Introductory Econometrics for Finance. Cambridge University Press. New York, NY. https://doi.org/10.1017/CBO9780511841644 |
[12] | Broto C, Dxıaz-Cassou J, Erce A (2011) Measuring and explaining the volatility of capital flows to emerging countries. J Bank Financ 35: 1941–1953. https://doi.org/1016/j.jbankfin.2011.01.004 |
[13] | Brown RL, Durbin J, Evans JM (1975) Techniques for Testing the Constancy of Regression Relationships over Time. J Roy Stat Soc 37:149–192. |
[14] |
Chikwira C, Mohammed JI (2023) The Impact of the Stock Market on Liquidity and Economic Growth: Evidence of Volatile Market. Economies 11: 155. https://doi.org/10.3390/economies11060155 doi: 10.3390/economies11060155
![]() |
[15] | Chunhachinda P, Dandapani K, Shahid H, et al. (1997) Portfolio selection and skewness: Evidence from international stock markets. J Bank Financ 21: 143–167. |
[16] |
Dickey DA, Fuller WA (1981) Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 49: 1057–1072. https://doi.org/10.2307/1912517 doi: 10.2307/1912517
![]() |
[17] |
El-Diftar D (2023) The impact of exchange rates on stock market performance of the Emerging 7. J Capital Markets Stu 7:125–139. https://doi.org/10.1108/JCMS-03-2023-0005 doi: 10.1108/JCMS-03-2023-0005
![]() |
[18] |
Eldomiaty T, Saeed Y, Hammam R (2020) The associations between stock prices, inflation rates, interest rates are still persistent. Empirical evidence from stock duration model. J Eco Fin Admin Sci 25:149–161. https://doi.org/10.1108/JEFAS-10-2018-0105 doi: 10.1108/JEFAS-10-2018-0105
![]() |
[19] |
Fama EF (1965) The Behavior of Stock Market Prices. J Bus 38: 34–105. https://doi.org/10.1086/294743 doi: 10.1086/294743
![]() |
[20] |
Fama EF, Schwert GW (1977) Asset Returns and Inflation. J Financ Econ 5: 115–146. https://doi.org/10.1016/0304-405X(77)90014-9 doi: 10.1016/0304-405X(77)90014-9
![]() |
[21] | Fisher I (1930) The Theory of Interest, MacMillan, New York, NY |
[22] |
Gachanja S, Kosimbei G (2018) Dynamic linkage between foreign equity flows and stock market returns in Nairobi Securities Exchange. Stra J 5: 201–215. https://doi.org/10.61426/sjbcm.v5i3.815 doi: 10.61426/sjbcm.v5i3.815
![]() |
[23] |
Gordon MJ (1959) Dividends, earnings and stock prices. Rev Econ Stat 41: 99–105. https://doi.org/10.2307/1927792 doi: 10.2307/1927792
![]() |
[24] |
Grauer F, Litzenberger R, Stehle R (1976) Sharing rules and equilibrium in an international capital market under uncertainty. J Financ Econ 3: 233–256. https://doi.org/10.1016/0304-405X(76)90005-2 doi: 10.1016/0304-405X(76)90005-2
![]() |
[25] | IMF (2020) Global Financial Stability Report: Markets in the time of COVID-19. Available from: https://www.imf.org/en/Publications/GFSR/Issues/2020/04/14/global-financial-stability-report-april-2020 (accessed on 12-05-2023). |
[26] |
Iriobe G, Obamuyi TM, Abayomi M (2018) Effect of Foreign Portfolio Investment in Bond Stocks on the Performance of the Nigerian Stock Market. Arch Bus Res 6. https://doi.org/10.14738/abr.612.5444 doi: 10.14738/abr.612.5444
![]() |
[27] | Koskei L (2017) The effect of foreign portfolio equity sales on stock returns in Kenya: evidence from NSE listed financial institutions. International J Econ Financ 9: 185–190. https://doi.org/10.5539/ijef.v9n4p185 |
[28] |
Lee HH, Park CY, Byun HS (2013) Do contagion effects exist in capital flow volatility? J Jap Int Econ 30: 76–95. https://doi.org/10.2139/ssrn.2174126 doi: 10.2139/ssrn.2174126
![]() |
[29] |
Lintner J (1965) The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets. Rev Eco Stats 47: 13–37. https://doi.org/10.2307/1924119 doi: 10.2307/1924119
![]() |
[30] |
Lo AW (2004) The Adaptive Markets Hypothesis: Market Efficiency from an Evolutionary Perspective. J Port Manage 30: 15–29. https://doi.org/10.3905/jpm.2004.442611 doi: 10.3905/jpm.2004.442611
![]() |
[31] | Lo AW (2005) Reconciling efficient markets with behavioral finance: The adaptive markets hypothesis. J Invest Consult 7: 21–44. |
[32] |
Lothian JR (2006) Institutions, capital flows and financial integration. J Int Mon Financ 25: 358–369. https://doi.org/10.1016/j.jimonfin.2006.01.001 doi: 10.1016/j.jimonfin.2006.01.001
![]() |
[33] |
Magud, NE, Vesperoni RE (2015) Exchange rate flexibility and credit during capital inflow reversals: Purgatory not paradise. J Int Mon Financ 55: 88–110. https://doi.org/10.1016/j.jimonfin.2015.02.010 doi: 10.1016/j.jimonfin.2015.02.010
![]() |
[34] |
Makrelov K, Davies R, Harris L (2021) The impact of capital flow reversal shocks in South Africa: a stock- and-flow-consistent analysis. Inter Rev Appl Econ 35: 475–501. https://doi.org/10.1080/02692171.2021.1888897 doi: 10.1080/02692171.2021.1888897
![]() |
[35] |
Mamvura K, Sibanda M (2020) Modelling short-run and long-run predictors of foreign portfolio investment volatility in low-income Southern African Development Community countries. J Econ Financ Sci 13: 11. https://doi.org/10.4102/jef.v13i1.559 doi: 10.4102/jef.v13i1.559
![]() |
[36] |
Markowitz H (1952) Portfolio Selection. J Financ 7: 77–91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x doi: 10.1111/j.1540-6261.1952.tb01525.x
![]() |
[37] | Mazzoli C, Marinelli N (2011) The role of risk in the investment decision process: Traditional vs behavioural Finance, In: Lucarelli, C., Brighetti, G., editors. Risk Tolerance in Financial Decision Making. Hampshire: Palgrave Macmillan, 8–66. https://doi.org/10.1057/9780230303829_2 |
[38] | Moody's (2022) Moody's affirms Egypt's B2 rating, changes outlook to negative from stable. Available from: https://www.moodys.com/research/Moodys-affirms-Egypts-B2-rating-changes-outlook-to-negative-from--PR_465851 (Accessed on 18 July 2022). |
[39] | Natarajan R, Sivakavitha S, Vasani SA (2020) Relationship between Stock Return and Firms' Financial Performance in BSE Listed Companies. Euro J Molecu Clin Medi 7: 4553–4559. |
[40] |
Nicolo GD, Juvenal L (2014) Financial integration, globalization, and real activity. J Financ Stab 10: 65–75. https://doi.org/10.1016/j.jfs.2013.04.004 doi: 10.1016/j.jfs.2013.04.004
![]() |
[41] |
Nyasha S, Odhiambo NM (2015) The Impact of Banks and Stock Market Development on Economic Growth in South Africa: An ARDL-Bounds Testing Approach. Contemp Econ 9: 93–108. https://doi.org/10.5709/ce.1897-9254.161 doi: 10.5709/ce.1897-9254.161
![]() |
[42] |
Ochienga IL, Olweny TO, Oluoch OJ, et al. (2019) Effect of foreign equity flows on stock market volatility in Kenya: Empirical evidence at Nairobi securities exchange. J Financ Invest Ana 8: 1–5. https://doi.org/10.19044/esj.2019.v15n7p1 doi: 10.19044/esj.2019.v15n7p1
![]() |
[43] | Oluwole V (2024) Kenya, Egypt, and Nigeria dominate Africa's investment hotspots list in 2023–Report. Available from: https://africa.businessinsider.com/local/markets/kenya-egypt-and-nigeria-dominate-africas-investment-hotspots-list-in-2023-report/4fk51l0 (Accessed on 22-01-2025). |
[44] | Onyeisi OS, Odo IS, Anoke CI (2016) Foreign portfolio investment and stock market growth in Nigeria. Develop Coun Stud 6: 64–76. |
[45] | Owino V (2022) Capital markets watchdog blows whistle on foreign equity outflows at Nairobi bourse. Available from: https://www.theeastafrican.co.ke/tea/business/capital-markets-watchdog-foreign-equity-outflows-nairobi-bourse-3709320 (accessed 15-08-2022). |
[46] |
Pagliari MS, Hannan SH (2024) The Volatility of Capital Flows in Emerging Markets: Measures and Determinants. J Inter Mon Financ 145: 103095. https://doi.org/10.1016/j.jimonfin.2024.103095 doi: 10.1016/j.jimonfin.2024.103095
![]() |
[47] |
Pätäri E, Ahmed S, John E, et al. (2019) The changing role of emerging and frontier markets in global portfolio diversification. Cog Econ Financ 7. https://doi.org/10.1080/23322039.2019.1701910 doi: 10.1080/23322039.2019.1701910
![]() |
[48] |
Peng D, Ye Y, Chen Q (2024) Impact of cross-border capital flows on foreign exchange market stability. Financ Res Let 62: 105155. https://doi.org/10.1016/j.frl.2024.105155 doi: 10.1016/j.frl.2024.105155
![]() |
[49] |
Pesaran MH, Shin Y, Smith RJ (2001) Bounds testing approaches to the analysis of level relationships. J Applied Econ 16: 289–326. https://doi.org/10.1002/jae.616 doi: 10.1002/jae.616
![]() |
[50] |
Phillips PC, Perron P (1988) Testing for Unit Root in Time Series Regression. Biometrika 75: 335–346. https://doi.org/10.1093/biomet/75.2.335 doi: 10.1093/biomet/75.2.335
![]() |
[51] |
Prabheesh P (2020) Dynamics of Foreign Portfolio Investment and Stock Market Returns during the COVID-19 Pandemic: Evidence from India. Asian Econ Lett 1. https://doi.org/10.46557/001c.17658 doi: 10.46557/001c.17658
![]() |
[52] |
Prakash AJ, Chun-Hao C, Pactwa TE (2003) Selecting a portfolio with skewness: Recent evidence from US, European, and Latin American equity markets. J Bank Financ 27: 1375–1390. https://doi.org/10.1016/S0378-4266(02)00261-3 doi: 10.1016/S0378-4266(02)00261-3
![]() |
[53] |
Reinganum MR (1999) The Significance of Market Capitalization in Portfolio Management over Time. J Port Manage Sumr 25: 39–50. https://doi.org/10.3905/jpm.1999.319750 doi: 10.3905/jpm.1999.319750
![]() |
[54] | Reinhart CM, Reinhart VR (2008) Capital flow bonanzas: an encompassing view of the past and present', NBER Working Paper Series, No. 14321. https://doi.org/10.3386/w14321. |
[55] |
Rizal AA, Umar, A, Bowo S (2020) Examining Causality Effects on Stock Returns, Foreign Equity Inflow, and Investor Sentiment: Evidence from Indonesian Islamic Stocks. Indo Cap Mark Rev 12: 1–17. https://doi.org/10.21002/icmr.v12i2.12750 doi: 10.21002/icmr.v12i2.12750
![]() |
[56] |
Rodríguez YE, Gómez JM, Contreras J (2021) Diversified behavioral portfolio as an alternative to Modern Portfolio Theory. Nor Amer J Econ Financ 58: 101508. https://doi.org/10.1016/j.najef.2021.101508 doi: 10.1016/j.najef.2021.101508
![]() |
[57] |
Ross SA (1977) The Determination of Financial Structure: The Incentive Signaling Approach. Bell J Econ 8: 23–40. https://doi.org/10.2307/3003485 doi: 10.2307/3003485
![]() |
[58] |
Ruhani F, Mat JM (2022) Are stock market returns affected by financial market variables? Evidence from Bursa Malaysia by panel generalized method of moments. Inter J Eth Syst 39: 576–593. https://doi.org/10.1108/IJOES-11-2021-0201 doi: 10.1108/IJOES-11-2021-0201
![]() |
[59] |
Sanders DR, Manfredo MR (2002) The Role of Value-at-Risk in Purchasing: An Application to the Foodservice Industry. J Sup Cha Man 38: 38–45 https://doi.org/10.1111/j.1745-493X.2002.tb00128.x doi: 10.1111/j.1745-493X.2002.tb00128.x
![]() |
[60] |
Sapian RZZ, Auzairy NA (2015) Foreign equity flows and market return linkages: evidence of Malaysian stock market. Global Bus Rev 6: 1–14. https://doi.org/10.1177/0972150915601233 doi: 10.1177/0972150915601233
![]() |
[61] | Seddighi HR (2013) Introductory Econometrics: a practical approach, 2nd edition. Routledge, 711 Third Avenue, New York, NY 10017. |
[62] |
Sharpe WF (1964) Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. J Financ 19: 425–442. https://doi.org/10.1111/j.1540-6261.1964.tb02865.x doi: 10.1111/j.1540-6261.1964.tb02865.x
![]() |
[63] | Shin Y, Yu B, Greenwood-Nimmo M (2014) Modelling asymmetric cointegration and dynamic multipliers in a nonlinear ARDL framework, in W. Horrace and R. Sickles (Eds.), Festschrift in honour of Peter Schmidt: Econometric methods and applications, Springer, New York, 281–314. https://doi.org/10.1007/978-1-4899-8008-3_9 |
[64] |
Solnik B (1974) An equilibrium model of the international capital market. J Econ Theo 8: 500–524. https://doi.org/10.1016/0022-0531(74)90024-6 doi: 10.1016/0022-0531(74)90024-6
![]() |
[65] |
Sreenu N (2023) Effect of Exchange Rate volatility and inflation on stock market returns Dynamics - evidence from India. Int J Syst Assur Engineer Manage 14: 836–843. https://doi.org/10.1007/s13198-023-01914-3 doi: 10.1007/s13198-023-01914-3
![]() |
[66] | Teall JL (2018) Financial Trading and Investment, 2nd Edition, Publisher: Academic Press. |
[67] | World Bank (2023) Stock market return (%, year-on-year). Available from: https://databank.worldbank.org/source/global-financial-development/Series/GFDD.OM.02 (accessed 13-05-2024). |